Spelling suggestions: "subject:"[een] MPM"" "subject:"[enn] MPM""
11 |
GPU High-Performance Framework for PIC-Like Simulation Methods Using the Vulkan® Explicit APIYager, Kolton Jacob 01 March 2021 (has links) (PDF)
Within computational continuum mechanics there exists a large category of simulation methods which operate by tracking Lagrangian particles over an Eulerian background grid. These Lagrangian/Eulerian hybrid methods, descendants of the Particle-In-Cell method (PIC), have proven highly effective at simulating a broad range of materials and mechanics including fluids, solids, granular materials, and plasma. These methods remain an area of active research after several decades, and their applications can be found across scientific, engineering, and entertainment disciplines.
This thesis presents a GPU driven PIC-like simulation framework created using the Vulkan® API. Vulkan is a cross-platform and open-standard explicit API for graphics and GPU compute programming. Compared to its predecessors, Vulkan offers lower overhead, support for host parallelism, and finer grain control over both device resources and scheduling. This thesis harnesses those advantages to create a programmable GPU compute pipeline backed by a Vulkan adaptation of the SPgrid data-structure and multi-buffered particle arrays. The CPU host system works asynchronously with the GPU to maximize utilization of both the host and device. The framework is demonstrated to be capable of supporting Particle-in-Cell like simulation methods, making it viable for GPU acceleration of many Lagrangian particle on Eulerian grid hybrid methods. This novel framework is the first of its kind to be created using Vulkan® and to take advantage of GPU sparse memory features for grid sparsity.
|
12 |
Advancements for the Numerical Simulation of Free Fall Penetrometers and the Analysis of Wind Erosion of SandsZambrano Cruzatty, Luis Eduardo 27 August 2021 (has links)
The coastal population is growing, putting extra stress on coastal sediments and protection features, such as beach dunes. Moreover, global warming will increase the frequency of storms, and coastal dunes and other defense infrastructure will be subjected to increased erosion and scouring, endangering the people they are meant to protect. Understanding soil dynamics and fluid interaction is crucial to predict the effects of sand erosion. In particular, the study of wind erosion of sands in coastal dunes is essential due to the protective role these earthen structures have during storm events.
One of the challenges about predicting wind erosion in coastal dunes is its extended spatial scale and the associated economic and logistics costs of sampling and characterizing the sediments. Because of this, in-situ testing for sediment characterization is essential. In particular, the usage of free-fall penetrometers (FFP) is appealing due to their portability and robustness. The sediment properties obtained with this type of testing can later be used to assess wind erosion susceptibility by determining, for example, the wind velocity to initiate the erosion process.
FFP testing involves dropping an instrumented probe that impacts the soil and measures the kinematics or kinetics during the penetration process. For example, deceleration measurements are used to compute an equivalent quasi-static failure, which is not in line with the dynamic process characteristic of FFP testing. This preassumed failure mechanism is used to back-calculate the sand's geomechanical properties. However, soil behavior is highly complex under rapid loading, and incorporating this behavior into FFP sediment characterization models is challenging. Advanced numerical modeling can improve the understanding of the physics behind FFP testing.
This thesis presents various advancements in numerical modeling and erosion models to bridge FFP in-situ testing with predicting the initiation of wind erosion of sands. First, improvements oriented to the Material Point Method (MPM) for modeling in-situ FFP testing are proposed. The numerical results show that the simulation of FFP deployment in sands is affected by strain localization and highlight the importance of considering constitutive models sensitive to different loading rates. Because of the importance of rate effects in soil behavior, the second aspect of this thesis proposes a novel consistency framework. Two constitutive models are adapted to study strain-rate sensitive non-cohesive materials: i) a strain-softening Mohr-Coulomb, and ii) a NorSand model. In addition to increased strength, the proposed framework captures increased dilatation, an early peak deviatoric stress, and relaxation.
