• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 14
  • 11
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 114
  • 31
  • 28
  • 21
  • 14
  • 13
  • 13
  • 11
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Determining neighbouring aminoacids impact on protein sequencing with nanopores using Molecular Dynamics

Freedman, Victor January 2024 (has links)
One focus goal that science always works towards is an understanding of biological structures, with proteins being one of the main research goals. Sequencing proteins is currently a time-exhausting task, so focus is being put on trying to use nanopores in a similar way as in DNA sequencing for proteins. In this report, the neighbouring amino acids in the same peptide as the amino acid being sequenced are varied and the change in ionic current from the pore based on the neighbouring amino acids is analysed. This was done by using Molecular Dynamics program NAMD. A peptide was placed in the center of different silicon nitride pore structures inside a water box with ions and was simulated with an added electric field. The drop in current was checked for 4 different peptide systems and one check for the empty pores. The results presented in the report show that changing the neighbouring amino acids increases the current measured, therefore making the current blocking worse when mixing nearby amino acids. However, the differences are very small and similar amino acids give wildly different values. A larger evaluation with more computational power seems reasonable for a more definitive result.
82

Water and Ions Dynamics in Modified Hydrophobic Si3N4 Nanopores for Protein Sequencing

Tabasso, Fabrizio January 2024 (has links)
This thesis presents a computational study of water and ion dynamics in modified hydrophobic silicon nitride (Si3N4) nanopores, aimed at enhancing protein sequenc- ing technologies. By employing molecular dynamics (MD) simulations, the research investigates the wetting-dewetting behavior within nanopores as an indirect measure of amino acid residue hydrophobicity, focusing on how post-translational modifications (PTMs) of lysine, particularly the acetylation of lysine residues, influence nanopore hydrophobicity and ionic conductance. The study reveals that nanopore radius and hydrophobicity significantly affect water and ion permeation, with smaller nanopores oscillating between open and closed states, while larger ones remain open.  Using umbrella sampling and the Weighted Histogram Analysis Method (WHAM), the potential of mean force (PMF) for potassium (K+), chloride (Cl−), and water within the nanopores was determined, showing distinct PMF profiles based on lysine and acetyl- lysine presence. The modulation of ionic currents as a tool for protein sequencing was explored, demonstrating that different amino acid residues affect ionic currents by par- tially blocking the pore and altering local permeability, thereby enabling differentiation based on size, shape, charge, and hydrophobicity.  The findings suggest that silicon nitride pore hydrophobicity can be tailored for nanopore sequencing, correlating changes in ionic currents with amino acid residue translocation. This research enhances the understanding of interactions within nanopore environments, potentially leading to more precise nanopore-based sequencing methods.
83

Zum Einfluss elektrochemischer Doppelschichten auf den Stofftransport in nanoskaligen Elektrolytsystemen:

