• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 211
  • 48
  • 46
  • 32
  • 26
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 490
  • 490
  • 110
  • 99
  • 88
  • 74
  • 71
  • 65
  • 59
  • 56
  • 51
  • 49
  • 48
  • 46
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Design, modeling and evaluation of a thermo-magnetically activated piezoelectric generator / Conception, modélisation et évaluation d'un générateur piézoélectrique à déclenchement thermomagnétique.

Rendon hernandez, Adrian Abdala 27 September 2018 (has links)
La récupération d’énergie thermique peut être réalisée par de nombreuses techniques de transduction d’énergie. Les techniques directes de conversion d’énergie thermique en énergie électrique sont généralement les technologies les plus utilisées. Lorsque des générateurs miniaturisés son requis, des méthodes directes de conversion présentent des difficultés, y compris la nécessité des dissipateurs de chaleur volumineux ou la forte dépendance aux fluctuations de température rapides. Donc, les méthodes de conversion indirecte, comme la conversion d’énergie thermique à mécanique et puis mécanique à électrique sont présentées comme des alternatives aux récupérateurs d’énergie. Cette technologie ouvre une nouvelle ligne de recherche pour surmonter les contraintes des récupérateurs d’énergie à petite échelle. Même si leur rendement est relativement faible en raison des pertes liées aux étapes de conversion d’énergie, les générateurs d’énergie basés sur l’effet thermomagnétique présentent une densité de puissance élevée lors de leur miniaturisation. Néanmoins, peu de recherches sur la récupération d’énergie thermomagnétique à petite échelle ont été menées et aucune étude de faisabilité industrielle n’a été signalée jusqu’à présent. Ces travaux présentent la conception d’un générateur capable de convertir de faibles et de lentes fluctuations de température ambiante en électricité. L’effet thermomagnétique d’un matériau magnétique doux, à savoir l’alliage de fer et de nickel (FeNi) ainsi que la piézoélectricité sont la base de fonctionnement du dispositif. Cette thermo-magnétisation entraîne la conversion d’énergie thermique, sous la forme de fluctuations temporelles, en vibrations mécaniques d’une structure. La structure consiste en un bimorphe piézoélectrique (PZT). Le générateur a deux positions stables; la position ouverte et celle fermée. En modifiant la température de FeNi, l’interaction entre deux forces du système (forces magnétique et mécanique) amène le générateur à l’une de ses deux commutations. La température de Curie du FeNi étant proche de la température ambiante, des applications comme des dispositifs connectés portables peuvent être ciblées. Un modèle analytique est développé. Donc, une conception rapide du générateur est réalisée pour répondre aux cahiers des charges tels que: la température d’opération, la plage de températures, la réponse thermique, les capacités de conversion piézoélectrique, etc. De plus, des règles de conception ont été dérivées envers la réduction de la taille du générateur. Des modélisations par éléments finis sont développés sous ANSYS afin de valider notre modèle analytique simplifié. Ces modèles permettent aux concepteurs d’explorer d’autres matériaux et de faire des améliorations en utilisant des processus d’optimisation de la conception. Des prototypes des récupérateurs d’énergie atteignent des densités de puissance de 0.6μWcm^−3 pendant des commutations d’ouverture à 40°C et 0.02μWcm^−3 pendant des commutations de fermeture à 28°C. En réduisant la taille du générateur, des commutations d’ouverture à 31°C et des commutations de fermeture à 27°C, sont atteints. La distance initiale de séparation entre l’aimant permanent et l’alliage magnétique doux est identifiée comme une clé pour augmenter la capacité de conversion d’énergie du générateur. Un modèle équivalent électrique du générateur est développé afin de concevoir un circuit d’extraction d’énergie ainsi qu’un module de gestion d’énergie. Ce circuit est développé sous PSpice, permettant de mettre en œuvre des pertes liées aux matériaux (pertes mécaniques et diélectriques). Par le biais d’ajustement de courbe, ce modèle est capable