Spelling suggestions: "subject:"[een] NANOINDENTATION"" "subject:"[enn] NANOINDENTATION""
261 |
Détermination des propriétés mécaniques de céramiques poreuses par essais de microindentation instrumentée sphériqueClément, Philippe 15 May 2013 (has links) (PDF)
L'objectif de cette thèse porte sur le développement de nouveaux moyens de caractérisation mécanique de matériaux poreux inorganiques. La technique de microindentation instrumentée avec indenteur sphérique a été utilisée pour déterminer les propriétés mécaniques du plâtre pris, utilisé comme matériau modèle, à deux porosités différentes (30 et 60%vol). Les méthodes analytiques, développées initialement en nanoindentation, ont permis d'extraire la dureté et le module d'élasticité des deux matériaux, ainsi que les courbes contrainte-déformation d'indentation. Une méthodologie d'essai a été notamment détaillée afin de pouvoir appliquer cet essai d'indentation sphérique à l'étude de céramiques à forte porosité. Une approche numérique a permis de compléter les méthodes analytiques et d'identifier une loi de comportement élastoplastique pour le matériau modèle. Un modèle éléments finis 2D-axisymétrique a ainsi été développé pour simuler les essais d'indentation sphérique. Un module d'indentification inverse, MIC2M, a ensuite été utilisé pour identifier les paramètres associés au critère de Drücker-Prager (cohésion, frottement et dilatance) pour minimiser l'erreur entre la courbe expérimentale et numérique. La simulation de l'indentation Vickers, ainsi que des essais de compressions uniaxiaux et œdométriques ont permis de valider les paramètres matériaux identifiés par indentation sphérique. L'utilisation des techniques de tomographie aux rayons X et de microscopie électronique à balayage (MEB) a permis de mettre en évidence une densification du matériau au cours de l'indentation. Aucune fissure macroscopique fragile n'a par contre été observée, confirmant les différences de comportement mécanique entre des céramiques à fort taux de porosité et des céramiques denses. La méthodologie ainsi développée a ensuite été appliquée au cas d'une céramique biorésorbable à base de phosphate de calcium, famille de matériaux largement utilisée pour la substitution osseuse. Des cylindres de ciments brushitique ont subi un vieillissement in vitro d'une durée maximale de deux mois dans une solution de Phosphate Buffered Saline rafraichie. La méthode de microindentation a permis de suivre l'évolution des différents paramètres mécaniques au cours de la cinétique de dégradation des ciments. Les résultats ont montré une bonne corrélation entre les évolutions des propriétés mécaniques et physicochimiques des échantillons, suivies par diffraction des rayons X et MEB. Ainsi, après une dissolution initiale du ciment, la précipitation de nouvelles phases de phosphates de calcium plus stables a entraîné une augmentation des caractéristiques mécaniques en cours de vieillissement, mesurées par indentation. Cette méthode d'essai semble donc être un outil prometteur pour le suivi des propriétés d'explants biomédicaux et, plus généralement, des céramiques à fortes porosités.
|
262 |
Bewertung von Verfahren zur Fließspannungsbestimmung in der NanoindentationClausner, André 25 November 2013 (has links) (PDF)
Die Nanoindentation ist ein inzwischen etabliertes Verfahren zur Bestimmung der Materialkennwerte Härte und Elastizitätsmodul in kleinen Größendimensionen. Eine zusätzliche Bestimmung der Fließspannung aus solchen Nanoindentationsexperimenten würde deren Einsatzmöglichkeiten deutlich erweitern und zum Beispiel für die Bauteilauslegung kleiner Strukturen, Schichtcharakterisierung und die Beschaffung von Simulationseingangsdaten einen großen Fortschritt bedeuten. Diese Gründe machen das Thema zu einem aktuellen Forschungsgegenstand. In der vorliegenden Arbeit steht deswegen die Bewertung von Fließspannungsbestimmungsverfahren für Massivmaterialien in der Nanoindentation mittels einer Kombination aus Finite-Elemente-Simulationen und umfangreichen Experimentaldaten im Zentrum. Im Speziellen wird dabei das Konzept des effektiv geformten Indenters mit dem erweiterten Hertzschen Ansatz und dessen Anwendung zur Fließspannungsbestimmung aus Eindringversuchen mit selbstähnlichen Berkovichpyramiden betrachtet.
