• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 211
  • 48
  • 46
  • 32
  • 26
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 490
  • 490
  • 110
  • 99
  • 88
  • 74
  • 71
  • 65
  • 59
  • 56
  • 51
  • 49
  • 48
  • 46
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

Využití termoelektrického generátoru pro zvýšení využití odpadního tepla / Use of a thermoelectric generator for increasing heat recovery

Laga, Ondřej January 2015 (has links)
This thesis deals with the problem of waste heat, namely, the exhaust gas which are not frequently used. Specifically, it is a design of thermoelectric generators set, power electronics for fan and heat exchanger proposal. The entire system uses the energy of the waste heat to increase the heating efficiency.
462

Návrh a optimalizace senzorických systémů využívajících malovýkonových napájecích generátorů / The Sensor Systems Design and Optimization for Energy Harvesting Applications

Žák, Jaromír January 2015 (has links)
Dissertation thesis is focused on using alternative energy sources called energy harvesting. This thesis offers a solution to problems with autonomous powering of sensor networks if primary power source recovery is impossible. In these cases, energy of the external power (e.g. temperature, light, motion) should be used. Proposed solution should be especially used in the field of medical applications (e.g. cochlear implants, pacemakers, insulin pumps). Long time monitoring of the personal health status is also possible when employing automated sensor systems. In this work, there is state of art review relating to the low power energy sources for an alternative powering of sensor systems. It was observed that existing systems are almost prepared for the implementation of energy harvesting power sources. The energy harvesting power sources have been developed by numerous researcher teams around the world, but there are only a few variants of power management circuits for effective energy gaining, storing and using. This area has a huge potential for the next research. The issues regarding to the distribution of gained energy are solved on the complex level in the thesis. For these purposes, a new simulation model of the whole system (fully implantable artificial cochlea) including its subcircuits was developed in the SPICE environment. It connects independent subcircuits into a single comprehensive model. Using this model, a few novel principles for energy distribution (e.g. Charge Push Through technique) was developed. In the near future, these techniques are also applicable to the design of versatile sensor systems.
463

Bezpečnostní a monitorovací systém rodinného domu / Home Security and Monitoring System

Valach, Lukáš January 2016 (has links)
The thesis elaborates on an implementation of wireless home security system. The wireless communication utilizes IEEE 802.15.4 radios and ZigBee communication protocol. The beginning of the thesis provides specification of the intended system followed by an evaluation of usable energy harvesting solutions and later by consideration of single board computer systems suitable for implementation of the control node of the sensor network. The rest of the thesis describes design, implementation and testing of particular components of the security system. Conclusion evaluates the achieved goals and offers suggestions for future work. The end products of the thesis are physical devices implementing wireless sensor nodes, control unit of the security system as well as a graphical user interface for the system management.
464

Design and Modelling of a Novel Hybrid Vibration Converter based on Electromagnetic and Magnetoelectric Principles