de calculer des valeurs de pertes. Une analyse de la variabilité de la conception est réalisée afin d’explorer la faisabilité industrielle d’un tel générateur. Ainsi, la récupération d’énergie thermomagnétique peut concourir, pour la première fois, avec les thermo-générateurs les plus modernes. / Thermal energy harvesting can be realized by numerous techniques of energy transduction. Direct conversions of thermal to electrical energy are typically the most popular technologies used. When miniaturized generators are required, direct conversion methods present difficulties, including the need of bulky heat sinks or the strong dependence to rapid temperature fluctuations. Therefore, indirect conversion methods, like thermal-to-mechanical-to-electrical energy are presented as an alternative to thermal energy harvesters towards powering autonomous sensors. This disruptive technology opens up a new approach to overcome the limitations of miniaturized thermal energy harvesting systems. Even if having a relatively low efficiency due to losses linked to energy conversion steps, energy harvesters based on thermo-magnetic effect show a large power density upon miniaturization. Nevertheless, little research on thermo-magnetic energy harvesting at miniature scale has been conducted and no competitive electrical output has been reported until now.This work presents the design of a generator able to convert small and slow ambient temperature fluctuations into electricity. It exploits the thermo-magnetic effect of a soft magnetic material, namely, iron nickel alloy (FeNi) and piezoelectricity. Thermo-magnetization of FeNi is driving the conversion of thermal energy, in the form of temporal fluctuations, into mechanical vibrations of a structure. The structure consists in a piezoelectric bimorph (PZT) cantilever beam. The generator has two stable positions; open position and closed one. Curie temperature of FeNi being near to ambient temperature, applications like wearable connected devices may be targeted. By changing the temperature of the soft magnetic alloy, the interaction between counterbalance forces (magnetic and mechanical forces) leads the generator to one of its two commutations.Analytical model is developed in order to predict generator performance. Making use of this model, a rapid design of generator is conducted to fit custom requirements such as: temperature of operations, temperature range of operation, thermal response, piezoelectric energy conversion capabilities, etc.Additionally, main design rules were derived from the design parameters of the generator. Special attention was paid on how scaling down size affects the generator performance by using the analytical model.Finite element models are developed through ANSYS software in order to validate the analytical simplified model. They couple the thermal to magnetic field and then mechanical to electrical energy conversion is solved. This model allows designers to explore other materials and do improvements by using design optimization processes.First generation energy harvesting demonstrators achieve power densities of 0.6µWcm^-3 during opening commutations around 40°C and 0.02µWcm^-3 at closing commutations around 28°C. By reducing the generator’s size opening commutations at 31°C while closing commutations at 27°C are achieved. By modifying design parameters such as initial distance of separation between the permanent magnet and soft magnetic alloy is identified as a key to boost the energy conversion capability of the generator. Finally, electrical equivalent model of this thermo-magnetically activated piezoelectric generator is developed to design an energy extraction circuit and power management module. This circuit is developed in a unique software PSpice, to implement losses linked to materials (mechanic and dielectric losses). Making use of curve fitting processes, this model is able to find losses values. A variability analysis of the design is conducted by using the analytical model through Matlab in order to explore the feasibility of producing such a generator industrially. Thus, thermo-magnetic energy harvesting can compete for the first time with the state-of-the-art thermos-electrics.
372