Kubeil, Clemens 28 February 2017 (has links) (PDF)
Es besteht enormes Interesse den Stofftransport in nanoskaligen Systemen zu verstehen und selektiv zu steuern, um analytische und synthetische Anwendungen zu entwickeln, aber auch um die physiologischen Prozesse lebender Zellen zu entschlüsseln. Im Rahmen dieser Arbeit wurde der Einfluss der elektrochemischen Doppelschicht an ausgewählten nanoskaligen Elektrolytsystemen untersucht. Die Gleichrichtung von Ionenströmen (engl. Ionic Current Rectification ICR) in Nanoporen mit einer Oberflächenladung äußert sich in einer gekrümmten Strom-Spannungs-Kurve. Die Überlappung von innerem und äußerem Potential ist dabei hinsichtlich der Ionenverteilung und somit der Porenleitfähigkeit einander verstärkend oder gegenläufig. Auf Grundlage dieses Mechanismus wurde die Gleichrichtung bei einem sehr großen Verhältnis von Porenöffnung zu Debye-Länge erklärt. Ferner wurde mittels der eingeführten relativen Leitfähigkeit κ´ die verschiedenen Leitfähigkeitszustände in Abhängigkeit der Elektrolytkonzentration und Temperatur sichtbar gemacht und Implikationen für Sensoranwendungen wie z.B. dem resistiven Pulszähler zur Partikelanalyse abgeleitet. Es wurde ein numerisches Modell basierend auf dem Poisson-Nernst-Planck-Gleichungssystem entwickelt, um die Translokation eines Nanopartikels durch eine konische Nanopore bei einer geringen Leitsalzkonzentration zu beschreiben. Neben dem klassischen Volumenausschluss-Effekt tritt zusätzlich ein Gleichrichtungseffekt (ICR-Effekt) in der Pore auf. Eine Analyse zur Entflechtung von Partikelgröße und Partikelladung aus der Pulshöhe und Pulsform wurde erfolgreich durchgeführt. Wie der Stofftransport durch eine Oberflächenladung auf dem umgebenden Material einer Nanoelektrode beeinflusst wird, wurde anhand des voltammetrischen Verhaltens diskutiert. An sehr kleinen Elektroden (< 10 nm) ist demnach der Einfluss der elektrochemischen Doppelschicht auf die Strom-Spannungs-Kurve besonders groß und kann auch bei Vorliegen eines hohen Leitsalzüberschusses nicht vernachlässigt werden. In leitsalzfreien Elektrolyten sind die gefundenen Effekte so deutlich, dass sie auch an größeren Elektroden experimentell zweifelsfrei festgestellt worden sind. / There is an enormous interest in understanding and selectively controlling the material transport in nanoscale systems to develop analytical and synthetic applications, but also to decipher the physiological processes of living cells. Within this thesis, the influence of the electrochemical double layer on selected nanoscale electrolyte systems was studied. Ionic Current Rectification (ICR) in nanopores carrying a surface charge manifests itself in a non-linear current-voltage-curve. The overlap of interior and exterior potential is cumulative or opposing with regard to the ion distribution and therefore the pore conductivity. Based on this mechanism, ICR for very large ratios of pore size and Debye length was explained. Furthermore, the different conducting states as a function of electrolyte concentration and temperature were visualized by introducing the relative conductivity κ´ and hence implications for sensor applications such as the resistive pulse sensor have been deduced. A numerical model based on the Poisson-Nernst-Planck-equations was developed to describe the translocation of a nanoparticle through a conical nanopore at a low electrolyte concentration. An additional rectification effect (ICR effect) occurs in the pore beside the conventional volume exclusion effect. An analysis was successfully performed to deconstruct the particle size and particle charge from the pulse height and shape. The material transport is affected by a surface charge on the shrouding material of nanoelectrodes as it was discussed by means of the voltammetric behaviour. The influence of the electrochemical double layer on the current-voltage-curve is particularly large at very small electrodes (< 10 nm) and cannot be neglected even at a high excess of supporting electrolyte. The observed effects were pronounced in unsupported electrolytes, so that they could be clearly detected experimentally at even larger electrodes.
84

Zum Einfluss elektrochemischer Doppelschichten auf den Stofftransport in nanoskaligen Elektrolytsystemen:: Leitfähigkeit von Nanoporen und Voltammetrie an Nanoelektroden

