Spelling suggestions: "subject:"[een] GEOMETRIC MODELING"" "subject:"[enn] GEOMETRIC MODELING""
11 |
O uso de dispositivos móveis e tecnologia touchscreen em atividades de geometriaMeier, Melissa January 2017 (has links)
O presente trabalho buscou investigar as contribuições da utilização de tecnologias touchscreen para o desenvolvimento do pensamento matemático. Mais especificamente, propôs uma investigação de singularidades no desenvolvimento dos hábitos do pensamento em atividades de Modelagem Geométrica implementadas a partir do uso da tecnologia touchscreen. No que se refere ao desenvolvimento de hábitos do pensamento, propostos por Paul Goldenberg, é entendido como uma ação que contribui diretamente para o desenvolvimento do pensamento matemático. A escolha de trabalhar com Modelagem Geométrica é explorada neste trabalho com a finalidade de possibilitar aos sujeitos envolvidos o estudo de fenômenos reais a partir do uso de ferramentas matemáticas. Quanto à interação touchscreen, nos baseamos na teoria da Cognição Corporificada que parte do princípio de que corpo e mente estão diretamente relacionados, ou seja, no gesto com a mão os estudantes tornam evidentes as suas intenções e pensamentos. Para realização da pesquisa, a metodologia escolhida foi o estudo de casos múltiplos (dois), mas com apenas uma unidade de análise. Configura um estudo exploratório, em virtude da escassez de estudos na área por tratar-se da integração de uma nova tecnologia ao ensino Como suporte tecnológico, a escolha pelo Sketchometry, software de geometria dinâmica disponível para smartphones, se justifica, visto que este possui um importante destaque no desenvolvimento da proposta de pesquisa, uma vez que, através do seu uso, é possível que os sujeitos elaborem e construam modelos geométricos de forma corporificada (interação touchscreen), o que é uma ação necessária para a compreensão do fenômeno investigado. Ao final da tese, mostramos que, no uso da tecnologia touchscreen, é possível identificar singularidades no desenvolvimento do pensamento do sujeito. Notou-se que a singularidade no desenvolvimento do pensamento está no início da implementação de um modelo geométrico. O aluno segue um caminho guiado por movimentos espontâneos e, desta forma, estabelece a construção e funcionamento de seu modelo. / The present work has aimed to investigate the contributions of the use of touchscreen technologies for the development of mathematical thinking. More specifically, it has proposed an investigation of singularities in the development of habits of thought in Geometric Modeling activities implemented through the use of touchscreen technology. With regard to the development of habits of thought, proposed by Paul Goldenberg, it is understood as an action that contributes directly to the development of mathematical thinking. The choice of working with Geometric Modeling has been explored in this work with the purpose of enabling the subjects involved to study real phenomena that can be investigated, assimilated and better understood from the use of mathematical tools. As for the touchscreen interaction, the work was based on the theory of Embodied Cognition which assumes that body and mind are directly related, which means that, students make evident their intentions and thoughts in gesture with the hand. The methodology chosen to carry out the research was the study of multiple cases (two), but with only one unit of analysis. The study has benn configured as an exploratory one, due to the scarcity of studies in the area, since it is the integration of a new technology in teaching As technological support, the choice of Sketchometry, dynamic geometry software available for smartphones, has been justified, because it has an important emphasis in the development of the research proposal, since, through its use, it is possible for the individuals to elaborate and construct geometric models of an embodied form (touchscreen interaction), which is a necessary action for the understanding of the investigated phenomenon. At the end of the thesis, it has been shown that it is possible to identify singularities in the development of the subject's thinking in the use of touchscreen technology. It has been noted that the uniqueness in the development of thought is at the beginning of the implementation of a geometric model. The student follows a path guided by spontaneous movements and establishes the construction and functioning of his/her model.