Bradai, Sonia 13 May 2019 (has links)
Supplying wireless sensors from ambient energy is nowadays highly demanded for a higher flexibility of use and low system maintenance costs. Vibration sources are thereby especially attractive due to their availability and the relatively high energy density they can provide. The aim of this work is to realize a hybrid energy converter for vibration sources having low amplitude and low frequency. The idea is to combine two diverse harvesters to realize a higher energy density and at the same time to improve the converter reliability. We focus on the design, modeling, and test of the hybrid vibration converter. For an appropriate converter design, the vibration profiles of several ambient vibration sources are characterized. The results show that the typical frequency and acceleration ranges are between 5 Hz to 60 Hz and 0.1 g to 1.5 g respectively. The proposed converter is based on the magnetoelectric (ME) and electromagnetic (EM) principles. These two principles can be easily combined within almost the same volume, because they generate energy form the same varying magnetic field coupled to the mechanical vibration of the source. Thereby, the energy density is improved as the ME converter is incorporated within the relatively large coil housing of the electromagnetic converter. The proposed converter is based on the use of a magnetic spring instead of the typically used mechanical springs, which applies the repulsive force to the seismic mass of the converter. The applied vibration is transmitted to the converter based on the magnetic spring principle instead of the conventional mechanical springs. Due to the nonlinearity of the magnetic spring, the converter is able to operate for a frequency bandwidth instead of resonant frequency which is the case while using a mechanical spring. Hence, this leads to realize a high converter efficiency even under random vibrations characterized by frequency bandwidth. As well, using magnetic spring principle enables to adjust the resonant frequency of the converter relative to the applied vibration source easily by just adjusting the moving magnet size. For the converter design, a parametric study is conducted using finite element analysis. Two main criteria are thereby taken into account, which are the compactness and the efficiency of the converter. Parameters affecting these two criteria are classified in mechanical, electromagnetic and magnetoelectric parameters. Results show that the combination of the EM and ME principles leads to an improvement of the energy output compared to a single EM or ME converter. The novel hybrid converter is realized and tested under harmonic and real vibration profiles. It comprises two main parts: A fixed part, where the coils and the ME transducer are fixed in order to ensure a good reliability of the converter by avoiding wire movements. A moving part, where the moving magnet of the magnetic spring and the magnetic circuit are placed. The presented converter is reliable and compact, which is able to harvest energy with a maximum output power density of 0.11 mW/cm³ within a frequency bandwidth of 12 Hz for a resonance frequency of 24 Hz under an applied harmonic vibration with an amplitude of 1 mm. / Die Versorgung von drahtlosen Sensoren aus der Umgebungsenergie ermöglicht heutzutage eine hohe Einsatzflexibilität und die Senkung des Systemwartungsaufwands. Schwingungsquellen sind aufgrund ihrer Verfügbarkeit und der damit erreichbaren Energiedichte besonders attraktiv. Ziel dieser Arbeit ist es, einen hybriden Energiewandler für Vibrationsquellen mit geringer Amplitude und niedriger Frequenz zu realisieren. Der Ansatz dabei ist, zwei verschiedene Wandler zu kombinieren, um eine höhere Energiedichte zu erreichen und die Zuverlässigkeit zu verbessern. Der Entwurf konzentriert sich auf die Modellierung und den Test des hybriden Vibrationswandlers. Für einen geeigneten Wandlerentwurf werden die Schwingungsprofileigenschaften mehrerer Umgebungsschwingungsquellen untersucht. Die Ergebnisse zeigen, dass die typische Frequenz zwischen 5 Hz und 60 Hz und der Beschleunigungsbereich zwischen 0,1 g und 1,5 g liegen. Der vorgeschlagene Wandler kombiniert das magnetoelektrischen (ME) Prinzip mit dem elektromagnetischen (EM) Prinzip. Diese beiden Prinzipien können innerhalb des fast gleichen Volumens leicht integriert werden, da sie Energie aus der Variation des gleichen Magnetfeldes, das mit der mechanischen Schwingung gekoppelt ist, erzeugen können. Dadurch wird die Energiedichte verbessert, da der ME-Wandler in das relativ große Spulengehäuse des elektromagnetischen Wandlers eingesetzt werden kann. Darüber hinaus basiert der vorgeschlagene Wandler auf der Verwendung von Magnetfedern, um die Repulsivkraft auf die seismische Masse zu realisieren. Aufgrund der Nichtlinearität der Magnetfeder, kann der Wandler in einem breiteren Frequenzbereich betrieben werden, anstatt nur bei der Resonanzfrequenz, wie es bei der Verwendung einer mechanischen Feder der Fall ist. Dies führt dazu, dass der Wandler auch bei zufälligen breitbandigen Schwingungsquellen effizient betrieben werden kann. Darüber hinaus ermöglicht die Verwendung des Magnetfederprinzips eine einfache Einstellung der Resonanzfrequenz des Wandlers in Bezug auf die Schwingungsquelle, durch Einstellen der Größe des beweglichen Magneten. Für den Wandlerentwurf wird eine Parameterstudie mit Hilfe der Finite-Elemente-Analyse durchgeführt. Zwei Hauptkriterien werden dabei berücksichtigt: Die Kompaktheit und die Energieeffizienz des Wandlers. Parameter die diese beiden Kriterien beeinflussen, können in mechanische, elektromagnetische und magnetoelektrische unterteilt werden. Die Ergebnisse haben gezeigt, dass die Kombination der EM- und ME-Prinzipien zu einer Verbesserung der Energieausbeute im Vergleich zu einem einzelnen EM- oder ME-Wandler geführt hat. Der neuartige Hybrid-Wandler wurde realisiert und unter harmonischen und realen Schwingungsprofilen getestet. Der Wandler besteht aus zwei Hauptteilen: Ein festes Teil, an dem die Spulen und der ME-Wandler befestigt sind, um eine hohe Zuverlässigkeit zu gewährleisten indem auf einen beweglichen Draht verzichtet wird, und ein bewegliches Teil, das sich aus einem beweglichen Magneten zusammensetzt. Der vorgestellte Wandler ist zuverlässig, kompakt und in der Lage, Energie mit einer maximalen Ausgangsleistungsdichte von 0,11 mW/cm 3 und einer Bandbreite von 12 Hz bei einer Resonanzfrequenz von 24 Hz unter einer angelegten harmonischen Schwingung mit einer Amplitude von 1 mm zu gewinnen.
465