Capteur acoustique sphérique autonome : étude du dispositif de récupération d'énergie vibratoire / Autonomous spherical acoustic sensor : study of the vibratory energy harvesting device

Diab, Daher 07 December 2017 (has links)
Un nouveau capteur acoustique sphérique autonome est proposé. Il est destiné à être immergé dans un milieu liquide ou pâteux pour mesurer certaines propriétés physiques du milieu et récupérer l'énergie vibratoire ambiante pour assurer son autonomie. Le capteur est composé de deux coquilles hémisphériques en plexiglas et d'une bague piézoélectrique en PZ26 fixée entre les deux coquilles. Cette structure peut être utilisée aussi bien en excitateur que capteur. Un modèle de simulation de la récupération d'énergie vibratoire a été développé en considérant seulement deux modes de vibration: mode épaisseur et mode radial. Pour chaque mode, le comportement de l’anneau est décrit par un circuit électromécanique équivalent reliant les ports mécaniques (forces et vitesses) au port électrique (tension et courant). Ce choix est guidé par la possibilité de combiner la partie électromécanique avec l'électronique qui traite l'énergie directement dans un simulateur basé sur Spice. Pour valider cette approche, une simulation par éléments finis a été réalisée et comparée aux résultats produits par le circuit électromécanique. Les fréquences de résonance ont également été vérifiées expérimentalement avec un analyseur d'impédance. Toutes ces vérifications donnent des résultats en très bon accord avec le modèle électromécanique proposé en termes de fréquences de résonance, de tension et de puissance collectées. Enfin, plusieurs validations expérimentales sont présentées avec un prototype de capteur sphérique. Ces validations montrent l’adéquation des prédictions avec les résultats expérimentaux. Finalement, un test du circuit de récupération est effectué en situation réelle. / A new spherical autonomous acoustic sensor is proposed. It is intended to be immersed in a liquid or pasty medium to measure some physical properties of the medium and should harvest ambient energy to ensure its autonomy. The sensor is composed of two Plexiglas half-spherical shells and a PZ26 piezoelectric ring clamped between the two shells. This structure can be used as well as in exciter or sensor. A simulation model of vibrational energy harvesting has been developed considering only two modes of vibration: thickness and radial modes. For each mode, the ring behavior is described by an equivalent electromechanical circuit connecting the mechanical ports (forces and velocities) to the electrical port (voltage and current). This choice is guided by the possibility to combine the electromechanical part with the electronics that process the energy directly in a Spice based simulator. To validate this approach, a finite elements simulation was realized and compared to the electromechanical circuit results. Resonance frequencies were also verified experimentally with an impedance analyzer. All these verifications give results in very good agreement with the proposed electromechanical model, as well as in terms of resonant frequencies, harvested voltage and power. Finally several experimental investigations are presented with a prototype of spherical sensor. These validations show the adequacy of the predictions with the experimental results. Finally, a test of the harvesting circuit is done in real situation.
373

Récupération d'Energie Vibratoire pour Systèmes de Contrôle Santé Intégré de Structures Aéronautiques

Sainthuile, Thomas 12 December 2012 (has links)
L’objectif de cette thèse est de réaliser un système de Contrôle Santé Intégré des structures aéronautiques (CSI ou SHM) autonome et à double-fonctionnalité. Ce système doit être en mesure d’assurer son autonomie énergétique tout en réalisant les tâches de détection et de localisation des endommagements. Latechnique retenue pour alimenter ce système est basée sur la récupération d’énergie vibratoire par transducteurs piézoélectriques SHM collés. Durant ces travaux, un modèle analytique complet de la chaîne de récupération d’énergie vibratoire a d’abord été créé. Ce modèle, validé par la Méthode des ÉlémentsFinis (MEF), permet d’améliorer le rendement du système en déterminant les dimensions, les locali-sations et le type de matériau piézoélectrique idéals des transducteurs. Ce modèle a ensuite été étendu à une configuration plus représentative des conditions de vibrations d’une structure en vol. Une bonne corrélation entre les résultats provenant du modèle prédictif et les essais sur un banc de mesures a étémise en évidence. Une puissance de 1.67mW a été récupérée et la capacité large bande des transducteurs a été vérifiée. L’application de la récupération d’énergie au contrôle de structures composites en cours d’assemblage sur les lignes de production a également été étudiée. Dans ce cas, un transducteur stratégiquement localisé et alimenté par une source de tension disponible génère des ondes de Lambdans la structure afin de pallier l’absence de vibrations naturelles. Un réseau de transducteurs secondaires disséminés sur cette structure récupère et convertit cette énergie vibratoire en énergie électrique. Une puissance de 7.36 mW a été récoltée et ce système a été en mesure de détecter une chute d’outil sur le composite et d’éclairer de façon autonome une diode électroluminescente (DEL) simulant ici la consommation de la transmission sans fil de l’information. / The aim of this thesis is to develop a self-powered Structural Health Monitoring (SHM) system for aeronautical applications. This system has to be fully autonomous and has to be able to carry out SHM tasks such as damage detection and location. The energetic autonomy of the system is provided by a vibrational energy harvesting technology using bonded SHM piezoelectric transducers. In this document,an analytical model of the energy harvesting process has been proposed. This model, validated by the Finite Element Method (FEM), allows the optimization of the energy harvesting system by determining the ideal type of transducers as well as their optimal dimensions and locations. Then, this model has been applied to a configuration aiming to be more representative of the in-flight vibrations experienced by a structure. Good agreement has been found between the analytical simulation and the experimental measurements. A power of 1.67mW has been harvested and the wideband capability of the transducers has been verified. Afterwards, the possibility of using the vibrational energy harvesting technology to control composite structures on assembly line has been investigated. For this case study, a transducer strategically located nearby an available power supply generates Lamb waves throughout the structure to tackle the absence of natural vibration. The remaining sensors, spread all over the structure, convertthe mechanical vibrations into electrical power. Using this technology, a power of 7.36mW has been harvested. Finally, this SHM system has also been able to detect a tool drop on the composite structure and to light simultaneously and autonomously a light-emitting diode (LED) simulating the consumption required to transmit the information wirelessly.
374