|
12 |
Desenho manual e modelagem geométrica : o desenvolvimento da lógica do espaço na representação gráficaSilva Júnior, Antônio Pedro da January 2007 (has links)
Esta dissertação aborda a natureza e o desenvolvimento da lógica geométrica do espaço envolvida na execução de representações gráficas, tanto manuais quanto digitais, de objetos tridimensionais. Para este propósito, analisou-se as condutas, os desenhos das Vistas Ortográficas e a construção de um Modelo Geométrico tridimensional feito no Autocad, apresentados durante as entrevistas realizadas com os alunos do curso de Design de Móveis do CEFET/RS. Para fundamentar a análise dos dados colhidos, utilizou-se os estudos psicogenéticos de Piaget, referentes à Imagem Mental e à Representação do Espaço. Estes dados deram condições de se verificar a presença das relações espaciais na construção da imagem mental dos objetos apresentados ao longo das entrevistas e, a partir desta constatação, buscou-se analisar como estas relações projetivas e euclidianas se coordenavam de modo a garantir suas representações gráficas. Verificou-se que os desenhos apresentados dependem da evolução da lógica geométrica operatória, respeitando o desenvolvimento do sujeito epistêmico. Acredita-se que o estudo sobre os processos cognitivos envolvidos no ato de representar objetos graficamente, contribui para a educação da Expressão Gráfica, no sentido de auxiliar numa melhor adequação dos materiais e recursos didáticos, além dos programas curriculares de ensino do desenho e consequentemente da computação gráfica, na direção de uma aprendizagem imbuída no espírito construtivista. / This research approaches the nature and development of space geometric logic involved in both manual and digital graphic representation of tree dimension objects. The research data was collected by analyzing the attitudes, the drawings of the Orthographic Views and the construction of a tree dimension Geometric Modeling on AutoCAD, presented during interviews with “Design de Móveis” students from CEFET/RS. Psychogenetic studies of Piaget on Mental Image and Space Representation were used as basic tools on the analysis of the collected data. It was possible to verify the presence of space relations on the mental image construction of the objects presented during the interviews. Through this evidence, it was possible to investigate how the projective and Euclidian relations coordinate with each other in a way to guarantee their graphic representations. It was verified that the drawings presented depend on the operating geometric logic evolution, respecting the development of the epistemic subject. It is believed that the study on the cognitive processes, engendered in the act of representing objects graphically, contributes to the Graphic Expression education by helping to provide more adequate materials and didactic resources, also in drawing curricular programs and graphic computation, towards a constructivist perspective of learning.
|
13 |
[en] A TOPOLOGICAL APPROACH FOR MESH SIMPLIFICATION / [pt] UMA ABORDAGEM TOPOLÓGICA PARA SIMPLIFICAÇÃO DE MALHASANTONIO WILSON VIEIRA 17 December 2003 (has links)
[pt] Diversas aplicações, em matemática, computação gráfica,
medicina, geofísica e outras áreas, têm explorado a
representação de sólidos por superfícies de contorno, em
particular malhas poligonais. As malhas podem aproximar
com
muita precisão as propriedades geométricas da superfície
de
contorno de um sólido e ainda guardar importantes
propriedades topológicas das superfícies como gênero,
bordo
e conexidade. Devido à grande complexidade
dessas malhas, elas são geralmente processadas em meios
computacionais usando alguma estrutura de dados. Essas
estruturas guardam, além da geometria da malha,
informações de incidências e adjacências entre os
elementos da malha e exigem uma capacidade de
armazenamento e processamento em função da complexidade
da malha. Apesar da evolução dos recursos computacionais
disponíveis para a manipulação destas estruturas,
malhas extremamente complexas com milhões de elementos
inviabilizam o armazenamento, processamento e transmissão
de sua estrutura de dados nos meios computacionais.
Muitas pesquisas recentes estão voltadas para a obtenção
de processos de simplificação de malhas que permitam
representar a mesma superfície com menos elementos na
estrutura de dados e processos de compressão que
codifiquem os modelos em formatos menores para efeitos de
transmissão e armazenamento em mídia. Neste trabalho,
desenvolvemos operadores, em uma estrutura de dados
compacta, para a simplificação de malhas através da
decimação de células da superfície. Objetivamos, com
esses operadores, obter uma malha menos complexa que
preserve as propriedades topológicas da superfície
original e ainda, controlar as propriedades geométricas
como volume, área e aspecto visual da mesma. Apresentamos
ainda algumas aplicações para os processos de
simplificação desenvolvidos com esses operadores. / [en] Many applications, in mathematics, computer graphics,
medical imaging, geophysics and others, have used the
representation of solids by their boundary surface, usually
polygonal meshes. Those meshes can represent, with high
precision, the geometric properties of the boundary surface
of solid and also store important topological surface
properties as genus, boundary and connected components.