Study of electrical interfaces for electrostatic vibration energy harvesting / Étude d'interfaces électriques pour les récupérateurs d'énergie vibratoire électrostatiques

Karami, Armine 16 May 2018 (has links)
Les récupérateurs d'énergie vibratoire électrostatiques (REV) sont des systèmes convertissant une partie de l'énergie cinétique de leur environnement en énergie électrique, afin d'alimenter de petits systèmes électroniques. Les REV inertiels sont constituées d'un sous-système mécanique bâti autour d'une masse mobile, ainsi que d'une interface électrique. Ces deux blocs sont couplés par un transducteur électrostatique. Cette thèse étudie l'amélioration des performances des REV par la conception optimisée de leur interface électrique. La première partie de cette thèse étudie une famille d'interfaces électriques appelées pompes de charge (PC). On commence par la construction d'une théorie formelle des PC. Des interfaces rapportées dans la littérature sont identifiées comme membres de cette famille. Cette dernière est ensuite complétée par une nouvelle topologie de PC. Une comparaison des différents PC est alors faite dans le domaine électrique, puis un outil semi-analytique est présenté pour la comparaison des PC en prenant en compte le couplage électromécanique. L'étude des PC se termine par la présentation d'une nouvelle méthode de mesure du potentiel d'électret des REV. La deuxième partie de la thèse présente une approche de conception radicalement différente de ce qui est présenté dans les travaux actuels sur les REV. Elle préconise une synthèse active de la dynamique de la masse des REV à travers leur interface électrique. Nous montrons d'abord que cela permet la conversion d'énergie en quantités proches des limites physiques, et ce à partir de vibrations d'entrée de forme arbitraire. Enfin, une architecture pour un tel REV est proposée et testée en simulation. / Electrostatic vibration energy harvesters (e-VEHs) are systems that convert part of their surroundings' kinetic energy into electrical energy, in order to supply small-scale electronic systems. Inertial E-VEHs are comprised of a mechanical subsystem that revolves around a mobile mass, and of an electrical interface. The mechanical and electrical parts are coupled by an electrostatic transducer. This thesis is focused on improving the performances of e-VEHs by the design of their electrical interface. The first part of this thesis consists in the study of a family of electrical interfaces called charge-pumps conditioning circuits (CPCC). It starts by building a formal theory of CPCCs. State-of-the-art reported conditioning circuits are shown to belong to this family. This family is then completed by a new CPCC topology. An electrical domain comparison of different CPCCs is then reported. Next, a semi-analytical tool allowing for the comparison of CPCC-based e-VEHs accounting for electromechanical effects is reported. The first part of the thesis ends by presenting a novel method for the measurement of e-VEHs' built-in electret potential. The second part of the thesis presents a radically different design approach than what is followed in most of state-of-the-art works on e-VEHs. It advocates for e-VEHs that actively synthesize the dynamics of their mobile mass through their electrical interface. We first show that this enables to convert energy in amounts approaching the physical limits, and from arbitrary types of input vibrations. Then, a complete architecture such an e-VEH is proposed and tested in simulations submitted to human body vibrations.
466

Elektronické komponenty v textilních substrátech / Electronic Components in Textile Substrates