Modélisation, simulation et mise en œuvre d'un système de récupération d'énergie : application à un amortisseur semi-actif autonome / Modeling, simulation and implementation of an energy recovery system : application to a semi-active autonomous damper

Lafarge, Barbara 22 June 2018 (has links)
Ce travail est consacré à l’étude et à la mise au point de récupérateurs d’énergie intégrés à une suspension automobile afin par exemple d’alimenter soit un microcontrôleur, soit des capteurs, soit de réaliser le contrôle santé des pièces ou encore de rendre l’amortisseur au sein d’une suspension d’un véhicule semi-actif autonome en fonction du niveau d’énergie disponible. Compte tenu des types de déplacement disponible dans la suspension, il est naturel de s’orienter vers des techniques électromagnétiques pour la récupération d’énergie liée aux grands déplacements et vers des techniques piézoélectriques pour les vibrations. L’utilisation de tels systèmes s’avère cependant complexe et un certain nombre de points techniques doivent être résolus pour les mettre en œuvre. En premier lieu, une parfaite connaissance des techniques de conversion piézoélectrique et électromagnétique est nécessaire. Dans ce but, le langage Bond Graph est utilisé et appliqué avec succès sur l’ensemble du système de suspension ainsi que sur les récupérateurs d’énergie en raison de sa capacité à traduire les effets physiques et les échanges énergétiques au sein de systèmes multiphysiques. D’autre part, des confrontations simulation/expérience sont réalisées en laboratoire sur chacun des récupérateurs d’énergie piézoélectrique et électromagnétique, afin de s’assurer du bon fonctionnement de ces systèmes lors de leurs intégrations dans un véhicule réel. Ainsi, des défauts de nature différente comme la force magnétique déformant le mouvement de translation de l’amortisseur, la mauvaise conduction des lignes de champ magnétique ou les endommagements du matériau piézoélectrique lors d’essais répétés, sont analysés dans les premiers démonstrateurs afin d'être ensuite corrigés. Enfin, un modèle global de suspension automobile intégrant simultanément les deux sous-systèmes de récupération d’énergie est étudié. Afin de compléter cette analyse, une modélisation du circuit de restitution et du stockage d’énergie est également proposée et permet une étude qualitative et quantitative des performances des systèmes de récupération d’énergie piézoélectrique et électromagnétique. Les résultats issus de ces modèles sont exploités dans le but de concevoir des récupérateurs d’énergie s’adaptant au mieux au domaine de l'automobile. Pour conclure, des tests sur route avec le récupérateur d’énergie piézoélectrique démontrent la validité de l’analyse théorique et la faisabilité des techniques développées. / This work is devoted to the study and the development of energy harvesters integrated in an automobile suspension, for example to supply either a microcontroller or sensors, or to perform an health check of parts or render semi-active the shock absorber within a suspension of an autonomous vehicle according to the level of energy available. Given the types of displacement available in the suspension, it is natural to move towards electromagnetic techniques for energy recovery related to large displacements and to piezoelectric techniques for vibrations. However, the use of such systems is complex and a number of technical issues need to be addressed to implement them. First, a perfect knowledge of piezoelectric and electromagnetic conversion techniques is required. To this end, the Bond Graph language is used and successfully applied to the entire suspension system as well as energy harvesters because of its ability to translate physical effects and energy exchanges into multiphysics systems. Furthermore, simulation / experiment confrontations are carried out in the laboratory on each of the piezoelectric and electromagnetic energy harvesters, to ensure the proper functioning of these systems during their integration into a real vehicle. Thus, defects of different nature such as the magnetic force deforming the translation movement of the damper, the poor conduction of the magnetic field lines or the damage of the piezoelectric material during repeated tests, are analyzed in the first demonstrators in order to be corrected. Finally, a global model of automobile suspension simultaneously integrating the two subsystems of energy recovery is studied. To complete this analysis, a modeling of the circuit of restitution and energy storage is also proposed and allows a qualitative and quantitative study of the performances of piezoelectric and electromagnetic energy recovery systems. The results from these models are used to design energy recovery systems that best fit the automotive field. To conclude, road tests with the piezoelectric energy harvesters demonstrate the validity of the theoretical analysis and the feasibility of the techniques developed.
375