Because of the high complexity of such meshes, they are
usually processed by the computers using specific data
structures. These structures store, beyond the mesh
geometry, information about incidence and adjacency
relations among the mesh elements. They require
computational resources for storage and processing
according to the mesh complexity. Even with the development
of the computational resources available for handling such
structures, very large meshes with millions of elements are
hard to store, to process and to exchange through the web.
Many recent researches are looking for mesh simplification
process that allows to represent the same surface with
fewer elements and compression process to encode it in
compact ways for transmition and storage. In this work, we
develop topological operators, in a concise data structure,
for simplifying meshes by the decimation of its cells. One
of our goals, with these operators, is to obtain a mesh
with a low complexity that preserves the topological
properties from the original surface without loosing the
control of the geometric proprieties as volume, area and
visual aspect.
|
14 |
Modélisation de surfaces épaisses et fermées : Application au cas des organes pelviensBay, Thierry 26 November 2012 (has links)
Les modifications physiologiques dans la configuration spatiale des organes pelviens sont de plus en plus diagnostiquées et traitées pour améliorer la qualité de vie des patientes. Le projet MoDyPe (ANR-09-SYSC-008) a été créé pour concevoir un simulateur chirurgical patiente-spécifique, et quantifier le geste médical en mode pré-opératoire. La modélisation géométrique des organes se fait à partir de nuages de points épars bruités. Les formes sont considérées fermées, lisses, creuses et à membrane épaisse. Le processus est décomposé en deux étapes : la construction de la surface et l'ajout d'une épaisseur.Afin de respecter les contraintes physiologiques, de manipuler la géométrie et de localiser précisément un point sur la surface, une B-spline de genre 0 au moins C1-continue est ajustée aux données. La fonction à minimiser est basée sur une énergie bidirectionnelle, caractérisant la dissimilarité des données sur l'échantillonnage et inversement. Sa réduction repose sur un schéma alternant re-paramétrisation et descente de gradient à pas optimal.Une surface-offset est ensuite générée vers l'intérieur de l'organe, via un maillage discret, en traitant le problème d'auto-intersection. Elle exploite la forme allongée des organes, grâce à un axe curviligne décrivant leur diamètre généralisé.Finalement, un maillage hexaédrique est créé à partir de la surface ajustée et de l'offset, qui sert à la simulation mécanique du comportement des organes à l'étape suivante du projet. / Physiological changes in the spatial configuration of the organs in the pelvic area are increasingly taken into account and treated to enhance the comfort of patients. MoDyPe project (ANR-09-SYSC-008 french support) has been created to develop a patient-specific simulator and to quantify the surgical gesture for preoperative purposes. The geometric modeling of the organs starts with noisy scattered point clouds. The shapes have been considered closed, smooth, hollow with a thick membrane. The process can be divided into two main parts: the construction of the surface and the addition of a thickness.In order to meet the physiological constraints, to manipulate the geometry and to accurately localize a point on the surface, a 0-genus B-spline surface is fitted to the data. It minimizes a bidirectional energy, characterizing the dissimilarities between the surface sampling and the input dataset. Its reduction is based on an alternate scheme between re-parametrization and optimal steepest descent step.Once achieved, an offset-surface is generated inwards, helped by a mesh to overcome self-intersection problems. The method created takes into account the elongated shapes of the organs, based on a curvilinear axis describing their generalized diameter.Finally, a hexahedral mesh is created from the fitted surface and its offset. It is the start point for the next step of the project consisting in mechanically simulating the dynamic behavior of the organs.
