• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 206
  • 82
  • 36
  • 24
  • 12
  • 10
  • 7
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 494
  • 494
  • 136
  • 58
  • 47
  • 44
  • 31
  • 29
  • 29
  • 28
  • 27
  • 26
  • 25
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

An optical particle counter for the regular application onboard a passenger aircraft: instrument modification, characterization and results from the first year of operation / Ein optischer Partikelzähler für den regelmäßigen Einsatz auf einem Passagierflugzeug: Instrumentenmodifikation, Charakterisierung und Ergebnisse aus dem ersten Messjahr

Weigelt, Andreas 08 July 2015 (has links) (PDF)
To understand the contribution of aerosol particles to radiative forcing and heterogeneous chemical processes in the upper troposphere and lowermost stratosphere (UT/LMS), the knowledge of the particle size distribution is mandatory. Unfortunately, measurements in the UT/LMS are costly. Research aircrafts are expensive and thus their application is limited in time and space. Satellite remote sensing measurements provide a good temporal and spatial (horizontal) coverage, but only a limited vertical resolution and currently cannot resolve the particle size distribution. Therefore, within this thesis an optical particle counter (OPC) unit was modified for the application onboard a passenger long-haul aircraft within the CARIBIC project (www.caribic-atmospheric.com). The CARIBIC OPC unit provides regular and cost-efficient particle size distribution measurements of accumulation mode particles in the UT/LMS. In April 2010, the new OPC unit was installed for the first time onboard the Lufthansa Airbus A340 600 (D-AIHE) for the measurement of the volcanic ash cloud from the Eyjafjallajökull eruption (April to May 2010). Since June 2010 the OPC unit measures on usually four intercontinental flights per month the UT/LMS particle size distribution in the particle size range 125 to 1300 nm particle diameter. As the data acquisition stores the scattering raw signal and all housekeeping data as well, during the post flight data analysis the temporal- and size channel resolution can be flexible set. Within this work the data were analyzed with 32 size channels and 300 seconds. As aircraft-borne measurements are always time-consuming, the development of the OPC unit and the analysis routine, as well as its characterization and certification took more than two thirds of the total working time of this thesis. Therefore, the analysis of the data is limited to the first year of regular measurements until May 2011. Nevertheless, this dataset is sufficient to demonstrate the scientific relevance of these measurements. To validate the OPC data, a comparison to particle size distributions measured from board research aircraft was carried out. The analysis of the volcanic ash flights in April and May 2010 showed strongly enhanced particle mass concentrations inside the plumes and agreed in some regions very well to the particle mass concentration predicted by a dispersion model. A further case study shows the occurrence of a surprising large (1000 km) and high concentrated pollution plume over eastern Asia close to Osaka (Japan). Inside the plume the highest particle number- and mass concentrations measured with the OPC unit in the analysis period were observed (except volcanic ash flights). A detailed analysis of the in parallel measured trace gasses as well as meteorological- and LIDAR data showed, the observed plume originate from biomass burning and industrial emissions in eastern China. A third case study gives a first attempt of a mass closure/validation between the particle masses derived by the CARIBIC OPC unit and the CARIBIC impactor particle samples. First statistical analyses to the vertical, meridional, and seasonal variation of the accumulation mode particle size distribution and therefrom derived parameter indicate a stratospheric vertical increasing gradient for the particle number- and mass concentration. In general in the mid-latitude LMS the concentration of accumulation mode particles was found to be on average 120% higher than in the mid-latitude UT. The mid-latitude LMS particle size distribution shows a seasonal variation with on average 120% higher concentrations during spring compared to fall. This results can be explained with general dynamics in the stratosphere (Brewer-Dobson Circulation) and in the tropopause region (stratosphere-troposphere-exchange, STE). An anti-correlation of gaseous mercury to the stratospheric particle surface area concentration (R²=0.97) indicates that most likely stratospheric aerosol particles do act as a sink for gaseous