Métamatériaux et métasurfaces acoustiques pour la collecte d’énergie / Acoustic Metamaterials and Metasurfaces for Energy Harvesting

Qi, Shuibao 25 October 2018 (has links)
Artificiels structurés, présentent des propriétés inédites et des aptitudes uniques pour la manipulation d’ondes en général. L’avènement de ces nouveaux matériaux a permis de dépasser les limites classiques dans tout le domaine de l’acoustique-physique, et d’élargir l’horizon des recherches fondamentales. Plus récemment, une nouvelle classe de structures artificielles, les métasurfaces acoustiques, présentant une valeur ajoutée par rapport aux métamatériaux, avec des avantages en termes de flexibilité, de finesse et de légèreté de structures, a émergé. Inspirés par ces propriétés et fonctionnalités sans précédent, des concepts innovants pour la collecte d’énergie acoustique avec ces deux types de structures artificielles ont été réalisés dans le cadre de cette thèse. Tout d’abord, nous avons développé un concept à base d’un métamatériau en plaque en se basant sur le de l’approche de bande interdite et des modes de défaut permis par le mécanisme de Bragg. Dans la deuxième partie de cette thèse, des métasurfaces d’épaisseur sublongueur d’onde et ultra-minces composées d’unités labyrinthiques ou de résonateurs de Helmholtz ont été conçues et étudiées pour s’atteler à la focalisation et au confinement de l’énergie acoustique. Cette thèse propose un nouveau paradigme de collecte d’énergie des ondes acoustiques à base des métamatériaux et métasurfaces. La collecte de cette énergie acoustique renouvelable, très abondante et actuellement perdue, pourrait particulièrement être utile pour l’industrie de l’aéronautique, de l’automobile, du spatial, de l’urbanisme / Phononic crystals (PCs) and acoustic metamaterials (AMMs), well-known as artificially engineered materials, demonstrate anomalous properties and fascinating capabilities in various kinds of wave manipulations, which have breached the classical barriers and significantly broaden the horizon of the whole acoustics field. As a novel category of AMMs, acoustic metasurfaces share the functionalities of AMMs in exotic yet compelling wave tailoring. Inspired by these extraordinary capabilities, innovative concepts of scavenging acoustic energy with AMMs are primarily conceived and sufficiently explored in this thesis. Generally, a planar AMM acoustic energy harvesting (AEH) system and acoustic metasurfaces AEH systems are theoretically and numerically proposed and analyzed in this dissertation. At first, taking advantage of the properties of band gap and wave localization of defect mode, the AEH system based on planar AMM composed of a defected AMM and a structured piezoelectric material has been proposed and sufficiently analyzed. Secondly, subwavelength (λ/8) and ultrathin (λ/15) metasurfaces with various lateral configurations, composed of labyrinthine and Helmholtz-like elements, respectively, are designed and analyzed to effectively realize the acoustic focusing and AEH. This thesis provides new paradigms of AEH with AMMs and acoustic metasurfaces, which would contribute to the industries of micro electronic devices and noise abatement as well
376