|
15 |
Modélisation géométrique à partir de croquis / Geometric modeling from sketchesChérin, Nicolas 01 September 2015 (has links)
La modélisation à l'aide de croquis a pour but de construire une forme tridimensionnelle à partir d'un dessin en deux dimensions. L'utilisateur dessine la silhouette de l'objet à reconstruire sur le plan de dessin, puis un algorithme génère automatiquement une forme en 3D à partir de ce croquis. La modélisation par croquis à l’avantage d’être plus simple et plus rapide que la modélisation classique qui requiert l’utilisation de logiciels complexes comme 3DS Max, Maya, Blender, etc. Les applications liées à la modélisation par croquis seraient nombreuses : dans le domaine de l'infographie, la modélisation géométrique pour les jeux vidéo le dessin industriel, les effets spéciaux, etc., serait plus rapide et moins coûteuse. La modélisation à l’aide de croquis pourrait être utilisée par tout le monde. Nous avons tous, un jour ou l’autre, fait un croquis pour expliquer le chemin à prendre pour aller à un lieu précis, un croquis pour l’agencement d’une cuisine et d’une salle de séjour, ou un croquis pour expliquer le fonctionnement d’une machine, etc. Dans ce mémoire de thèse, nous nous intéressons dans un premier temps au problème de la génération de courbes en 3D constituées d’hélices à partir de croquis. Nous présentons deux algorithmes qui traitent ce problème. Puis dans un second temps, nous nous intéressons à la génération de surfaces à partir de croquis et plus particulièrement à la génération de bas-reliefs, ces surfaces ayant l’avantage de ne pas présenter de parties cachées. / The goal of sketch based modeling is to generate a 3D shape from a 2D sketch. The user draw the outline of the object to rebuild on the sketch plane, then an algorithm automatically build the 3D shape from the sketch. Sketch based modeling is easier to use and faster than traditional technics which uses complex modeling software such as 3DS max, Maya or Blender. There is a lot of applications for sketch based modeling, for example, the geometric modeling for video games, industrial design, special effects, etc. would be faster and less expensive. Sketch based modeling can be used by anybody. We all , at one time or another , made a sketch to explain a route to take to get to a specific place , a sketch for the arrangement of a kitchen and a living room, or sketches to explain the operation of a machine, etc. In this thesis memory, we look initially to the problem of generating piecewise helix curves from 2D sketches . We present two algorithms that address this problem. Then in a second step, we focus on the generation of 3D surfaces from sketches and more particularly to the generation of low reliefs, these surfaces have the advantage of not presenting hidden parts.
|
16 |
Visualisation de champs scalaires guidée par la topologie / Topology-guided Visualization of Scalar DatasetsAllemand Giorgis, Leo 16 June 2016 (has links)
Les points critiques d’une fonction scalaire (minima, points col et maxima) sont des caractéristiques importantes permettant de décrire de gros ensembles de données, comme par exemple les données topographiques. L’acquisition de ces données introduit souvent du bruit sur les valeurs. Un grand nombre de points critiques sont créés par le bruit, il est donc important de supprimer ces points critiques pour faire une bonne analyse de ces données. Le complexe de Morse-Smale est un objet mathématique qui est étudié dans le domaine de la Visualisation Scientifique car il permet de simplifier des fonctions scalaires tout en gardant les points critiques les plus importants de la fonction étudiée, ainsi que les liens entre ces points critiques. Nous proposons dans cette thèse une méthode permettant de construire une fonction qui correspond à un complexe de Morse-Smale d’une fonction définie sur R^2 après suppression de paires de points critiques dans celui-ci.Tout d’abord, nous proposons une méthode qui définit une surface interpolant des valeurs de fonction aux points d’une grille de façon monotone, c’est-à-dire en ne créant pas de point critique. Cette surface est composée d’un ensemble de patchs de Bézier triangulaires cubiques assemblés de telle sorte que la surface soit globalement C^1. Nous donnons des conditionssuffisantes sur les valeurs d fonction et les valeurs de dérivées partielles aux points de la grille afin que la surface soit croissante dans la direction (x+y). Il n’est pas évident de créer des valeurs de dérivées partielles en chaque point de la grille vérifiant ces conditions. C’est pourquoi nous introduisons deux algorithmes : le premier permet de modifier des valeurs de dérivées partielles données en entrée afin que celles-ci vérifient les conditions et le second calcule des valeurs de dérivées partielles à partir des valeurs de fonctions aux points de la grille.Ensuite, nous décrivons une méthode de reconstruction de champs scalaires à partir de complexes de Morse-Smale simplifiés. Pour cela, nous commençons par approximer les 1-cellules (les liens entre les points critiques dans le complexe de Morse-Smale, ceux-ci sont décrits par des polylignes) par des courbes composées de courbes de Bézier cubiques. Nous décrivons ensuite comment notre interpolation monotone de valeurs aux points d’une