mercury. Finally, two comparisons of the OPC data to data from satellite remote sensing and a global aerosol model underline the OPC potential and the benefits of creating an in situ measured reference dataset. / Um die Rolle von Aerosolpartikeln beim Strahlungsantrieb und der heterogenen chemischen Prozessen in der oberen Troposphäre und untersten Stratosphäre (OT/US) verstehen zu können, ist es unabdingbar die Partikelgrößenverteilung zu kennen. Messungen der Partikelgrößenverteilung in dieser Region sind allerdings aufwendig. Der Einsatz von Forschungsflugzeugen ist teuer und deshalb zeitlich und räumlich nur begrenzt. Satellitenmessungen bieten zwar eine gute zeitliche und räumliche (horizontal) Abdeckung, aber nur eine begrenzte vertikale Auflösung. Weiterhin können bisherige Satellitenmessungen die Partikelgrößenverteilung nicht auflösen. Im Rahmen dieser Arbeit wurde deshalb ein optischer Partikelzähler (OPC) Messeinschub für den Einsatz an Bord eines Langstrecken-Passagierflugzeugs aufgebaut (CARIBIC Projekt, www.caribic-atmospheric.com). Mit diesem Messeinschub kann regelmäßig und kosteneffizient die Partikelgrößenverteilung des Akkumulationsmodes in der OT/US gemessen werden. Im April 2010 wurde der neue OPC Einschub erstmals an Bord des Lufthansa Airbus A340-600 (D-AIHE) installiert um die Vulkanasche der Eyjafjallajökull Eruption (April bis Mai 2010) zu messen. Seit Juni 2010 misst der OPC Einschub auf durchschnittlich vier Interkontinentalflügen pro Monat die Partikelgrößenverteilung der OT/US im Größenbereich zwischen 125 und 1300 nm Partikeldurchmesser. Während des Fluges speichert die Datenerfassung alle Rohsignale ab und ermöglicht dadurch eine nutzerspezifische Datenauswertung nach dem Flug (z. B. Anzahl der Größenkanäle oder Zeitauflösung). Im Rahmen dieser Arbeit wurden die Daten mit 32 Größenkanälen und 300 Sekunden analysiert. Da fluggetragene Messungen immer sehr aufwendig sind, beanspruchte die Entwicklung des OPC Einschubs und des Analysealgorithmus, sowie die Charakterisierung und Zertifizierung mehr als zwei Drittel der Gesamtarbeitszeit dieser Arbeit. Daher ist die Analyse der Messdaten auf das erste Jahr der regulären Messungen bis Mai 2011 beschränkt. Dennoch ist dieser Datensatz geeignet um die wissenschaftliche Relevanz dieser Messungen zu demonstrieren. Um die OPC-Daten zu validieren, wurde ein Vergleich mit bisherigen OPC Messungen von Bord Forschungsflugzeugen durchgeführt. Die Analyse der Vulkanascheflüge im April und Mai 2010 zeigte in der Abluftfahne stark erhöhte Partikelmassekonzentrationen, welche in einigen Vergleichsregionen sehr gut mit der Vorhersage eines Disperionsmodells übereinstimmten. Eine weitere Fallstudie zeigt das Auftreten einer überraschend großen (1000 km) und hoch konzentrierten Abluftfahne über Ostasien nahe Osaka (Japan). In der Abluftfahne wurde die im Analysezeitraum höchste mit dem CARIBIC OPC gemessene Partikelanzahl- und Massenkonzentration beobachtet (ausgenommen Vulkanascheflüge). Eine detaillierte Analyse der parallel gemessenen Spurengase, sowie meteorologischer Daten und LIDAR Profile zeigte, dass die beobachtete Abluftfahne eine Mischung aus Biomasseverbrennungs- und Industrieabgasen aus Ost-China war. Eine dritte Fallstudie stellt einen ersten Versuch einer Massenschließung/Validierung zwischen der aus den CARIBIC OPC-Daten abgeleiteten Partikelmasse und der Partikelmasse aus CARIBIC Impaktorproben dar. Erste statistische Analysen zur vertikalen, meridionalen und saisonalen Variabilität der Partikelgrößenverteilung im Akkumulationsmode und daraus abgeleiteten Parametern zeigen einen vertikal ansteigenden Gradienten für die Partikelanzahl- und Massenkonzentration. Generell war in der US der mittleren Breiten die Konzentration von Akkumulationsmode Partikeln im Mittel um 120% höher als in der OT der mittleren Breiten. Weiterhin wurde in der US der mittleren Breiten eine jahreszeitliche Schwankung gefunden. Im Frühling war die mit dem OPC gemessene Partikelkonzentrationen im Mittel um 120% höher als im Herbst. Diese Befunde lassen sich mit der atmosphärischen Dynamik in der Stratosphäre (Brewer-Dobson Zirkulation) und in der Tropopausenregion (Stratosphäre-Troposphäre-Austauschprozesse) erklären. Eine gefundene negative Korrelation von gasförmigen Quecksilber mit der stratosphärischen Partikeloberflächenkonzentration (R²=0.97) ist ein starker Indikator dafür, dass in der US Aerosolpartikel eine Senke für gasförmiges Quecksilber darstellen. Zum Abschluss unterstreichen zwei Vergleiche der OPC-Daten mit Satellitenmessungen und Ergebnissen eines globalen Aerosolmodels das Potential und den Nutzen der CARIBIC OPC Daten als in-situ gemessenen Referenzdatensatz.
352