Finally, a novel sand erosion model is derived using a continuum approximation and limit equilibrium analysis. The erosion law considers geotechnical parameters, the effects of slope, and moisture suction, in a combined manner. The proposed model is theoretically consistent with existing expressions in the literature. It covers a wide range of environmental and geometrical conditions and helps to reconcile the results from FFP testing with the prediction of the initiation of wind erosion. The model was validated in a wind tunnel and is demonstrated to be a viable alternative for predicting sand erosion initiation.
This thesis opens up new research prospects, such as improving the soil characterization models or the direct prediction of sand erosion using rapid, reliable, and efficient in-situ testing methods. / Doctor of Philosophy / With global warming and climate change, it is expected that the frequency and intensity of storms will increase. This increment will put extra stress on coastal sediments such as beach sand and coastal dunes, making them prone to erosion. Coastal dunes lose their ability to withstand storms as they erode, potentially making coastal flooding more frequent. In light of this, all stakeholders involved in the protection against coastal disasters must have the tools to predict, prepare for, and mitigate for situations like the ones stated above. An essential aspect of the prediction component is dependent on a successful sediment characterization, for example, determining how much wind the sand can withstand before it erodes. Free-fall penetrometers (FFP) are devices designed to conduct the characterization mentioned above. However, the procedures used to perform this characterization are mainly based on empirical or semi-empirical expressions. Computer models, capable of simulating the physics behind FFP testing, can bring more insight into the process of interaction between FFP devices, sands, and water and can be the basis to improve the characterization methods. The latter results can be utilized for instance to predict wind erosion, including several properties of the sand, such as its mineralogy and shape. This study contributes to developing the computer simulations of FFP deployment and the wind erosion prediction models. Eventually, these developments can help engineers and coastal managers to anticipate and prepare for more frequent coastal hazards.
|
13 |
Modèles de classification hiérarchiques d'images satellitaires multi-résolutions, multi-temporelles et multi-capteurs. Application aux désastres naturels / Hierarchical joint classification models for multi-resolution, multi-temporal and multi-sensor remote sensing images. Application to natural disastersHedhli, Ihsen 18 March 2016 (has links)
Les moyens mis en œuvre pour surveiller la surface de la Terre, notamment les zones urbaines, en cas de catastrophes naturelles telles que les inondations ou les tremblements de terre, et pour évaluer l’impact de ces événements, jouent un rôle primordial du point de vue sociétal, économique et humain. Dans ce cadre, des méthodes de classification précises et efficaces sont des outils particulièrement importants pour aider à l’évaluation rapide et fiable des changements au sol et des dommages provoqués. Étant données l’énorme quantité et la variété des données Haute Résolution (HR) disponibles grâce aux missions satellitaires de dernière génération et de différents types, telles que Pléiades, COSMO-SkyMed ou RadarSat-2 la principale difficulté est de trouver un classifieur qui puisse prendre en compte des données multi-bande, multi-résolution, multi-date et éventuellement multi-capteur tout en gardant un temps de calcul acceptable. Les approches de classification multi-date/multi-capteur et multi-résolution sont fondées sur une modélisation statistique explicite. En fait, le modèle développé consiste en un classifieur bayésien supervisé qui combine un modèle statistique conditionnel par classe intégrant des informations pixel par pixel à la même résolution et un champ de Markov hiérarchique fusionnant l’information spatio-temporelle et multi-résolution, en se basant sur le critère des Modes Marginales a Posteriori (MPM en anglais), qui vise à affecter à chaque pixel l’étiquette optimale en maximisant récursivement la probabilité marginale a posteriori, étant donné l’ensemble des observations multi-temporelles ou multi-capteur / The capabilities to monitor the Earth's surface, notably in urban and built-up areas, for example in the framework of the protection from environmental disasters such as floods or earthquakes, play important roles in multiple social, economic, and human viewpoints. In this framework, accurate and time-efficient classification methods are important tools required to support the rapid and reliable assessment of ground changes and damages induced by a disaster, in particular