grille est utilisée pour construire des surfaces monotones interpolant les courbes construites précédemment. De plus, nous montrons que la fonction reconstruite contient tout les points critiques du complexe de Morse-Smale simplifié et n’en contient aucun autre. / Critical points of a scalar function (minima, saddle points and maxima) are important features to characterize large scalar datasets, like topographic data. But the acquisition of such datasets introduces noise in the values. Many critical points are caused by the noise, so there is a need to delete these extra critical points. The Morse-Smale complex is a mathematical object which is studied in the domain of Visualization because it allows to simplify scalar functions while keeping the most important critical points of the studied function and the links between them. We propose in this dissertation a method to construct a function which corresponds to a Morse-Smale complex defined on R^2 after the suppression of pairs of critical points.Firstly, we propose a method which defines a monotone surface (a surface without critical points).This surface interpolates function values at a grid points. Furthermore, it is composed of a set of triangular cubic Bézier patches which define a C^1 continuous surface. We give sufficient conditions on the function values at the grid points and on the partial derivatives at the grid points so that the surface is increasing in the (x+y) direction. It is not easy to compute partial derivatives values which respect these conditions. That’s why we introduce two algorithms : the first modifies the partial derivatives values on input such that they respect the conditions and the second computes these values from the function values at the grid points.Then, we describe a reconstruction method of scalar field from simplified Morse-Smale complexes. We begin by approximating the 1-cells of the complex (which are the links between the critical points, described by polylines) by curves composed of cubic Bézier curves. We then describe how our monotone interpolant of values at grid points is used to construct monotone surfaces which interpolate the curves we computed before. Furthermore, we show that the function we compute contains all the critical points of the simplified Morse-Smale complex and has no others.
|
17 |
Desenho manual e modelagem geométrica : o desenvolvimento da lógica do espaço na representação gráficaSilva Júnior, Antônio Pedro da January 2007 (has links)
Esta dissertação aborda a natureza e o desenvolvimento da lógica geométrica do espaço envolvida na execução de representações gráficas, tanto manuais quanto digitais, de objetos tridimensionais. Para este propósito, analisou-se as condutas, os desenhos das Vistas Ortográficas e a construção de um Modelo Geométrico tridimensional feito no Autocad, apresentados durante as entrevistas realizadas com os alunos do curso de Design de Móveis do CEFET/RS. Para fundamentar a análise dos dados colhidos, utilizou-se os estudos psicogenéticos de Piaget, referentes à Imagem Mental e à Representação do Espaço. Estes dados deram condições de se verificar a presença das relações espaciais na construção da imagem mental dos objetos apresentados ao longo das entrevistas e, a partir desta constatação, buscou-se analisar como estas relações projetivas e euclidianas se coordenavam de modo a garantir suas representações gráficas. Verificou-se que os desenhos apresentados dependem da evolução da lógica geométrica operatória, respeitando o desenvolvimento do sujeito epistêmico. Acredita-se que o estudo sobre os processos cognitivos envolvidos no ato de representar objetos graficamente, contribui para a educação da Expressão Gráfica, no sentido de auxiliar numa melhor adequação dos materiais e recursos didáticos, além dos programas curriculares de ensino do desenho e consequentemente da computação gráfica, na direção de uma aprendizagem imbuída no espírito construtivista. / This research approaches the nature and development of space geometric logic involved in both manual and digital graphic representation of tree dimension objects. The research data was collected by analyzing the attitudes, the drawings of the Orthographic Views and the construction of a tree dimension Geometric Modeling on AutoCAD, presented during interviews with “Design de Móveis” students from CEFET/RS. Psychogenetic studies of Piaget on Mental Image and Space Representation were used as basic tools on the analysis of the collected data. It was possible to verify the presence of space relations on the mental image construction of the objects presented during the interviews. Through this evidence, it was possible to investigate how the projective and Euclidian relations coordinate with each other in a way to guarantee their graphic representations. It was verified that the drawings presented depend on the operating geometric logic evolution, respecting the development of the epistemic subject. It is believed that the study on the cognitive processes, engendered in the act of representing objects graphically, contributes to the Graphic Expression education by helping to provide more adequate materials and didactic resources, also in drawing curricular programs and graphic computation, towards a constructivist perspective of learning.