Physical and Chemical Characteristics of High-Tonnage Sorghum for an Extended Biomass Harvesting Season and Storage

Hartley, Brandon 03 October 2013 (has links)
Increasing differences in United States energy consumption and production has influenced the passing of legislation for biomass fuel production. To determine feasibility of energy crops for alternative fuels, research is needed to investigate dry matter yield over an extended harvest season; physical characteristics need to be described for potential harvesting problems; chemical characteristics described to identify selective harvest potential, optimal harvest timing, losses during harvest and storage; various harvest techniques investigated to identify potential cost savings; and impact of various storage techniques on quantity and quality of deliverable biomass. This study investigated the use of two sorghum varieties as a potential bioenergy feedstock where 20 ha were planted for three years. Standing crop samples were collected from August through January to document changes in dry matter yield, moisture, height, fiber content, proximate and ultimate analysis. The sorghum was cut and conditioned – as a two-cutting ratoon or single-cutting – using various mower-conditioners and windrow samples taken daily to determine best method of field drying, quantify dry matter loss and soil entrainment. Two storage methods were utilized – baling with wrapping in a tubeline, and chopping and compressing in bag using a modified cotton module builder – to determine best method of storage for reduced dry matter loss. The optimal time of harvest for maximum dry matter occurred with the November once-cut where 30 Mg ha^-1 was documented, but comparable yields were observed with the two-cutting scenario. Fiber content increased with maturity, peaked, and declined, while ash content and moisture decreased with maturity. The achievement of 55% moisture in January shows field curing to be necessary for transportation at any significant distance, but soil entrainment – as measured by ash concentration – was not found to be a significant problem after conditioning, multiple windrow inversions, and harvesting. The geometric mean length of particle was determined to be 1.4 to 3.7 times lower than nominal chop length, indicating potential cost savings in comminution. Dry matter loss estimates during storage proved difficult due to mobility of moisture throughout the packages, where losses were documented up to 40%. Module packages tended to have lower dry matter and constituent losses than bales.
353

Compressibility Of Various Coarse-grained Fill Materials In Dry And Wet Loading Conditions In Oedometer Test

Kayahan, Ahmet 01 January 2003 (has links) (PDF)
The use of coarse-grained fill materials has grown significantly in recent years especially on account of their use in dams and transportation networks. This study investigates compressibility of various coarse-grained fill materials in dry and wet loading conditions in oedometer test. Four materials were used in the experiments, which falls into GP, GW, GM and GC categories respectively. GP material is a weathered rock obtained from Eymir Lake region. This material was chosen especially to be able to investigate degradation and particle breakage due to compaction and compression. GW, GM and GC materials were obtained by using the material called &lsquo / bypass&rsquo / which is a fill material used in the construction of metro of Eryaman. Using these four materials, large-scale double oedometer tests were carried out to investigate compressibility in both dry and wet conditions. The double oedometer testing technique is used to investigate the effect of soaking on compressibility behaviour of compacted fill materials. Various compactive efforts were used in the compaction stage to investigate the effect of compactive effort on compressibility and degradation of the four gravelly materials. Gradations of the post-test samples were obtained and particle breakage due to compaction using various compactive efforts and particle breakage due to compression were determined. It is found that amount of compression does not necessarily depend on the dry density of the material and fine fraction is also a dominating property regarding the compressibility in coarse-grained fill materials. The vertical strains induced by soaking are on the order of 12% - 20% of the compression measured in dry loading case for the well-graded coarse-grained fill materials tested. Besides, there is significant particle breakage in the compaction process and no further particle breakage in the oedometer test for GP material.
354