when an extensive area has been affected. Given the substantial amount and variety of data available currently from last generation very-high resolution (VHR) satellite missions such as Pléiades, COSMO-SkyMed, or RadarSat-2, the main methodological difficulty is to develop classifiers that are powerful and flexible enough to utilize the benefits of multiband, multiresolution, multi-date, and possibly multi-sensor input imagery. With the proposed approaches, multi-date/multi-sensor and multi-resolution fusion are based on explicit statistical modeling. The method combines a joint statistical model of multi-sensor and multi-temporal images through hierarchical Markov random field (MRF) modeling, leading to statistical supervised classification approaches. We have developed novel hierarchical Markov random field models, based on the marginal posterior modes (MPM) criterion, that support information extraction from multi-temporal and/or multi-sensor information and allow the joint supervised classification of multiple images taken over the same area at different times, from different sensors, and/or at different spatial resolutions. The developed methods have been experimentally validated with complex optical multispectral (Pléiades), X-band SAR (COSMO-Skymed), and C-band SAR (RadarSat-2) imagery taken from the Haiti site
|
14 |
[en] FORMULATION AND SOME APPLICATIONS OF MATERIAL POINT METHOD IN GEOTECHNICAL PROBLEMS IN STATIC AND DYNAMIC CONDITIONS / [pt] FORMULAÇÃO E ALGUMAS APLICAÇÕES DO MPM (MATERIAL POINT METHOD) EM PROBLEMAS DE GEOTECNIA EM CONDIÇÕES ESTÁTICAS E DINÂMICASLUCAS LUDEÑA GUTIERREZ 10 May 2018 (has links)
[pt] Em problemas geotécnicos podem ocorrer grandes deformações devido a chuvas prolongadas, sismos, deslizamentos de encostas, etc. Material point method (MPM) é um método de solução baseado no Método dos Elementos Finitos (MEF) que oferece vantagens para o cálculo estático e dinâmico que envolve deformações desse tipo. O objetivo desta dissertação é utilizar o MPM em problemas geotécnicos em condições estáticas e dinâmicas. Esta pesquisa mostra o procedimento de analises do MPM para a condição não acoplada (só solido sem presença de água) e depois acoplada. Para a revisão matemática de MPM se faz antes um resumo da teoria do MEF na metodologia de conservação de quantidade de movimento. Nestas duas formas de resolver os problemas geotécnicos foram expostos três exemplos simples. O primeiro é uma coluna de solo simulado sob os fundamentos da elasticidade, com o objetivo de verificar o deslocamento vertical pelo peso próprio. Isto foi resolvido mediante quatro diferentes métodos: analítica, MEF por resíduos ponderados, MEF por conservação de quantidade de movimento, e MPM. Todos eles consideram somente a fase solida. No segundo exemplo, tem-se solo na geometria de quadrado de lado 1 metro, onde busca-se obter as poropressões quando atingir a condição permanente enquanto os deslocamentos ocorrem ao longo do tempo; ou seja, a análise é acoplada e é resolvida pelo método MPM. Para uma aplicação mais realista, foi feita a análise (não acoplada) da barragem Palo Redondo, pertencente ao projeto Chavimochic, localizada na região de La Libertad, Perú. Nesta análise dinâmica considerou-se dois modelos constitutivos: Elástico e Mohr Coulomb, além de um sismo. / [en] In geotechnical problems can happen large strains because of prolonged rains, earthquake, slide slope, etc. Material point method is a solution method based on the finite element method (FEM) which offers advantages for static and dynamic calculation that involve that kind of strains. The objective in this dissertation is to use the MPM in geotechnical problems in statics and dynamics conditions. This research shows the analysis procedure of MPM for uncoupled condition (only solids, without water) and then coupled. Before the mathematical theory of MPM, a review of the theory of FEM in the conservation of quantidade de movimento is done. In this two methodology were raised three examples. The first one is a soil column that was modeled elastically, in which the main objective in to analyze the vertical displacement because of own weight. This was solved by four different methods: analytically, FEM weighted residual, FEM conservation of momentum, and MPM. All of them consider only the solid phase. The second example is a square of soil with side 1 meter, where the objective is to know the pore-pressure in the permanent condition and at the same time the vertical displacement were generated, it means that the analysis is coupled and were solved by MPM. In order to make a more realistic application, Palo Redondo dam is analyzed (uncoupled condition), which belongs to the Chavimochic project located in La Libertad, region of Perú. This dynamic analysis was done considering two constitutive models: Elastic and Mohr Coulomb, additionally seismic forces.