Zur Bearbeitung dieser Aufgabenstellung wurden unter anderem drei Referenzverfahren zur Fließspannungsbestimmung (die Expanding cavity-Modelle, das Loading partial unloading-Verfahren und Minidruckversuche) ausführlich charakterisiert. Damit konnten dann im Weiteren belastbare Referenzfließspannungen für die umfangreiche Experimentaldatenbasis zur Verfügung gestellt werden. Außerdem wurden die untersuchten Materialien auf den Einfluss der Größenabhängigkeit der Fließspannungen, den Indentation size effect, hin untersucht. Dabei wurden die vorliegenden physikalischen Vorgänge in den Proben beschrieben, dahingehende Unterschiede bei den betrachteten Referenzverfahren charakterisiert und den Fließspannungswerten die Fließzonendimensionen zugeordnet. Mit den damit zur Verfügung stehenden Informationen konnte das Konzept des effektiv geformten Indenters in seiner Anwendung zur Fließspannungsbestimmung grundlegend bewertet werden. Alle Untersuchungen wurden dabei stets parallel mit Hilfe von Simulations- und Experimentaldaten durchgeführt, um tiefere Einblicke in die zu Grunde liegende Mechanik der Fließprozesse zu gewinnen.
|
263 |
Investigations of nanoindentation data obtained by the combination of normal and mixed (normal and lateral) forcesMolnár, Olena 26 April 2010 (has links) (PDF)
Mechanische Eigenschaften, wie z.B. der Elastizitätsmodul oder die Fließspannung, sind wichtige Materialgrößen,
um ein Material zu charakterisieren. Dies kann beispielsweise dazu dienen, ein Bauelement eines
MEMS unter Berücksichtigung seiner Funktion zu optimieren. Daher ist es nötig, eine Messmethode zur
Verfügung zu haben, die diese Größen auch in kleinen Dimensionen korrekt bestimmen kann, insbesondere
auch in dünnen Schichten. Deshalb wurde ein eigenes Konzept basierend auf der Kombination von elastischer
Modellierung und Nanoindentationsexperimenten in unserer Arbeitsgruppe entwickelt. Dieses Konzept
beruht auf der Theorie der sphärischen Indentation in geschichtete Materialien (Image Load Method). In
einem nächsten Schritt wurde dieser theoretische Ansatz erweitert, indem das Modell eines effektiven Indentors
mittels des Erweiterten Hertzschen Ansatzes in das ursprüngliche Modell implentiert wurde. Zur gleichen
Zeit wurden neue experimentelle Möglichkeiten entwickelt, die auf der Applikation einer definierten
Lateralkraft in einem Indentationsexperiment beruhen.
Bei der Auswertung dieser neuen experimentellen Methoden stellte sich heraus, dass die auf dem theoretischen
Modell basierenden Fittingprozeduren einen subjektiven Faktor aufweisen, sodass je nach Nutzer der
Auswertesoftware unterschiedliche Ergebnisse erhalten werden. Der Einfluss intrinsischer Spannungen auf
Indentationsexperimente wurde ebenfalls bisher noch nicht systematisch untersucht. Daher ist es die Aufgabe
dieser Arbeit, ebendiese offenen Fragen zu beantworten und die Methode der Nanoindentation weiter zu
optimieren, um dieser Messmethode neue Anwendungsgebiete zu eröffnen.
Die Untersuchungen zum Einfluss der intrinsischen Spannung auf die experimentell erhaltenen mechanischen
Eigenschaften einer dünnen Schicht beinhalten ein Modellexperiment mit einer Formgedächtnislegierung
(NiTinol), in welcher mittels einer eigens konstruierten Biegevorrichtung definierte biaxiale Spannungszustände
eingestellt werden können. Dabei konnte gezeigt werden, dass die Berechnung des Von-
Mises-Spannungsfeldes mit dem Wert der intrinsischen Spannung korrigiert werden kann, so dass das erhaltene
Maximum der Von-Mises-Spannung dem tatsächlichen Wert der Fließspannung des Materials entspricht.