Airborne Particles in Indoor Residential Environment: Source Contribution, Characteristics, Concentration, and Time Variability

He, Congrong January 2005 (has links)
The understanding of human exposure to indoor particles of all sizes is important to enable exposure control and reduction, but especially for smaller particles since the smaller particles have a higher probability of penetration into the deeper parts of the respiratory tract and also contain higher levels of trace elements and toxins. Due to the limited understanding of the relationship between particle size and the health effects they cause, as well as instrument limitations, the available information on submicrometer (d < 1.0 µm) particles indoors, both in terms of mass and number concentrations, is still relatively limited. This PhD project was conducted as part of the South-East Queensland Air Quality program and Queensland Housing Study aimed at providing a better understanding of ambient particle concentrations within the indoor environment with a focus on exposure assessment and control. This PhD project was designed to investigate comprehensively the sources and sinks of indoor aerosol particles and the relationship between indoor and outdoor aerosol particles, particle and gaseous pollutant, as well as the association between indoor air pollutants and house characteristics by using, analysing and interpreting existing experimental data which were collected before this project commenced, as well as data from additional experiments which were designed and conducted for the purpose of this project. The focus of this research was on submicrometer particles with a diameter between 0.007 - 0.808 µm. The main outcome of this project may be summarised as following: * A comprehensive review of particle concentration levels and size distributions characteristics in the residential and non-industrial workplace environments was conducted. This review included only those studies in which more general trends were investigated, or could be concluded based on information provided in the papers. This review included four parts: 1) outdoor particles and their effect on indoor environments; 2) the relationship between indoor and outdoor concentration levels in the absence of indoor sources for naturally ventilated buildings; 3) indoor sources of particles: contribution to indoor concentration levels and the effect on I/O ratios for naturally ventilated buildings; and 4) indoor/outdoor relationship in mechanically ventilated buildings. * The relationship between indoor and outdoor airborne particles was investigated for sixteen residential houses in Brisbane, Australia, in the absence of operating indoor sources. Comparison of the ratios of indoor to outdoor particle concentrations revealed that while temporary values of the ratio vary in a broad range from 0.2 to 2.5 for both lower and higher ventilation conditions, average values of the ratios were very close to one regardless of ventilation conditions and of particle size range. The ratios were in the range from 0.78 to 1.07 for submicrometer particles, from 0.95 to 1.0 for supermicrometer particles and from 1.01 to 1.08 for PM2.5 fraction. Comparison of the time series of indoor to outdoor particle concentrations showed a clear positive relationship existing for many houses under normal ventilation conditions (estimated to be about and above 2 h-1), but not under minimum ventilation conditions (estimated to be about and below 1 h-1). These results suggest that for normal ventilation conditions and in the absence of operating indoor sources, outdoor particle concentrations could be used to predict instantaneous indoor particle concentrations but not for minium ventilation, unless air exchange rate is known, thus allowing for estimation of the "delay constant". * Diurnal variation of indoor submicrometer particle number and particle mass (approximation of PM2.5) concentrations was investigated in fifteen of the houses. The results show that there were clear diurnal variations in both particle number and approximation of PM2.5 concentrations, for all the investigated houses. The pattern of diurnal variations varied from house to house, however, there was always a close relationship between the concentration and human indoor activities. The average number and mass concentrations during indoor activities were (18.2±3.9)×10³ particles cm-³ and (15.5±7.9) µg m-³ respectively, and under non-activity conditions, (12.4±2.7)x10³ particles cm-³ (11.1±2.6) µg m-³, respectively. In general, there was a poor correlation between mass and number concentrations and the correlation coefficients were highly variable from day to day and from house to house. This implies that conclusions cannot be drawn about either one of the number or mass concentration characteristics of indoor particles, based on measurement of the other. The study also showed that it is unlikely that particle concentrations indoors could be represented by measurements conducted at a fixed monitoring station due to the large impact of indoor and local sources. * Emission characteristics of indoor particle sources in fourteen residential houses were quantified. In addition, characterizations of particles resulting from cooking conducted in an identical way in all the houses were measured. All