|
15 |
Cone penetration analysis using the Material Point MethodVibhav Bisht (11185506) 26 July 2021 (has links)
The boundary value problems (BVPs) of geomechanics are challenging due to the complexity in modeling soil behavior and difficulties in modeling large deformations. While traditional numerical schemes have struggled in realistically simulating geomechanical BVPs, new numerical methods –such as the material point method (MPM)–are increasingly being used to tackle these problems. However, algorithms in MPM have not yet been sufficiently developed, scrutinized, and validated. This thesis focuses on the development, verification, and validation of MPM for use in geomechanical BVPs. In particular, the thesis focuses on simulation of cone penetration tests in both controlled environments and in field conditions.<div><br></div><div>To efficiently simulate cone penetration, a silent boundary scheme, known as a cone boundary, was proposed in the generalized interpolation material point method (GIMP), a variant of MPM. The implementation of the cone boundary in GIMP was discussed, and the boundaries were validated by comparison against several benchmark problems. The cone boundaries were shown to be suitable in transmitting energy at the boundary. In addition, the implementation of traction boundaries in GIMP was analyzed. In GIMP, traction boundaries may be implemented either at the centroid of the material point, or at the edge of the material point domain. It was shown that the implementation of traction boundaries at the edge of the domain led to stress oscillations near the boundary, which were minimized when the traction boundaries were implemented at the edge of the domain.<br></div><div><br></div><div>During cone penetration, the soil near the cone-soil interface is pushed to large strains. At large strains, soils reach critical state, a state in which the soil shears at constant volume. Simulation of incompressible materials using low-order shape functions commonly used in GIMP leads to stiffer solutions and stress oscillations. To mitigate the constraints imposed by incompressibility, the non-linear B-bar method was implemented in GIMP. The modifications required for the implementation of the B-bar method in GIMP were discussed, and the efficacy of the method in mitigating incompressibility was demonstrated by analyzing several benchmark problems.<br></div><div><br></div><div>To simulate cone penetration in saturated soil, a coupled formulation was proposed in GIMP.A single material point was used to represent both the soil matrix and water. The governing equations were solved using an explicit scheme with the velocity of the soil matrix and the velocity of water as the primary variables. The formulation was validated through problems for which analytical or numerical solutions are available.<br></div><div><br></div><div>Finally, cone penetration analyses were performed both in dry sand and saturated clays. Two bounding surface models –one for sand and one for clay –were used for accurately capturing the soil response. Cone penetration tests were performed on Ottawa 20-30 sand under a variety of loading conditions at a large calibration chamber. The penetration resistances were measured, and the displacement fields were captured using the digital image correlation technique(DIC). The cone penetration resistances predicted by MPM were within 25% of the measured values, and the displacement fields computed using MPM were similar to those captured using DIC. For saturated clays, cone penetration test results reported in the literature for a Boston Blue Clay (BBC) test site were used. The simulated cone resistance of 650 kPa lied within the CPT resistance range of 580-730 kPa reported in the field. The results demonstrate the capability of MPM in simulating cone penetration in both sands and clays provided that sufficiently accurate algorithms and advanced constitutive models capable of reproducing realistic soil behavior are used in the analyses.<br></div>
|
16 |
3D Image Segmentation Implementation on FPGA Using EM/MPM AlgorithmSun, Yan 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In this thesis, 3D image segmentation is targeted to a Xilinx Field Programmable Gate Array (FPGA), and verified with extensive simulation. Segmentation is performed using the Expectation-Maximization with Maximization of the Posterior Marginals (EM/MPM) Bayesian algorithm. This algorithm segments the 3D image using neighboring pixels based on a Markov Random Field (MRF) model. This iterative algorithm is designed, synthesized and simulated for the Xilinx FPGA, and greater than 100 times speed improvement over standard desktop computer hardware is achieved. Three new techniques were the key to achieving this speed: Pipelined computational cores, sixteen parallel data paths and a novel memory interface for maximizing the external memory bandwidth. Seven MPM segmentation iterations are matched to the external memory bandwidth required of a single source file read, and a single segmented file write, plus a small amount of latency.