In der vorliegenden Arbeit werden des Weiteren detaillierte Untersuchungen der Entlastungskurven von Referenzmaterialien
(BK7-Glas) und geschichteten Materialien (CrN Schicht auf Si) durchgeführt, die auf Berkovich-
Indentationsmessungen beruhen. Dabei wurde insbesondere die Auswerteroutine basierend auf dem
Konzept des effektiven Indentors dahingehend weiterentwickelt, dass der bisherige subjektive Einfluss erheblich
reduziert werden konnte. Diese generell anwendbare Auswerteroutine (d0-Fit) zeichnet sich vor allem
durch ein hohes Maß an Nachvollziehbarkeit und Reproduzierbarkeit aus.
Mit der gleichzeitigen Anwendung einer Normal- und einer Lateralkraft in einem Indentationsexperiment
mit einem spitzen Indentor (Berkovich) ist es möglich, weitere Informationen über die mechanischen Eigenschaften
der untersuchten Probe zu gewinnen. Dabei wurde eine kritische Lateralkraft gefunden, die der kritischen
Normalkraft einer partiellen Be- und Entlastung mit sphärischen Indentoren analog ist. Hierbei konnte
die Möglichkeiten sowie Grenzen demonstriert werden, die das Modell des effektiven Indentors mit dem
erweiterten Hertzschen Ansatzes bei der Auswertung der erhalten Messkurven bereitstellt. Diese Untersuchungen
mit den bereits erwähnten Referenzmaterialien haben den Charakter eines empirischen Ansatzes. / Mechanical parameters, such as Young’s modulus or yield strength, are important material properties to characterize a material. These parameters can be used to optimize a construction unit of a MEMS with respect to its function for example. Therefore a measurement technique is needed that allows the determination of such mechanical properties even at very small length scales and especially in thin films. To assess the mechanical properties at small length scales and/or layered structures an experimental approach based on nanoindentation measurements and corresponding elastic modeling was developed within our working group. This approach uses the elastic theory of spherical indentation in layered structures based on a potential theory (Image Load Method). In a next step this theoretical approach was extended with implementation of the concept of the effectively shape indenter employing an extended Hertzian approach. At the same time new experimental techniques were developed opening the possibility to apply well defined lateral loads to nanoindentation experiments accompanied with precise measurement of the lateral loads and displacements.
The theoretical model bases on fitting procedures of the experimentally obtained curves. During the evaluation of this new experimental nanoindentation approach a subjective factor within the fitting procedures was found, so that depending on the user different results can be derived. Furthermore the influence of intrinsic stresses on the nanoindentation data was not investigated systematically so far. The task of this work is therefore the answering of these open questions and to optimize the method of nanoindentation to open new application possibilities for this new nanoindentation approach.
The investigations of the influence of the intrinsic stress on experimentally obtained mechanical properties of a thin film bases on a model experiment with a shape memory alloy (NiTinol). With the help of special designed bending device biaxial stress state can be induced in this material. It was shown that the calculation of the von Mises stress field can be corrected with the value of the intrinsic stress so that the obtained maximum of the von Mises stress corresponds to the yield strength of the material. Moreover it was shown that the onset of phase transformation from austenite to martensite under indentation loads corresponds to the von Mises stress criterion. In the present work detailed analysis of the unloading curves obtained with Berkovich nanoindentation on reference materials (BK7 borosilicate glass) and layered materials (CrN on Si substrate) was performed. The evaluation procedure was refined with respect to the subjective factor. The found procedure (d0-fit) is applicable in a general way and is characterized by a high degree of traceability and reproducibility.
Using mixed loading conditions with a normal and a lateral load application at the same time with a sharp indenter (Berkovich) further information on the mechanical characteristics of a material can be derived. A critical lateral force (CLF) was found which is analogous to the critical normal force in loading-partial unloading indentation with spherical indenters. During this investigation the possibilities as well as the limitations of the theoretical model based on the effectively shaped indenter together with the extended Hertzian approach for the analysis of experimentally obtain unloading curves was shown. It should be noted that these investigations with reference materials have empirical character.