the events of elevated particle concentrations were linked to indoor activities using house occupants diary entries, and catalogued into 21 different types of indoor activities. This enabled quantification of the effect of indoor sources on indoor particle concentrations as well as quantification of emission rates from the sources. For example, the study found that frying, grilling, stove use, toasting, cooking pizza, smoking, candle vaporizing eucalyptus oil and fan heater use, could elevate the indoor submicrometer particle number concentration levels by more than 5 times, while PM2.5 concentrations could be up to 3, 30 and 90 times higher than the background levels during smoking, frying and grilling, respectively. * Indoor particle deposition rates of size classified particles in the size range from 0.015 to 6 µm were quantified. Particle size distribution resulting from cooking, repeated under two different ventilation conditions in 14 houses, as well as changes to particle size distribution as a function of time, were measured using a scanning mobility particle sizer (SMPS), an aerodynamic particle sizer (APS), and a DustTrak. Deposition rates were determined by regression fitting of the measured size-resolved particle number and PM2.5 concentration decay curves, and accounting for air exchange rate. The measured deposition rates were shown to be particle size dependent and they varied from house to house. The lowest deposition rates were found for particles in the size range from 0.2 to 0.3 µm for both minimum (air exchange rate: 0.61±0.45 h-1) and normal (air exchange rate: 3.00±1.23 h-1) ventilation conditions. The results of statistical analysis indicated that ventilation condition (measured in terms of air exchange rate) was an important factor affecting deposition rates for particles in the size range from 0.08 to 1.0 µm, but not for particles smaller than 0.08 µm or larger than 1.0 µm. Particle coagulation was assessed to be negligible compared to the two other processes of removal: ventilation and deposition. This study of particle deposition rates, the largest conducted so far in terms of the number of residential houses investigated, demonstrated trends in deposition rates comparable with studies previously reported, usually for significantly smaller samples of houses (often only one). However, the results compare better with studies which, similarly to this study, investigated cooking as a source of particles (particle sources investigated in other studies included general activity, cleaning, artificial particles, etc). * Residential indoor and outdoor 48 h average levels of nitrogen dioxide (NO2), 48h indoor submicrometer particle number concentration and the approximation of PM2.5 concentrations were measured simultaneously for fourteen houses. Statistical analyses of the correlation between indoor and outdoor pollutants (NO2 and particles) and the association between house characteristics and indoor pollutants were conducted. The average indoor and outdoor NO2 levels were 13.8 ± 6.3 ppb and 16.7 ± 4.2 ppb, respectively. The indoor/outdoor NO2 concentration ratio ranged from 0.4 to 2.3, with a median value of 0.82. Despite statistically significant correlations between outdoor and fixed site NO2 monitoring station concentrations (p = 0.014, p = 0.008), there was no significant correlation between either indoor and outdoor NO2 concentrations (p = 0.428), or between indoor and fixed site NO2 monitoring station concentrations (p = 0.252, p = 0.465,). However, there was a significant correlation between indoor NO2 concentration and indoor submicrometer aerosol particle number concentrations (p = 0.001), as well as between indoor PM2.5 and outdoor NO2 (p = 0.004). These results imply that the outdoor or fixed site monitoring concentration alone is a poor predictor of indoor NO2 concentration. * Analysis of variance indicated that there was no significant association between indoor PM2.5 and any of the house characteristics investigated (p > 0.05). However, associations between indoor submicrometer particle number concentration and some house characteristics (stove type, water heater type, number of cars and condition of paintwork) were significant at the 5% level. Associations between indoor NO2 and some house characteristics (house age, stove type, heating system, water heater type and floor type) were also significant (p < 0.05). The results of these analyses thus strongly suggest that the gas stove, gas heating system and gas water heater system are main indoor sources of indoor submicrometer particle and NO2 concentrations in the studied residential houses. The significant contributions of this PhD project to the knowledge of indoor particle included: 1) improving an understanding of indoor particles behaviour in residential houses, especially for submicrometer particle; 2) improving an understanding of indoor particle source and indoor particle sink characteristics, as well as their effects on indoor particle concentration levels in residential houses; 3) improving an understanding of the relationship between indoor and outdoor particles, the relationship between particle mass and particle number, correlation between indoor NO2 and indoor particles, as well as association between indoor particle, NO2 and house characteristics.
355