|
18 |
Modélisation géométrique et reconstruction de formes équipées de capteurs d'orientation / Geometric modeling and reconstruction of surfaces instrumented with attitude sensorsHuard, Mathieu 23 September 2013 (has links)
Ce travail de thèse en Mathématiques Appliquées a été effectué au sein du service Capteurs et Systèmes Electroniques (SCSE) au CEA-Leti, organisme majeur de la recherche publique française implanté à Grenoble. Il s'inscrit dans le cadre d'une collaboration avec le laboratoire de mathématiques appliquées Jean Kuntzmann (LJK) de l'Université Joseph Fourier (UJF). Le Leti développe des systèmes de capteurs de données terrestres (magnétomètres, accéléromètres...) capables de se géoréférencer de manière autonome. Placés sur des objets, ces dispositifs de capteursfournissent leur orientation propre dans l'espace, et ouvrent donc un vaste champ d'applications dans le domaine de l'acquisition et la reconstruction de formes.Le problème de la reconstruction de surfaces à partir de données d'orientation non structurées est par essence un problème mal posé. Cependant, des travaux précédents effectués au Leti ont permis de dégager un protocole fournissant un cadre valide pour le processus de reconstruction. Les capteurs ont été intégrés dans les rubans Morphosense : ces rubans souples équipés de noeuds de capteurs selon unegéométrie connue permettent ainsi le développement d'algorithmes de reconstruction de la courbe suivie par le ruban. L'application de rubans Morphosense sur une surface physique permet alors d'acquérir la famille des courbes suivies par les rubans et tracées sur la surface. Il s'agit ensuite d'exploiter le réseau des courbes ainsi obtenues pour reconstruire la surface. Dans un premier temps, nous revisitons la question de la reconstruction du ruban. Nous proposons des algorithmes de reconstruction de la courbe 3D suivie par le ruban Morphosense prenant maintenant en compte l'intégralité des données fournies par les capteurs d'orientation, ainsi que les propriétés méca-niques du ruban qui le conduisent à suivre des courbes géodésiques sur une surface. De ce point de vue, la reconstruction peut être considérée comme optimale.On étudie ensuite un ensemble de méthodes pour la reconstruction de surfaces à partir d'un réseau de courbes rubans. Dans le cas général, un tel type de réseau conduit à des problèmes de fermeture et d'estimation de données manquantes. La question de la fermeture, d'ordre essentiellement numérique et liée à des contraintes différentielles, concerne le réseau des courbes et la difficulté d'obtenir des contoursfermés. La question cruciale de l'estimation des données manquantes traduit le fait qu'aucune information sur la surface n'est connue et accessible en dehors du réseau des courbes rubans.Afin de s'affranchir de ces problèmes et de proposer des solutions pratiques pour la reconstruction, il est nécessaire de faire des hypothèses sur le modèle de surfaces à reconstruire ou sur la topologie de réseau de courbes acquises. Les méthodes développées s'inscrivent donc dans l'une des deux approchessuivantes.– D'une part des méthodes de reconstruction de surfaces développables et quasi-développables, qui modélisent de manière satisfaisante les surfaces étudiées dans le cadre de nombreuses applications.– D'autre part des méthodes de reconstruction à partir d'une topologie spécifique de réseaux de courbes (courbes quasi-planaires, contour ouvert), permettant de résoudre le problème de fermeture.L'ensemble des méthodes proposées dans ces travaux permet ainsi de formuler un processus global de reconstruction de surfaces, qu'il est possible d'adapter aux problèmes étudiés en pratique, afin de proposer une solution à la fois simple et précise dans chaque cas. La validation des résultats dans le cadre des données réelles fournies par les rubans Morphosense nous a conduit à développer des dispositifs métrologiques. Enfin, notons que le contexte général des données d'orientation étudié ici soulève des problématiques peu classiques, voire nouvelles, auxquelles nous avons essayé d'apporter des solutions originales, en particulier au travers d'algorithmes d'interpolation et d'optimisation. / This PhD thesis in applied mathematics was conducted within the Electronic Systems andSensors department of the CEA-Leti (Atomic Energy and Alternative Energies Commission - Laboratory for Electronics and Information Technologies), a major organism for technological research located in Grenoble, France. This work originated from a partnership with the applied mathematics laboratory (LJK) of the Joseph Fourier university (UJF). The Leti develops embedded systems equiped with micro-sensors (magnetometers, accelerometers...) from which it is possible to retrieve informations about their spatial orientation. These systems allow for innovative applications in the field of shape acquisition and reconstruction. The problem of reconstructing