|
264 |
Synthesis, Characterization and Applications of Metal Oxide NanostructuresHussain, Mushtaque January 2014 (has links)
The main objective of nanotechnology is to build self-powered nanosystems that are ultrasmall in size, exhibit super sensitivity, extraordinary multi functionality, and extremely low power consumption. As we all know that 21st century has brought two most important challenges for us. One is energy shortage and the other is global warming. Now to overcome these challenges, it is highly desirable to develop nanotechnology that harvests energy from the environment to fabricate self-power and low-carbon nanodevices. Therefore a self-power nanosystem that harvests its operating energy from the environment is an attractive proposition. This is also feasible for nanodevices owing to their extremely low power consumption. One advantageous approach towards harvesting energy from the environment is the utilization of semiconducting piezoelectric materials, which facilitate the conversion of mechanical energy into electrical energy. Among many piezoelectric materials ZnO has the rare attribute of possessing both piezoelectric and semiconducting properties. But most applications of ZnO utilize either the semiconducting or piezoelectric property, and now it’s time to fully employ the coupled semiconducting-piezoelectric properties to form the basis for electromechanically coupled nanodevices. Since wurtzite zinc oxide (ZnO) is structurally noncentral symmetric and has the highest piezoelectric tensor among tetrahedrally bonded semiconductors, therefore it becomes a promising candidate for energy harvesting applications. ZnO is relatively biosafe and biocompatible as well, so it can be used at large scale without any harm to the living environment. The synthesis of another transition metal oxide known as Co3O4 is also important due to its potential usage in the material science, physics and chemistry fields. Co3O4 has been studied extensively due to low cost, low toxicity, the most naturally abundant, high surface area, good redox, easily tunable surface and structural properties. These significant properties enable Co3O4 fruitful for developing variety of nanodevices. Co3O4 nanostructures have been focused considerably in the past decade due to their high electro-chemical performance, which is essential for developing highly sensitive sensor devices. I started my work with the synthesis of ZnO nanostructures with a focus to improve the amount of harvested energy by utilizing oxygen plasma treatment. Then I grow ZnO nanorods on different flexible substrates, in order to observe the effect of substrate on the amount of harvested energy. After that I worked on understanding the mechanism and causes of variation in the resulting output potential generated from ZnO nanorods. My next target belongs to an innovative approach in which AFM tip decorated with ZnO nanorods was utilized to improve the output energy. Then I investigated Co3O4 nanostructures though the effect of anions and utilized one of the nanostructure to develop a fast and reliable pH sensor. Finally to take the advantage of higher degree of redox chemistry of NiCo0O4 compared to the single phase of nickel oxide and cobalt oxide, a sensitive glucose sensor is developed by immobilizing glucose oxidase. However, there were problems with the mechanical robustness, lifetime, output stability and environmental adaptability of such devices, therefore more work is going on to find out new ways and means in order to improve the performance of fabricated nanogenerators and sensors.
|
265 |
Triboactive Low-Friction Coatings Based on Sulfides and CarbidesSundberg, Jill January 2014 (has links)
For sustainable development, it is highly important to limit the loss of energy and materials in machines used for transportation, manufacturing, and other purposes. Large improvements can be achieved by reducing friction and wear in machine elements, for example by the application of coatings. This work is focused on triboactive coatings, for which the outermost layer changes in tribological contacts to form so-called tribofilms. The coatings are deposited by magnetron sputtering (a physical vapor deposition method) and thoroughly chemically and structurally characterized, often theoretically modelled, and tribologically evaluated, to study the connection between the composition, structure and tribological performance of the coatings. Tungsten disulfide, WS2, is a layered material with the possibility of ultra-low friction. This work presents a number of nanocomposite or amorphous coatings based on WS2, which combine the low friction with improved mechanical properties. Addition of N can give amorphous coatings consisting of a network of W, S and N with N2 molecules in nanometer-sized pockets, or lead to the formation of a metastable cubic tungsten nitride. Co-deposition with C can also give amorphous coatings, or nanocomposites with WSx grains in an amorphous C-based matrix. Further increase in coating hardness is achieved by adding both C and Ti, forming titanium carbide. All the WS2-based materials can provide very low friction (down to µ<0.02) by the formation of WS2 tribofilms, but the performance is dependent on the atmosphere as O2 and H2O can be detrimental to the tribofilm functionality. Another possibility is to form low-friction tribofilms by tribochemical reactions between the two surfaces in contact. Addition of S to TiC/a-C nanocomposite coatings leads to the formation of a metastable S-doped carbide phase, TiCxSy, from which S can be released. This enables the formation of low-friction WS2 tribofilms when a Ti-C-S coating is run against a W counter-surface. Reduced friction, at a moderate level, also occurs for steel counter-surfaces, likely due to formation of beneficial iron sulfide tribofilms. The studied coatings, whether based on WS2 or TiC, are thus triboactive, with the ability to form low-friction tribofilms in a sliding contact.