Fabrication et caractérisation des MEMS composite pour la récupération d'énergie mécanique / Fabrication and characterization of composite MEMS for mechanical energy harvesting

Nesser, Hussein 25 November 2016 (has links)
Les récents progrès dans le domaine des MEMS organiques suscitent un intérêt croissant dans la substitution de micropoutres inorganiques par des micropoutres organiques pour diverses applications. N’ayant été étudiée qu’en mode statique, la réponse électrostrictive des MEMS organiques est présentée pour la première fois en mode dynamique. L’une des originalités de ce travail est de fabriquer un micro-récupérateur d’énergie mécanique avec une approche « tout-organique ». Dans cette thèse, des matériaux nanocomposites à base d’oxyde de graphène réduit (rGO) dispersé dans du poly-dimethyl siloxane (PDMS), sont utilisés pour la récupération de l'énergie mécanique vibratoire avec une transduction électrostrictive. Le dispositif génère une densité de puissance électrique de 8,15 W/cm3 pour une accélération de 1 g au premier mode de résonance (≈ 17 Hz). / Recent advances in the field of organic MEMS have generated interest in the substitution of inorganic microbeams by organic ones for various applications. Until now, the use of electrostrictive materials is limited to the MEMS operating mostly in static mode. The electrostrictive response of organic MEMS is presented here for the first time in dynamic mode. One of the originality of this work is to produce a micro-mechanical energy harvester fabricated in an all-organic approach. In this thesis, strain sensitive nanocomposite materials based on reduced graphene oxide (rGO) dispersed in polydimethylsiloxane (PDMS) are used for mechanical vibratory energy harvesting with an electrostrictive transducer. With an acceleration of 1 g of the microcantilever base, actuation at the first resonant mode (≈ 17 Hz) generates an electrical power density of 8.15 μW/cm3.
377

Finite-horizon Online Energy-efficient Transmissionscheduling Schemes Forcommunication Links

Bacinoglu, Tan Baran 01 January 2013 (has links) (PDF)
The proliferation of embedded systems, mobile devices, wireless sensor applications and in- creasing global demand for energy directed research attention toward self-sustainable and environmentally friendly systems. In the field of communications, this new trend pointed out the need for study of energy constrained communication and networking. Particularly, in the literature, energy efficient transmission schemes have been well studied for various cases. However, fundamental results have been obtained mostly for offline problems which are not applicable to practical implementations. In contrast, this thesis focuses on online counterparts of offline transmission scheduling problems and provides a theoretical background for energy efficient online transmission schemes. The proposed heuristics, Expected Threshold and Expected Water Level policies, promise an adequate solution which can adapt to short-time-scale dynamics while being computationally efficient.
378

Geomaterials subjected to repetitive loading: implications on energy systems

Pasten, Cesar 02 January 2013 (has links)
Improvements in quality of life, population growth, and environmental restrictions associated with the burning of fossil fuels will accentuate the need for renewable energy and energy geo-storage. A salient characteristic of these systems is that they impose numerous cycles of effective stress, temperature, and humidity on the surrounding geomaterials. This thesis quantifies future energy consumption based on realizable scenarios and explores the behavior of geomaterials subjected to mechanical and thermal cycles in view of energy-related applications. The long-term behavior of geotechnical systems subjected to a large number of mechanical load cycles is studied with a new numerical scheme based on a hybrid finite element formulation. The numerical scheme satisfies initial conditions as well as fundamental characteristics of soil behavior, such as threshold strain, terminal density, and long-term ratcheting. Numerical results show that shallow foundations subjected to repetitive loading experience strain accumulation and stress redistribution. On the other hand, the long-term behavior of energy piles, exposed geomembranes on slopes, and jointed rock masses subjected to cyclic thermal changes is studied using a combination of numerical, analytical, and experimental methods. Results show that thermal cycles lead to the gradual accumulation of plastic displacements, which may be amplified by thermally-induced wedging in jointed rock masses. In general, cumulative effects caused by repetitive loads increase with the number of cycles, the static factor of safety, the amplitude of the cyclic excitation, and the magnitude of the cyclically-induced displacement with respect to the critical elastic displacement.
379