surfaces from unstructured orientation data is ill-posed. However, previous work done within the Leti came up with a valid reconstruction protocol. The micro-sensors were integrated into the Morphosense ribbon : this flexible ribbon instrumented with sensor knots according to a known geometry is at the core of a number of reconstruction algorithms for the curves followed by the ribbon. When lied on a physical surface, Morphosense ribbons then allow the acquisition and reconstruction of a network of curves on the surface, that are then used for the reconstruction of the entire surface. We first propose new algorithms for curve reconstruction thanks to the Morphosense ribbon. Those new methods now integrate the orientation informations provided by the sensors in their entirety, as well as the mechanical properties of the ribbon that force it to follow geodesic curves on a surface. From this point of view, the curve reconstruction can be considered optimal, as it integrates all the information embedded in the ribbons' structure. We then study a set of methods for the reconstruction of surfaces using a network of ribbon curves. Such a network generally leads to problems linked to the closure of the network and missing data estimation. The closure of the network is essentially a numerical problem related to differential constraints. The missing data corresponds to the lack of information on the surface outside the network of curves. In order to deal with these problems and propose practical solutions for the reconstruction, hypotheses either on the surface models or the topology of the network of curves are required. Therefore, the developed methods fall within the two following approaches.– On the one hand, reconstruction methods for developable and quasi-developable surfaces, which are a good approximation for the surfaces considered in numerous applications.– On the other hand, reconstruction methods from networks of curves with specific topologies (quasi-planar curves, open network) so as to deal with the closure problem.The set of methods developed in this work allow to formulate a global process for the reconstruction of surfaces, with flexible algorithms adapting to the different practical situations, so as to propose a solution both simple and precise in each case. The validation of our results in the case of real sensors data provided by the Morphosense ribbons also led us to develop metrological device. Finally, notice that the general context of reconstruction from orientation data studied here raises original theorical problems, to which we tried to answer with innovative solutions through interpolation and optimization algorithms.
|
19 |
[en] EXTENSIONS OF BARYCENTRIC COORDINATES FOR MESH DEFORMATION / [pt] EXTENSÕES DE COORDENADAS BARICÊNTRICAS PARA DEFORMAÇÃO DE MALHASLIS INGRID ROQUE LOPES CUSTODIO 22 October 2010 (has links)
[pt] Dentro dos métodos deformação de objetos tridimensionais, os que usam poliedros de controle permitem interações rápidas e intuitivas, e assim ganharam bastante interesse nos últimos anos. Essas técnicas expressam os pontos do objeto a partir dos vértices do poliedro de controle, por exemplo usando coordenadas baricêntricas e suas extensões.Assim, ao deformar o poliedro de controle, obtém-se deformações correspondentes sobre o modelo recalculando cada ponto do objeto a partir das novas posições dos vértices de controle. Devido ao grau de flexibilidade em sua construção, diferentes generalizações de coordenadas baricêntricas vem sendo propostas nos últimos anos para modelos 3D. Nesse trabalho apresentamos um estudo das recentes generalizações de coordenadas baricêntricas e as principais características das deformações em modelos em três dimensões obtidas com o uso de cada uma delas. Deduzimos desse estudo uma nova extensão de coordenadas baricêntricas que mantém a simplicidade do método original e corrige alguns dos seus defeitos. / [en] Within the thee-dimensional objects deformation techniques, the ones using control polyhedrons allow fast and intuitive interaction, and therefore gained considerable interest in recent years. Those techiques write the model points as function of the vertices of the control polyhedron, for exemple using barycentric coordinates or its extensions. This way, deforming the control polyhedron induces a corresponding strain on the model, recomputing each point of the object from the new positions of control vertices. To do so, due to the flexibility in its construction, different generalizations of barycentric coordinates has been proposed in recent years for 3D models. In this work, we present a study of recent generalizations of barycentric coordinates and the main characteristics of the resulting deformations of three-dimensional model. We deduce from this study a new extension of barycentric coordinates that retains the simplicity of the original method and fixes some of the its defects.