|
266 |
Multi-scale nonlinear constitutive models using artificial neural networksKim, Hoan-Kee 12 March 2008 (has links)
This study presents a new approach for nonlinear multi-scale constitutive models using artificial neural networks (ANNs). Three ANN classes are proposed to characterize the nonlinear multi-axial stress-strain behavior of metallic, polymeric, and fiber reinforced polymeric (FRP) materials, respectively. Load-displacement responses from nanoindentation of metallic and polymeric materials are used to train new generation of dimensionless ANN models with different micro-structural properties as additional variables to the load-deflection. The proposed ANN models are effective in inverse-problems set to back-calculate in-situ material parameters from given overall nanoindentation test data with/without time-dependent material behavior. Towards that goal, nanoindentation tests have been performed for silicon (Si) substrate with/without a copper (Cu) film. Nanoindentation creep test data, available in the literature for Polycarbonate substrate, are used in these inverse problems. The predicted properties from the ANN models can also be used to calibrate classical constitutive parameters. The third class of ANN models is used to generate the effective multi-axial stress-strain behavior of FRP composites under plane-stress conditions. The training data are obtained from coupon tests performed in this study using off-axis tension/compression and pure shear tests for pultruded FRP E-glass/polyester composite systems. It is shown that the trained nonlinear ANN model can be directly coupled with finite-element (FE) formulation as a material model at the Gaussian integration points of each layered-shell element. This FE-ANN modeling approach is applied to simulate an FRP plate with an open-hole and compared with experimental results. Micromechanical nonlinear ANN models with damage formulation are also formulated and trained using simulated FE modeling of the periodic microstructure. These new multi-scale ANN constitutive models are effective and can be extended by including more material variables to capture complex material behavior, such as softening due to micro-structural damage or failure.
|
267 |
Probing Mechanical Properties Of Molecular Crystals with Nanoindentation : Applications to Crystal EngineeringMishra, Manish Kumar January 2015 (has links) (PDF)
Crystal engineering is widely applied in the design of new solids with desired physical and chemical properties based on an understanding of intermolecular interactions in terms of crystal packing. The understanding of such structure-property correlations increased my interest in the modulation of macroscopic properties of solid compounds. Establishing connections between structure and macroscopic properties is a classical aspect of materials science and engineering. With the advent of the nanoindentation technique, it is now possible to make such a link between micro-level structures with mechanical properties of molecular solids - in other words, between chemistry and engineering. Nanoindentation is a quantitative probe for the assessment of mechanical behavior of small volume materials. In this technique, applied load and indenter depth penetration are measured simultaneously for a molecular crystal specimen, with high precision and resolution. From this data, one can obtain the elastic modulus and hardness of molecular crystals. Being able to accordingly assess the relative strengths of intermolecular interactions, such a technique has become relevant to the subject of crystal engineering. We have used nanoindentation to study the packing anisotropy of molecular crystals and to establish structure-property relationships. This thesis demonstrates that nanoindentation is a state-of-the-art technique to probe the mechanical properties of molecular crystals and assists the development of the subject of crystal engineering towards property design.
Chapter 1 gives an overview of the development of crystal engineering from solid state organic chemistry and a brief introduction of the nanoindentation technique which has become relevant to the subject of crystal engineering to establish structure-property relationships. The study of the mechanical properties of molecular solids as a function of their crystal structures is a very active branch of crystal engineering.