Kubeil, Clemens 26 October 2016 (has links)
Es besteht enormes Interesse den Stofftransport in nanoskaligen Systemen zu verstehen und selektiv zu steuern, um analytische und synthetische Anwendungen zu entwickeln, aber auch um die physiologischen Prozesse lebender Zellen zu entschlüsseln. Im Rahmen dieser Arbeit wurde der Einfluss der elektrochemischen Doppelschicht an ausgewählten nanoskaligen Elektrolytsystemen untersucht. Die Gleichrichtung von Ionenströmen (engl. Ionic Current Rectification ICR) in Nanoporen mit einer Oberflächenladung äußert sich in einer gekrümmten Strom-Spannungs-Kurve. Die Überlappung von innerem und äußerem Potential ist dabei hinsichtlich der Ionenverteilung und somit der Porenleitfähigkeit einander verstärkend oder gegenläufig. Auf Grundlage dieses Mechanismus wurde die Gleichrichtung bei einem sehr großen Verhältnis von Porenöffnung zu Debye-Länge erklärt. Ferner wurde mittels der eingeführten relativen Leitfähigkeit κ´ die verschiedenen Leitfähigkeitszustände in Abhängigkeit der Elektrolytkonzentration und Temperatur sichtbar gemacht und Implikationen für Sensoranwendungen wie z.B. dem resistiven Pulszähler zur Partikelanalyse abgeleitet. Es wurde ein numerisches Modell basierend auf dem Poisson-Nernst-Planck-Gleichungssystem entwickelt, um die Translokation eines Nanopartikels durch eine konische Nanopore bei einer geringen Leitsalzkonzentration zu beschreiben. Neben dem klassischen Volumenausschluss-Effekt tritt zusätzlich ein Gleichrichtungseffekt (ICR-Effekt) in der Pore auf. Eine Analyse zur Entflechtung von Partikelgröße und Partikelladung aus der Pulshöhe und Pulsform wurde erfolgreich durchgeführt. Wie der Stofftransport durch eine Oberflächenladung auf dem umgebenden Material einer Nanoelektrode beeinflusst wird, wurde anhand des voltammetrischen Verhaltens diskutiert. An sehr kleinen Elektroden (< 10 nm) ist demnach der Einfluss der elektrochemischen Doppelschicht auf die Strom-Spannungs-Kurve besonders groß und kann auch bei Vorliegen eines hohen Leitsalzüberschusses nicht vernachlässigt werden. In leitsalzfreien Elektrolyten sind die gefundenen Effekte so deutlich, dass sie auch an größeren Elektroden experimentell zweifelsfrei festgestellt worden sind. / There is an enormous interest in understanding and selectively controlling the material transport in nanoscale systems to develop analytical and synthetic applications, but also to decipher the physiological processes of living cells. Within this thesis, the influence of the electrochemical double layer on selected nanoscale electrolyte systems was studied. Ionic Current Rectification (ICR) in nanopores carrying a surface charge manifests itself in a non-linear current-voltage-curve. The overlap of interior and exterior potential is cumulative or opposing with regard to the ion distribution and therefore the pore conductivity. Based on this mechanism, ICR for very large ratios of pore size and Debye length was explained. Furthermore, the different conducting states as a function of electrolyte concentration and temperature were visualized by introducing the relative conductivity κ´ and hence implications for sensor applications such as the resistive pulse sensor have been deduced. A numerical model based on the Poisson-Nernst-Planck-equations was developed to describe the translocation of a nanoparticle through a conical nanopore at a low electrolyte concentration. An additional rectification effect (ICR effect) occurs in the pore beside the conventional volume exclusion effect. An analysis was successfully performed to deconstruct the particle size and particle charge from the pulse height and shape. The material transport is affected by a surface charge on the shrouding material of nanoelectrodes as it was discussed by means of the voltammetric behaviour. The influence of the electrochemical double layer on the current-voltage-curve is particularly large at very small electrodes (< 10 nm) and cannot be neglected even at a high excess of supporting electrolyte. The observed effects were pronounced in unsupported electrolytes, so that they could be clearly detected experimentally at even larger electrodes.
85

Theoretical Study of Voltage-driven Capture and Translocation Through a Nanopore : From Particles to Long Flexible Polymers

Qiao, Le 03 June 2021 (has links)
Voltage-driven translocation, the core concept of nanopore sensing for biomolecules, has been extensively studied in silico and in vitro over the past two decades. However, the theories of analyte capture are still not complete due to the complex dynamics resulting from the coupling of multiple physical processes such as di usion, electrophoresis, and electroosmotic flow. In this thesis, I build and design translocation simulations for analytes ranging from point-like particles to rod-like molecules and long flexible polymers. The primary goal is to test, clarify and complete the existing capture theories. For example, we revisit and revise the existing definitions of the capture radius, clarify the concept of depletion zones, and investigate the impacts of the flat field near the pore. Earlier theories of translocation underestimate the importance of the electric field out- side the nanopore. In our work, we analyze the non-equilibrium dynamics during the cap- ture process originating from the converging field lines, i.e., rod orientation and polymer deformation. We characterize the rod orientation and quantify its impact on capture time both with and without Electrohydrodynamic interactions. We investigate the polymer chain deformation and calculate the translocation time by taking the electric field outside the nanopore into account as opposed to the conventional simulation approaches. Besides nanopore sensing, there are many undiscovered possibilities for nanopore trans- location technologies. We test two proof-of-concept ideas in which we suggest to use capture and translocation to separate molecules of di erent physical properties. For example, we show how one could selectively capture particles sharing the same mobility but di erent di usion coe cients using a pulsed field. Moreover, we demonstrate that it is possible to build a ratchet using pulsed fields and a nanopore to change the concentration ratios of a polymer mixture of different sized polyelectrolytes.
86