Kokolia, Martin January 2022 (has links)
Cílem této práce je popsat současný stav v oblasti mikrovlnných komponent na bázi textilu a poté také autorův příspěvek k výzkumu. V tomto studijním oboru je třeba řešit mnoho problémů, a proto jsou stanoveny velmi konkrétní cíle, které by měly tvořit kompletní komunikační systém, který by byl snadno integrovatelný do čalounění uvnitř letadla nebo jiného vozidla. První kapitola je zaměřena na použití relativně nízkofrekvenčních obvodů v pásmu UHF a vysokofrekvenční sklízení energie. Po simulacích následují praktická měření. Další kapitola charakterizuje nové 3D pletené textilie a jejich vysokofrekveční vlastnosti a modelování na velmi vysokých frekvencích, které jsou žádoucí pro užití jako komunikační kanály. S prakticky ověřeným a numericky popsaným textilním substrátem pro použití v pásmu SHF je představena nový vlnovod integrovaný do textilu na bázi tisknutelného umělého magnetického vodiče s praktickou metodikou návrhu. Po ověření byl vlnovod použit pro základní dělič výkonu, dvě různé antény a dva typy senzorů. Všechny návrhy byly vyrobeny a testovány s uspokojivými výsledky.
467

Energy Harvesting From Overhead Transmission Line Magnetic Fields

Najafi, Syed Ahmed Ali 31 May 2019 (has links)
No description available.
468

Field Assisted Roll-to-Roll Manufacturing of Novel Multifunctional Piezoelectric Composites

Armen Yildirim (9148748) 10 September 2022 (has links)
<p>The recent advances in flexible piezoelectric technologies have sparked a great interest in developing multifunctional next-generation transducers and actuators that are increasingly becoming high demand for a range of challenging applications, including self-powered structural and personal health monitoring systems to flexible loudspeaker devices. </p><p>In this research, novel <i>quasi </i>1–3 piezoelectric nanocomposites are introduced with record-high piezoelectric voltage coefficients (g<sub>33</sub>), reaching up to 0.709 Vm N<sup>−1</sup> (approximately 20 percent greater than the recently reported highest g<sub>33</sub> value in the literature). These materials are produced via dielectrophoretic process where both piezoelectric lead zirconate titanate (PZT) nanoparticles and graphene nanoplatelets (GNPs) are simultaneously aligned in a silicone-based polymer matrix (polydimethylsiloxane—PDMS) at a range of concentrations up to 13 vol%, leading to densely structured cone-shaped "nanocolumn forests" in the thickness direction. It is shown that the electric field induced alignment of particles not only improves the overall piezoelectric properties of the composite at relatively low filler concentrations, but also increases the transparency of the system by enabling the light to travel with little scattering or absorption in the “Z” direction through the particle depleted zones created between micro- and nano-sized columns. The details of these unique column morphologies are investigated by various off-line and on-line characterization techniques such as microcomputed tomography—microCT and real-time light transmission measurements to better understand the effect of both material (i.e., concentration) and process-based parameters (e.g., electric field, frequency) on pearl-chain formation. </p><p>To show its versatility and high-performance, the applications comprising both direct (e.g., force sensing, energy harvesting, structural and personal health monitoring) and inverse (e.g., loudspeaker) piezoelectric effect are also demonstrated and extensively characterized. </p><p>Additionally, to demonstrate the scalability of the process, large-area samples are also produced via the continuous dielectrophoretic process (utilizing a novel 44 ft long custom designed multifunctional roll-to-roll (R2R) manufacturing line), resulting in the largest single piece piezoelectric films ever reported in the literature. </p>
469