Chapter 2 explores the insights of well-known odd-even alternative mechanical, physical and thermal properties of α,ω-alkanedicarboxylic acids such as elastic modulus, hardness and melting temperature through nanoindentation technique. These properties are well correlated with their crystal structure packing. The odd acids were found to be softer and lower melting temperature as compared to the even ones, possibly due to the strained molecular conformations in the odd acids in easier plastic deformation. Shear sliding of molecular layers past each other during indentation is a key to the mechanism for plastic deformation in the molecular crystals. Relationships between structural features such as interplanar spacing, interlayer separation distance, molecular chain length and signatures of the nanoindentation responses, discrete displacement bursts have also been discussed in this chapter.
Chapter 3 explores the use of the nanoindentation measurement as a signature response to study the microstructure that exists in a single crystal of organic solids. The analysis of microstructure through X-ray crystallography can be misleading. This is because crystal structures as determined from the single-crystal diffractometer data represent only space- and time-averaged structures. Thus, due to higher spatial resolution of the nanoindentation technique compared to X-ray diffraction (XRD) it become a local probe, which allows for discrimination between different microstructure or domains in the single crystal.
Chapter 4 attempts to explore an understanding of the underlying relationship between crystal structure and the mechanical properties of molecular crystals which are relevant for the systematic design of organic solids with a desired combination of mechanical properties such as elasticity and hardness through crystal engineering. Elastic properties in molecular solids are largely determined by the isotropy of crystal packing. By using the techniques of crystal engineering, seven halogenated N-benzylideneanilines (Schiff bases) crystals have been systematically designed and observed common underlying structural features which lead to high flexibility and elasticity. Elasticity in those crystals arises from a criss-cross packing of molecular tapes in isotropic structures with energetically comparable halogen bonds (Cl···Cl or Cl···Br). The chapter also demonstrates that the solid solution strengthening can be effectively employed to engineer hardness of organic solids. High hardness can be attained by increasing lattice resistance to shear sliding of molecular layers during plastic deformation.
Chapter 5 demonstrates the broad applications of mechanical properties of molecular solids in the context of the pharmaceutical industry, which can be understood through nanoindentation. Crystal engineering is applied in designing active pharmaceutical ingredients (APIs) so as to obtain materials that exhibit optimum combinations of important physicochemical properties such as solubility, dissolution rate, and bioavailability. In the context of industrial-scale pharmaceutical manufacturing, it can also be used to tune mechanical properties such as grindability and tabletability, which often determine the processing steps that are adopted. Hence, there is always interest in the crystal structure−mechanical property correlations of APIs. The study of the mechanical properties of polymorphic drugs is an important for developing an understanding of their stability in the solid state.
Overall, the main aim of this thesis is to explore an understanding for establishing structure-mechanical properties correlations of molecular crystals with recent advances in the nanoindentation technique and to gain knowledge for the design and synthesis of new materials using the crystal engineering approach. Nanoindentation of molecular crystals provides insights related to crystal packing, interaction characteristics, polymorphism and topochemistry.
|
268 |
Nanocompósitos de PLLA com nanotubos de carbonos: propriedades mecânicas, tribológicas e térmicas / Nanocomposites PLLA with carbon nanotubes: mechanical, tribological and thermal propertiesBertholdi, Jonas 17 February 2012 (has links)
Made available in DSpace on 2016-12-08T17:19:16Z (GMT). No. of bitstreams: 1
Capitulo - 1.pdf: 90391 bytes, checksum: 33e046a11ac6f08cddd52a66b5806583 (MD5)