|
17 |
Microfluidic Chemical Signal GenerationAzizi, Farouk 23 October 2009 (has links)
No description available.
|
18 |
Topologiestudien an der Domäne MPMC der membranständigen Untereinheit B des Kplus-Aufnahmesystems KtrAB aus Vibrio alginolyticusVor der Brüggen, Marc 01 August 2007 (has links)
Die vorliegende Arbeit untersucht die Struktur der Untereinheit B des natriumabhängigen Kplus-Aufnahmesystems KtrAB aus Vibrio alginolyticus. Sie gehört zu einer Superfamilie von Kaliumtransportproteinen, die auf der im KcsA-Kanal gefundenen MPM-Topologie beruht. Eine MPM-Domäne besteht aus zwei Transmenbranhelices, die durch einen in die Membran zurückgefalteten P-Loop verbunden sind. Im KcsA-Kanal arrangieren sich vier dieser Untereinheiten um eine zentrale Pore. Im Unterschied zum KcsA-Kanal aus S. lividans sind in dieser Superfamilie die MPM-Domänen durch cytoplasmatische Loops miteinander verbunden. Die KtrB-Topologie beruht zur Zeit nur auf Modellen und wird in dieser Arbeit genauer untersucht. Dabei konnte die MPM-Faltung mittels PhoA-Fusionen für die Bereiche B-D von VaKtrB bestätigt, und die sogenannte Turret -Struktur, wie sie im KcsA-Kanal gefunden wurde, nachgewiesen werden. Bei Modellierungstudien der KtrB-Topologie fiel im Besonderen die M2C-Helix auf, woraufhin Durell und Guy drei Unterteilungen für diesen Bereich vorschlugen: M2C1: alpha-Helix; M2C2: flexibler Bereich; M2C3: teilweise amphiphile Helix. Es herrschen zwei Modelle dieser Helix vor, wobei sie sich vor allem in der Lokalisation von M2C2 und M2C3 unterscheiden. Im ersten bildet M2C2 einen gestreckten Übergang von M2C1 zu M2C3, die waagerecht in die Membranoberfläche eingelagert ist. Im 2. Modell liegt M2C2 innerhalb der Kavität als Schleife vor und M2C3 steckt senkrecht in der Membranoberfläche. Die in dieser Arbeit gewonnenen Daten (Cysteinzugänglichkeit für Maleimide, PhoA-Fusionen, ESR-Spektroskopie) erhärten das 1. Modell und unterstützen die These, dass M2C2 einen flexiblen Bereich innerhalb von M2C bildet, der wichtig für den Transport bzw. dessen Regulation ist. Die Faltung der M2C-Helix konnte allerdings nicht abschließend geklärt werden. Desweiteren deuten die Daten dieser Arbeit auf eine wässrige Verbindung bis tief in KtrB vom Periplasma her hin.
|
19 |
Direct coupling of imaging to morphology-based numerical modeling as a tool for mechanics analysis of wood plastic compositesLin, Xiang 01 December 2011 (has links)
Polymeric composites reinforced with bio-materials have advantages over composites with synthetic reinforcements. Bio-based composites use low-cost and renewable reinforcements, have nonabrasive properties for machining, have improved damping characteristics, and have potential for energy recycling. However, the limited use of bio-based composites is because their mechanical properties are typically much lower than those of synthetic composites.