Utveckling av en solcellsförsörjningsenhet för IoT-sensornoder

Mulat, Adane Hailu January 2022 (has links)
Internet of Things (IoT) är en kraftfull plattform för att koppla den fysiska världen till den digitala. IoT och modern sensorteknik möjliggör många nya applikationer inom till exempel industriell övervakning, hälsovård,miljöövervakning, smarta städer, smarta transport och smartlivsstil. I många av dessa applikationer är sensornoder utplacerade i utomhusmiljöer, där de bör fungera under långa tidsperioder. IoT-noder lider av kapacitetbergränsade batterier vilket innebär att deras funktion beror på batteriets livslängd. En lösning kan vara att implementera ett energikördsystem till IoT-noder utomhus. Solenergi är den mest lättillgängliga och användbara energikällan utomhus.Denna energi skördas med hjälp av en solcell (PV-cell). Energin som genereras av solcellspaneler varierar beroende på solstrålningsintensitet och andra faktorer. Syftet med denna undersökning har varit att utveckla en solcellsförsörjningsenhet för IoT-noder utomhus. Detta görs genom att hämta energi från omgivningen (solenergi) och använda den i samband med en Power ManagementIntegrated Circuit (PMIC) och en energilagringsenhet kan livslängden för IoT-noder förlängas samtidigt som underhållskostnader minskas.I undersökningen användes en uppskattningsmetod för att uppskatta solcellens totala energiproduktion, vilket hjälper för att konfigurera en solcellspanel som kan leverera lämplig energi till energiskördsystemet och minska energiförlusten i systemet. En lämplig energi krävs för att PMIC:n ska fungera väl samt systemet ska driva IoT-noder. Denna undersökning har visat att solenergiskördsystemet som består av en självgjord mindre panel, en BQ25570 och en energilagringsenhet (antingen en superkondensator eller ett batteri) kan översvämningsmätaren drivas under sommaren för det första fallet och under hela året för det andra fallet. Om två i parallell KXOB25-01X8F-TR används i systemet i stället för den mindre panelen kan luftkvalitetmätaren drivas under sommaren medan om tre iparallell KXOB25-01X8F-TR används i stället kan noden drivas under hela året. Energiskördsystemet ger mer än 80% effektivitet. / The Internet of Things (IoT) is a powerful platform for connecting the physical world to the digital. IoT and modern sensor technology enable many new applications in domains such as industrial monitoring, health care, environmentalmonitoring, smart cities and so on. In many of these applications, sensor nodes are deployed in outdoorenvironments, where they should operate for long periods oftime. But IoT nodes suffer from capacity-limited batteries,which means that their function depends on the battery life. One solution may be to implement an energy harvestingsystem for IoT nodes outdoors. Solar energy is the most readily available and useful source of energy outdoors. This energy is harvested using a solar cell (PV cell). The energy generated by solar cell panels varies depending on the solar radiation intensity and other factors. The purpose of this study has been to develop a solar cell supply unit for outdoor IoT nodes. This is done by extracting energy from the environment (solar energy) and using it in conjunction with a Power Management Integrating Circuit (PMIC) and energy storage device, the lifespan of IoT nodes can be extended while reducing maintenance costs. The study used an estimation method to estimate solar cell total energy production, which helps to configure a solar cellpanel that can supply suitable energy to the energyharvesting system and reduce the energy loss in the system. A suitable energy is required for the PMIC to work well and the system to power IoT nodes.This study has shown that the solar energy harvesting system consisting of a self-made smaller panel, a BQ25570 and an energy storage unit (either a supercapacitor or a battery), the flood meter can be operated during the summer for the first case and throughout the year for the second case. If two inparallel KXOB25-01X8F-TR are used in the system instead of the smaller panel, the air quality meter can be operated in the lower summer, while if three in parallel KXOB25-01X8F-TR areused instead, the node can be operated throughout the year. The energy harvesting system provides more than 80% efficiency.
470

Nízoenergetické měniče v pevné fázi pro Energy harvesting / Low Energy Solid-State Converters for Energy Harvesting

Znbill, Laila January 2021 (has links)
Disertační práce je zaměřena na nízkoenergetické konvertory pro zpracování energie. Pro fotovoltaické generátory pracující při nízké úrovní osvětlení byly navrženy konvertory založené na konfiguraci single cell. Pomocí levných výrobních procesů a dostupných materiálů byl navržen a vyroben jednoduchý a spolehlivý termogenerátor. Výrobní postupy využívaly plazmatické aktivace povrchu pomocí výboje s dielektrickou bariérou a modifikované metody depozice PEDOT. Byly navrženy jednoduché a spolehlivé DC/DC měniče pro nízkonapěťové aplikace jako termoelektrické generátory a fotovoltaické články v konfiguraci single cell. Měniče pracují od napětí několika desítek mV a výstupní napětí může být na úrovni několika voltů. Účinnost se blíží 50% a náklady na materiál a výrobu jsou ve srovnání s použitím běžně dostupných integrovaných obvodů pro Energy Harvesting výrazně nižší. Pro řídicí obvody byly použity bipolární tranzistory, které v režimu velmi malých proudů mohou mít napájecí napětí od 0,5 V. Byla ověřena možnost výroby integrovaných obvodů s extrémně nízkým provozním napětím. Tranzistory FET zde pracují v podprahovém režimu a v režimu Bulk-driven.

Page generated in 0.0305 seconds