Previous issue date: 2012-02-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this study PLLA nanocomposites have been produced with 0.25 and 0.50 (wt%) multiwall carbon nanotubes (MWCNT). The MWCNT were dispersed in solution using two different ways: with and without high energy sonication. The mechanical results were evaluated by means of nanoindentation and microhardness, the thermal results by differential scanning calorimetric, thermogravimetric analysis and the tribological results by pin-on-disc tests with two different normal loads (5 and 10N). It was observed a reduction of 4.2% in elastic modulus of neat PLLA produced by sonication. The largest increases in the modulus were obtained with a concentration of 0.25% (6.7% and 5.4% for sonication and without it). The microhardness showed an increase of 18% for the sample with 0.50%, regardless of treatment. It is also presented the results obtained by nanohardness which differ from microhardness. The sample with 0.25% had the lowest volume loss in most conditions tested in the pin-ondisk. Most of the samples, with normal load of 10N, showed a lower wear rate than the same sample with a load of 5N. The friction coefficient showed a high dispersion of data allowing only analyzes the trends. The wear mechanisms observed adhesion and abrasion, vary in their intensity after the addition of MWCNT. There is evidence that sonication causes a portion of the material to be removed through tribochemical wear. The glass transition temperature did not show variations. It was observed a progressive reduction in the onset temperature of degradation by thermogravimetric analysis with the incorporation of MWCNT. It was not obtained an increase in crystallinity with incorporation of MWCNT. / Neste trabalho produziu-se nanocompósitos de PLLA com 0,25% e 0,50% (m/m) de nanotubos de carbono de paredes múltiplas (NCPM). A dispersão dos NCPM foi feita em solução de duas maneiras distintas, sendo uma utilizando sonificação de alta energia e outra sem. Avaliou-se o módulo de elasticidade por nanoindentação, o comportamento térmico por calorimetria exploratória e pela análise termogravimetria e as propriedades tribológicas dos nanocompósitos e do polímero puro através do ensaio de pino sobre disco com cargas de 5 e 10N. Pode-se observar uma queda de 4,2% no módulo de elasticidade no PLLA puro produzido com a sonificação. Os maiores aumentos no módulo foram obtidos com a concentração de 0,25% (5,4% e 6,7% para as sem sonificação e com sonificação). A microdureza apresenta um aumento até 18% para a amostra com 0,50%, independente do tratamento. Também se apresentam os resultados obtidos pela nanodureza que diferem dos obtidos da microdureza. A amostra com 0,25% obteve o menor volume removido na maioria das condições testadas no ensaio pino e disco. O coeficiente de atrito apresentou grande dispersão permitindo somente analisar as suas tendências. Os mecanismos de desgaste observados, adesão e abrasão, variam de intensidade com a incorporação de NCPM. Há indícios que a sonificação faz com que parte do material removido seja através do desgaste triboquímico. A temperatura de transição vítrea não apresentou variações. Foi verificada uma redução progressiva na temperatura de início de degradação por análise termogravimétrica com a adição dos NCPM. Não foi notada uma variação significativa na cristalinidade com
incorporação de NCPM.
|
269 |
Compósitos de nanotubos de carbono e uma matriz epóxi-acrilato fotocurável: propriedades mecânicas, térmicas e tribológicas / Composites of multiwall carbon nanotubes and a photocurable matrix epoxy-acrylate: mechanical, thermal and tribologicalSantos, Marcos Nunes dos 26 February 2010 (has links)
Made available in DSpace on 2016-12-08T17:19:34Z (GMT). No. of bitstreams: 1
RESUMO.pdf: 12083 bytes, checksum: a5f4ea45fd2de1b6b09e1ac6c1fa5377 (MD5)
Previous issue date: 2010-02-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this study we used an epoxy-acrylate fotocurável reinforced with multi walls carbon nanotubes (MWCN) in proportions of 0.25% wt/wt and NCPM 0.75% wt/wt MWCN. For the cure of nanocomposites as thin films for periods of 12 and 24 hours, manufactured from a chamber of ultraviolet radiation (UV-A). Aiming to analyze aspects related to properties mechanical, thermal and tribological adding NCPM in an epoxy-acrylate fotocurável were evaluated: elastic modulus, hardness, storage modulus, loss modulus, damping, coefficient of friction, wear rate and temperature of transition glass. In addition to these properties described previously, there was also the behavior of these nanocomposites related to thermal aspects (cure degree and thermal stability) and morphology of regions of fracture and wear parts. Tests performed were: nanoindentation, microhardness, dynamicmechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), test pin-on-disk and profilometry. The present results have shown gains of 67% in modulus, hardness at 77%, 154% in the storage module, 38% of the loss modulus, 24% reduction in friction and 24% reduction in the rate of wear with the addition of NC's in the nanocomposite studied. / Neste trabalho foi utilizado uma resina epóxi-acrilato fotocurável reforçada com nanotubos de carbono de paredes múltiplas (NCPM), nas proporções de 0,25% m/m NCPM e 0,75% m/m NCPM. Para a cura dos