Translocation de biopolymères à travers des pores naturels ou artificiels / Translocation of biopolymers through biological or artificial nanopores

Auger, Thomas 31 October 2016 (has links)
La translocation de biopolymères à travers un nanopore intervient dans de nombreux processus biologiques et technologiques, comme le transport nucléocytoplasmique dans le pore nucléaire des cellules eucaryotes, la sécrétion de protéines, le séquençage rapide de l’ADN ou l’électrophorèse capillaire.Nous proposons une technique optique en molécule unique originale pour l’étude de la translocation de biopolymères à travers un nanopore basée sur l’effet Zero-Mode Waveguide. Nous nous sommes intéressés au passage d’ADN double-brin de plusieurs tailles, d’ADN simple-brin et d’ARN, entraînés par un flux à travers une membrane nanoporeuse track-etched. Nous montrons qu’il existe un flux critique régissant le passage des biopolymères indépendant du rayon des pores ainsi que de la taille des biopolymères et de leur nature, conformément aux prédictions théoriques de Brochard et de Gennes.Le pore nucléaire est un nanopore biologique responsable du transport sélectif entre le noyau et lecytoplasme des cellules. Nous avons étudié l’influence de la concentration en importinBeta1 – une protéine nécessaire au transport nucléocytoplasmique – sur l’organisation du canal central du pore nucléaire deXenopus laevis en mesurant la diffusion de molécules de Dextran fluorescentes à travers celui-ci. Nous observons une ouverture du canal central à basse concentration suivi d’un rétrécissement de celui-ci à plus forte concentration. Cette évolution du rayon du canal central avec la concentration en importin Beta1est conforme aux modèles en champ moyen de Opferman et coll. et de Ando et coll. et aux observations expérimentales sur des systèmes reconstitués in vitro de Lim et coll. et Zahn et coll. / The translocation of biopolymers through a nanopore is a feature common to many biological andtechnological processes such as the nucleocytoplasmic transport through the nuclear pore complex(NPC), protein secretion, fast DNA sequencing or capillary electrophoresis.We have developed an original single molecule optical detection technique for the study of biopolymerstranslocation through a nanopore based on the Zero-Mode Waveguide effect. We studied thepassage of double stranded DNA of different sizes, of single stranded DNA and of double-stranded RNAdriven by a flux through track-etched nanoporous membranes. We demonstrate that translocation isgoverned by a critical flux independent of both biopolymer size and nature and of the pore radius inagreement with the theoretical predictions of Brochard and de Gennes.The NPC is a biological nanopore responsible for the selective transport between cytoplasm andnucleus in cells. We studied the influence of importinBeta1 concentration – a protein involved in the nucleocytoplasmictransport – on the structure of the central channel of the NPC of Xenopus laevis byassessing the diffusion of fluorescently labeled Dextran molecules through the NPC. We observe anopening of the central channel at low concentration followed by a shrinking at higher concentrationin importinBeta1 in agreement with mean-field models from Opferman et al. and Ando et al. and withexperiments on biomimetic in vitro systems from Lim et al. and Zahn et al.
87

Transcriptome Analysis of MRG-1-deficient Caenorhabditis elegans animals using short and long read sequencing