The objective of this study was to combine state-of-the-art imaging tools with emerging numerical modeling methods for an integrated, multi-level characterization of bio-based reinforcements and their composites. Digital photography (2D) will allow collection of full-field digital images of the surface of sample composites, which will be used for characterization of the morphological structure of fillers (copper wire or wood particle) and of model composites. Mechanical experiments (tension load) on isolated fillers and on model composites will allow imaging of the deformed material. By correlating relative positions of thousands of surface features between consecutive images, digital image correlation (DIC) algorithms can be used to map surface deformation fields and calculate surface strain fields.
Digital imaging methods can only record deformations and strains. The interpretation of those strains in terms of material properties, such as position-dependent modulus of a heterogeneous composite material, requires simultaneous modeling. The modeling must
use morphology-based methods that can handle anisotropy, heterogeneity, and the complex structure of bio-based composites such as wood plastic composites. This research used the material point method (MPM) as a modeling tool. MPM is a particle-based, meshless method for solving problems in computational mechanics. The crucial advantage of MPM over other methods is the relative ease of translating pixels from digital images into material points in the analysis. Thus digital images (2D) used in our experiments were used as direct input to the MPM software, so that the actual morphologies, rather than idealized geometries, were modeled. This procedure removes typical uncertainties connected with idealization of the internal features of modeled materials. It also removes variability of specimen to specimen due to morphology variations.
Full-field imaging techniques and computer modeling methods for analysis of complex materials have developed independently. This research Coupled imaging and modeling and used inverse problem methodology for studying bio-particulate composites. The potential of coupling experiments with morphology-based modeling is a relatively new area. This work studied the morphology and mechanical properties of copper wire (for validation experiments) and wood particles used for reinforcement in polymer composites. The goal was to determine the in situ mechanical and interfacial properties of copper wire and then wood particles. By comparison of DIC results to MPM, the conclusion is MPM simulation works well by simulating 3D composite structure and using Matlab software to do qualitative and quantitative comparisons. Copper validation tests showed that copper wire is too stiff compared to polymer such that the inclusion modulus had low effect on the surface strains (DIC experimental results). Wood particle worked better because modulus of wood is much lower than copper. By qualitative comparison of the wood particle specimens, we could deduce that the in situ properties of wood particles are lower than bulk wood. Quantitative analysis concentrated on small area and got more exact results. In a 90 degree particle quantitative study, MPM simulations were shown to be capable of tracking the structure of wood particle plastic, which involved failure. The entire approach, however, is not very robust. We can get some results for mechanical properties, but it does not seem possible to extract all anisotropic properties from a few DIC tests, as some researcher have suggested. / Graduation date: 2012
|
20 |
Robustness versus performance tradeoffs in PID tuningAmiri, Mohammad Sadegh 11 1900 (has links)
Proportional, integral and derivative (PID) controller tuning guidelines in process industry have been in place for over six decades. Nevertheless despite their long design history PID tuning has remained an ‘art’ and no single comprehensive solution yet exists. In this study various considerations, with new and different perspectives, have been taken into account in PID tuning design. This study explores the issue of PID tuning from a practical point of view with particular focus on robust design in the presence of typical problems in process industry: process changes, valve stiction effects and unmeasured disturbances.
The IMC tuning rule is recommended for setpoint tracking, while in the case of regulation, a newly proposed tuning rule, based on a combination of IMC and Ziegler-Nichols method, is demonstrated to give satisfactory results. The results were evaluated by simulation and were also validated on a computer-interfaced pilot scale continuous stirred tank heater (CSTH) process. / Chemical Engineering
|
Page generated in 0.0336 seconds