|
20 |
[en] KERNEL BASED SHEPARD`S INTERPOLATION METHOD / [pt] MÉTODOS DE INTERPOLAÇÃO DE SHEPARD BASEADO EM NÚCLEOSJOANA BECKER PAULO 01 June 2010 (has links)
[pt] Muitos problemas reais em modelagem computacional requerem o uso
de aproximação de funções. Em alguns casos a função a ser avaliada
no computador é muito complexa, portanto seria desejável que ela fosse
substituída por uma função mais simples e mais eficiente de ser calculada.
Para fazer isso, calcula-se o valor da função escalar f em um conjunto
de N pontos {x1, x2, . . . , XN}, onde x(i) (pertence a) R(n), e faz-se uma estimativa dos
valores dessa função f em qualquer outro ponto através de um método
de interpolação. Um método de interpolação é qualquer procedimento que
toma um conjunto de restrições e determina uma boa função que satisfaça
essas condições. O método de interpolação de Shepard originalmente calcula
o valor estimado dessa função num ponto qualquer x (pertence a) R(N) como uma média
ponderada dos valores da função original nas N amostras dadas. Sendo que
o peso para cada amostra x(i) é função das potências negativas das distâncias
euclidianas entre os pontos x e x(i). Os núcleos K: R(N) × R(N) (EM) R são funções
que correspondem ao produto interno no espaço de Hilbert F da imagem dos
pontos x e z por uma função phi (conjunto vazio) : R(N) (EM) F, ou seja K(x, z) = < phi (conjunto vazio) (x), phi (conjunto vazio) (z) >.
Na prática, as funções núcleos representam implicitamente o mapeamento
feito pela função phi (conjunto vazio) , ou seja, se define qual núcleo usar e não qual phi (conjunto vazio) usar. Esse trabalho propõe uma modificação do método de interpolação de Shepard que
é uma simples substituição no método original: ao invés de usar a distância
euclidiana entre os pontos x e xi sugere-se usar a distância entre as imagens
dos pontos x e x(I) por phi (conjunto vazio) no espaço de Hilbert F, que pode ser calculada
diretamente com o uso da função núcleo K. Os resultados mostram que essa
pequena modificação gera resultados melhores quando comparados com o
método de Shepard original. / [en] Several real problem in computational modeling require function approximations.
In some cases, the function to be evaluated in the computer is very
complex, so it would be nice if this function could be substituted by a simpler
and efficient one. To do so, the function f is sampled in a set of N
pontos {x1, x2, . . . , xN}, where x(i) (is an element of) R(n), and then an estimate for the value of f in any other point is done by an interpolation method. An interpolation
method is any procedure that takes a set of constraints and determines
a nice function that satisfies such conditions. The Shepard interpolation
method originally calculates the estimate of F(x) for some x (is an element of) R(n) as a
weighted mean of the N sampled values of f. The weight for each sample
xi is a function of the negative powers of the euclidian distances between
the point x and xi. Kernels K : R(n) ×R(n) (IN) R are functions that correspond
to an inner product on some Hilbert space F that contains the image of
the points x and z by a function phi (the empty set) : R(n) (IN) F, i.e. k(x, z) =< phi (the empty set) (x), phi (the empty set) (z) >. In practice, the kernels represent implicitly the mapping phi (the empty set), i.e. it is more suitable to defines which kernel to use instead of which function phi (the empty set). This work proposes a simple modification on the Shepard interpolation method that is: to substitute the euclidian distance between the points x and xi by a distance between the image of these two point by phi (the empty set) in the Hilbert space F, which can be computed directly with the kernel k. Several tests show that such simple modification has better results when compared to the original
method.
|
Page generated in 0.0669 seconds