Blume, Alexander 21 July 2022 (has links)
Das Schicksal einer differenzierten Zelle wird durch epigenetische Grenzen bestimmt und mittels Schutzmechanismen bewahrt, wodurch die Reprogrammierung in andere Zelltypen verhindert wird. In dieser Studie haben wir ein Chromatin-regulierendes Protein, das konservierte MORF4-Verwandte-Gen (MRG) Protein MRG-1, als Barriere für die Reprogrammierung von Zellen in Caenorhabditis elegans (C. elegans) identifiziert. RNAi gegen MRG-1 ermöglicht es uns Keimzellen mittels Überexpression des Neuronen-induzierenden Transkriptionsfaktors CHE-1 in neuronenartige Zellen umzuwandeln. Mittels ChIP-seq fanden wir heraus, dass MRG-1 unterschiedliche DNA Bindungsstellen in den Keimbahnen und somatischen Geweben von C. elegans aufweist. Wir konnten zeigen, dass MRG-1 besonders stark am Genkörper angereichert ist und sich hauptsächlich auf Genen befindet, welche die aktive Histonmarkierung H3K36me3 tragen. Die Charakterisierung der Protein-Protein-Interaktionspartner von MRG-1 mittels Co-IP/MS ergab, dass MRG-1 mit der Histon-H3K9-Methyltransferase SET-26 und der b-gebundenen N-Acetylglucosamin Transferase OGT-1 zusammenarbeitet, um die Umwandlung von Keimzellen in Neuronen zu verhindern. Basierend auf RNA-Seq Experimenten in mrg-1-Mutanten und Wildtyp konnten wir weitreichende Veränderungen der Genexpression mit Auswirkung auf Signalwege wie den Notch Signalweg enthüllen, welcher bekanntermaßen die Zelltyp-Reprogrammierung fördern. Mittels Long-Read basiertem RNA-seq in mrg-1-Mutanten und der Integration entsprechender ChIP-seq Daten habe ich die Beteiligung von MRG-1 am prä-mRNA-Spleißen in C. elegans gezeigt, analog zum Säugetierortholog MRG15. Diese Ergebnisse weisen darauf hin, dass MRG-1 durch die Regulierung des Chromatins und die Sicherstellung des korrekten Spleißens die Expressionsniveaus kritischer Gene und Signalwege aufrechterhält, um eine ordnungsgemäße Keimbahnentwicklung zu gewährleisten und das Schicksal der Keimzellen zu schützen. / Das Schicksal einer differenzierten Zelle wird durch epigenetische Grenzen bestimmt und mittels Schutzmechanismen bewahrt, wodurch die Reprogrammierung in andere Zelltypen verhindert wird. In dieser Studie haben wir ein Chromatin-regulierendes Protein, das konservierte MORF4-Verwandte-Gen (MRG) Protein MRG-1, als Barriere für die Reprogrammierung von Zellen in Caenorhabditis elegans (C. elegans) identifiziert. RNAi gegen MRG-1 ermöglicht es uns Keimzellen mittels Überexpression des Neuronen-induzierenden Transkriptionsfaktors CHE-1 in neuronenartige Zellen umzuwandeln. Mittels ChIP-seq fanden wir heraus, dass MRG-1 unterschiedliche DNA Bindungsstellen in den Keimbahnen und somatischen Geweben von C. elegans aufweist. Wir konnten zeigen, dass MRG-1 besonders stark am Genkörper angereichert ist und sich hauptsächlich auf Genen befindet, welche die aktive Histonmarkierung H3K36me3 tragen. Die Charakterisierung der Protein-Protein-Interaktionspartner von MRG-1 mittels Co-IP/MS ergab, dass MRG-1 mit der Histon-H3K9-Methyltransferase SET-26 und der b-gebundenen N-Acetylglucosamin Transferase OGT-1 zusammenarbeitet, um die Umwandlung von Keimzellen in Neuronen zu verhindern. Basierend auf RNA-Seq Experimenten in mrg-1-Mutanten und Wildtyp konnten wir weitreichende Veränderungen der Genexpression mit Auswirkung auf Signalwege wie den Notch Signalweg enthüllen, welcher bekanntermaßen die Zelltyp-Reprogrammierung fördern. Mittels Long-Read basiertem RNA-seq in mrg-1-Mutanten und der Integration entsprechender ChIP-seq Daten habe ich die Beteiligung von MRG-1 am prä-mRNA-Spleißen in C. elegans gezeigt, analog zum Säugetierortholog MRG15. Diese Ergebnisse weisen darauf hin, dass MRG-1 durch die Regulierung des Chromatins und die Sicherstellung des korrekten Spleißens die Expressionsniveaus kritischer Gene und Signalwege aufrechterhält, um eine ordnungsgemäße Keimbahnentwicklung zu gewährleisten und das Schicksal der Keimzellen zu schützen.
88