nanocompósitos na forma de filmes finos , por períodos de 12 e 24 horas, fabricou-se uma câmara de radiação ultra-violeta (UV-A). Buscando-se analisar aspectos ligados a propriedades mecânicas, térmicas e tribológicas da adição de NCPM em uma resina epóxi-acrilato fotocurável foram avaliados: módulo de elasticidade, dureza, módulo de armazenamento, módulo de perda, amortecimento, coeficiente de atrito, taxa de desgaste e temperatura de transição vítrea. Além dessas propriedades descritas anteriormente, verificou-se também o comportamento desses nanocompósitos relacionados a aspectos térmicos (grau de cura e estabilidade térmica) e aspectos morfológicos de regiões de fratura e regiões de desgaste. Os ensaios realizados foram: nanoindentação, microdureza, análise dinâmico-mecânica (DMA), calorimetria exploratória diferencial (DSC), análise termogravimétrica (TGA), microscopia eletrônica de varredura (MEV), ensaio pino-disco e perfilometria. Os resultados obtidos nesse trabalho comprovaram ganhos de 67% no módulo de elasticidade, 77% na dureza, 154% no módulo de armazenamento, 38% no módulo de perda, 24% de redução do coeficiente de atrito e redução de 24% na taxa de desgaste com a adição de NC s no nanocompósito em estudo.
|
270 |
Nano Porous Alumina Based Composite Coating for Tribological ApplicationsYadav, Arti January 2014 (has links) (PDF)
Anodisation is a surface treatment process, commonly used to form a protective oxide coating on the surface of metals like aluminium. Anodised coatings, being grown out of the base metal have excellent interface strength but are porous and brittle. Porosity of the coating reduces the hardness and the brittle nature of the oxide induces cracking. In practice, the pores are typically filled with organic dye and sealed. Under certain controlled electrochemical conditions, anodisation results in a highly ordered hexagonal porous structure in pure aluminium. In this work, we explore the possibility of using this ordered porous alumina to form a novel metal nanocomposite as a tribological coating. By optimizing the nonporous structure and tuning the electrodeposition process, we uniformly filled the ordered pores with copper. We have measured the hardness of the resulting ordered and aligned nanocomposite. We explore the possibility of using this composite coating for tribological applications by carrying out some preliminary reciprocating wear test.
Ordered porous alumina layer is formed by a two-step anodisation process. By optimizing the anodisation conditions, we control the thickness of the coating and the pore size. The interface of the porous structure and aluminium substrate is defined by a non-conducting dense barrier oxide layer. However, to deposit metal into the pores, a conducting path should be established through the barrier layer. One possibility is to etch out the bottom of the pores at the cost of the interface strength and losing out on the main advantage of anodised coatings. To be able to fill metal without this sacrifice, we utilised the dendritic structure in the barrier layer formed by a step-wise reduction of voltage towards the end of anodisation process. Optimisation of this dendritic structure led to uniform deposition of metal into pores, achieved by pulsed electrodeposition. In pulse lectrodeposition, a positive pulse is applied to remove accumulated charge near to the bottom of pores, followed by a negative pulse to deposit metal and a delay to allow diffusion of ions. By optimising the pulse shape and duration, we have achieved uniform growth of metal into pores. Further, monitoring the deposition current helped us to identify and control different phases of growth of the nanowire.
The properties of the porous alumina and the nanocomposite were measured by nanoindentation. The deformation characteristics were obtained by observing the indents in a FE-SEM. We find that dendritic modification of interface has very little effect on the hardness of the porous alumina layer. We also found that the porous alumina deformed either by compaction or by forming circumferential and radial cracks. When copper is filled in the nano pores, the hardness increased by 50% and no circumferential cracks were found up to the load of 10 mN for a film thickness of about 1 µm. Coefficient of friction of the coating reciprocated against steel in dry condition is found to be around 0.4. Minimal wear was observed from the SEM images of wear track.
In summary, a novel nanocomposite coating with ordered porous alumina as matrix embedded with aligned metal nano rods has been developed. This was achieved by optimally modifying the barrier layer without sacrificing the interfacial strength. Uniform coating has been achieved over an area of 10 mm x 10 mm. The coating is found to have high hardness and high wear resistance.
|
Page generated in 0.0516 seconds