Toward an energy harvester for leadless pacemakers

Deterre, Martin 09 July 2013 (has links) (PDF)
This work consists in the development and design of an energy harvesting device to supply power to the new generation pacemakers, miniaturized leadless implants without battery placed directly in heart chambers. After analyzing different mechanical energy sources in the cardiac environment and associated energy harvesting mechanisms, a concept based on regular blood pressure variation stood out: an implant with a flexible packaging that transmits blood forces to an internal transducer. Advantages compared to traditional inertial scavengers are mainly: greater power density, adaptability to heartbeat frequency changes and miniaturization potential. Ultra-flexible 10-µm thin metal bellows have been designed, fabricated and tested. These prototypes acting as implant packaging that deforms under blood pressure actuation have validated the proposed harvesting concept. A new type of electrostatic transducer (3D multi-layer out-of-plane overlap structure with interdigitated combs) has been introduced and fully analyzed. Promising numerical results and associated fabrication processes are presented. Also, large stroke optimized piezoelectric spiral transducers including their complex electrodes patterns have been studied through a design analysis, numerical simulations, prototype fabrication and experimental testing. Apower density of 3 µJ/cm3/cycle has been experimentally achieved. With further addressed developments, the proposed device should provide enough energy to power autonomously and virtually perpetually the next generation of pacemakers.
380

A Mems Thermoelectric Energy Harvester For Energy Generation In Mobile Systems

Topal, Emre Tan 01 September 2011 (has links) (PDF)
In this thesis design, optimization, fabrication and performance characterization of MEMS thermoelectric (TE) energy harvesters for harnessing waste heat in mobile systems are presented. As a proof of concept, chromium and nickel are used as the thermoelectric material in the proposed design. The feasibility of the state of the art thermoelectric materials is also discussed. MEMS TE energy harvesters proposed in this study are designed to generate power at relatively lower &Delta / T values. The performance of the MEMS TE energy harvesters was optimized using analytical and 3-D finite element models. An analytical code was used for profiling the electrical power output with varying geometry. The design points with maximum generated power were selected, and the microfabricated thermoelectric energy harvesters were designed accordingly. The fabricated devices are formed on a silicon wafer and composed of Nickel and Chromium thermocouples on SiO2/Si3N4 diaphragms, and Titanium heater and monitor resistors for testing purposes. Microfabrication was followed by the performance characterization of MEMS TE energy harvesters with the conducted tests. For 10 &deg / C temperature difference between the hot and cold junctions (a heat source at 35 &deg / C), the proposed TE energy harvesters are capable of providing 1.1 &micro / W/cm2 power density and 1.71 V voltage. The performance of the thermoelectric generators in general is limited by Carnot cycle efficiency. Nevertheless, the validated practical performance of MEMS TE energy harvesters proposed in this thesis is comparable to other examples in literature. It is anticipated by the calculations that this design will be able to provide the highest thermoelectric efficiency factor (4.04 &micro / W/K2cm2) among the lateral TE energy harvesters if thermoelectric materials having high Seebeck coefficient values (such as p-Si, n-Si, polysilicon, Bi2Te3 etc.) are used. According to the performance results, the MEMS TE energy harvesters can be implemented in mobile systems to convert waste heat into electricity. The fabrication process can be adapted to CMOS with some modifications if needed. The lateral MEMS thermoelectric energy harvesters can also be combined with vibration energy harvesters to realize multi-mode energy scavenging. For prospective study, vertical thermoelectric generator configurations are also discussed in order to further increase the power density generated. The finite element simulations for proposed vertical configurations with air and water convection were completed. The vertical TE generators proposed can supply up to 4.2 mW/cm2 with a heat source at a temperature of 310 K.

Page generated in 0.0391 seconds