On-surface synthesis of porous graphene nanoribbons containing nonplanar [14]annulene pores

Ajayakumar, M. R., Di Giovannantonio, Marco, Pignedoli, Carlo A., Yang, Lin, Ruffieux, Pascal, Ma, Ji, Fasel, Roman, Feng, Xinliang 22 January 2024 (has links)
The precise introduction of nonplanar pores in the backbone of graphene nanoribbon represents a great challenge. Here, we explore a synthetic strategy toward the preparation of nonplanar porous graphene nanoribbon from a predesigned dibromohexabenzotetracene monomer bearing four cove-edges. Successive thermal annealing steps of the monomers indicate that the dehalogenative aryl-aryl homocoupling yields a twisted polymer precursor on a gold surface and the subsequent cyclodehydrogenation leads to a defective porous graphene nanoribbon containing nonplanar [14]annulene pores and five-membered rings as characterized by scanning tunneling microscopy and noncontact atomic force microscopy. Although the C–C bonds producing [14] annulene pores are not achieved with high yield, our results provide new synthetic perspectives for the on-surface growth of nonplanar porous graphene nanoribbons.
89

DNA origami structures for artificial light-harvesting and optical voltage sensing

Hemmig, Elisa Alina January 2018 (has links)
In the past decade, DNA origami self-assembly has been widely applied for creating customised nanostructures with base-pair precision. In this technique, the unique chemical addressability of DNA can be harnessed to create programmable architectures, using components ranging from dye or protein molecules to metallic nanoparticles. In this thesis, we apply DNA nanotechnology for developing novel light-harvesting and optical voltage sensing nano-devices. We use the programmable positioning of dye molecules on a DNA origami plate as a mimic of a light-harvesting antenna complex required for photosynthesis. Such a structure allows us to systematically analyse optimal design concepts using different dye arrangements. Complementary to this, we use the resistive-pulse sensing technique in a range of electrolytes to characterise the mechanical responses of DNA origami structures to the electric field applied. Based on this knowledge, we assemble voltage responsive DNA origami structures labelled with a FRET pair. These undergo controlled structural changes upon application of an electric field that can be detected through a change in FRET efficiency. Such a DNA-based device could ultimately be used as a sensitive voltage sensor for live-cell imaging of transmembrane potentials.
90

GaN Nanopore Arrays: Fabrication and Characterization

Wang, Yadong, Peng, Chen, Sander, Melissa, Chua, Soo-Jin, Fonstad, Clifton G. Jr. 01 1900 (has links)
GaN nanopore arrays with pore diameters of approximately 75 nm were fabricated by inductively coupled plasma etching (ICP) using anodic aluminum oxide (AAO) films as etch masks. Nanoporous AAO films were formed on the GaN surface by evaporating an Al film onto a GaN epilayer and subsequently anodizing the aluminum. To minimize plasma-induced damage, the template was exposed to CF4-based plasma conditions. Scanning electron microscopy (SEM) analysis shows that the diameter and the periodicity of the nanopores in the GaN were directly transferred from the original anodic alumina template. The pore diameter in the AAO film can be easily controlled by tuning the anodization conditions. Atomic force microscopy (AFM), photoluminescence (PL) and micro-Raman techniques were employed to assess the quality of the etched GaN nanopore surface. Such a cost-effective method to produce nano-patterned GaN template would be useful for growth and fabrication of III-Nitrides based nanostructures and photonic band gap materials. / Singapore-MIT Alliance (SMA)

Page generated in 0.2116 seconds