Measuring Intrinsic Fluorescence Of Airborne Particles For Real-Time Monitoring Of Viable Bioaerosols

Agranovski, Victoria January 2004 (has links)
Development of the advanced, real-time methods for monitoring of bioaerosols is becoming increasingly important. At present, the Ultraviolet Aerodynamic Particle Sizer (UVAPS, Model 3312, TSI, St. Paul., MN) is the only commercially available method for in-situ, continuous measurements of viable airborne microorganisms. Research included in this thesis aimed towards comprehensive evaluation of the method over a wide range of operating conditions, linking the experimental results to the theoretical basis of its design and operation, and to developing a scientific basis for its application to real-time monitoring of bioaerosols. Specifically, due to a growing concern in the general community about the environmental and health aspects of biological aerosols originated from various types of agricultural operations including animal farming, this research was focussed on developing a research methodology/strategy for applying the method to the investigation of bioaerosols in the swine confinement buildings (SCB). Investigations under controlled laboratory conditions were primarily concerned with selectivity, sensitivity, counting efficiency, and detection limits of the spectrometer. This study also examined the effect of physiological state (metabolic activity) of bacteria on the performance characteristics of the method. The practical implications of the research findings are discussed in this thesis. Further field investigations undertaken on a pig farm advanced understanding of the UVAPS performance in the real-life environmental settings. The research also provided a new insight on the particle size distribution and the effect of on-farm-activities on aerosol load inside the SCBs, for both biological and non-biological aerosols. This study has proved that the UVAPS is a powerful tool for investigation of viable bioaerosols in the environment. However, this method is limited to detection of active metabolising bacteria that excludes dormant bacterial spores. In addition, the method is very sensitive to physiological state of bacteria and to the effect of adverse environmental conditions on metabolic activity of airborne bacteria, which may decrease the amount of the intrinsic fluorophores in the cells below sensitivity level iv of the monitor. Possible limitations of this technology include also the lack of selectivity and thus interferences from the non-microbial organic components of airborne particles. In addition, the sensitivity of the method is insufficient for monitoring viable bacteria in the environments with relatively low concentrations of bioaerosols. In order to increase sensitivity of the method, it would be desirable to concentrate the bioaerosols into a smaller volume with the aim of high-volume virtual impactors (aerosol concentrators) prior to the monitoring. Therefore, in the indoor environments where an application of the concentrator is not feasible, the utilisation of the UVAPS may be problematic. Due to the intrinsic limitations, the method is not recommended for the direct measurements of viable bioaerosols and should be used in conjunction with the conventional biosamplers for obtaining more realistic insights into the microbial air quality. Nevertheless, the UVAPS has been found to be an adequate method for the investigation of the dynamics of biological aerosols in real-time. Overall, this thesis contributes to the advancing of the understanding of the method and may assist in developing new, more advanced technologies for the real-time monitoring of viable bioaerosols, as well as in developing sampling strategies for the application of the method to various bioaerosol studies.
356

Dissociation of hexavalent chromium from primer paint particles into simulated mucus fluid /

Moran, Michael Patrick. January 2005 (has links) (PDF)
Thesis (M.S.)--Uniformed Services University of the Health Sciences, 2005. / Typescript (photocopy).
357

Φυσικοχημική μελέτη της σταθερότητας γαλακτωμάτων πρωτεϊνών γάλακτος με την τεχνική της μονοφασικής χρωματογραφίας πεδίου

Κέντα, Στέλλα 31 May 2012 (has links)
Τα γαλακτώματα είναι η κολλοειδής διασπορά δύο μη αναμίξιμων υγρών, τα οποία είναι κατά κανόνα θερμοδυναμικά ασταθή συστήματα. Οι πρωτεΐνες γάλακτος είναι γνωστές επιφανειοδραστικές ουσίες και ως εκ τούτου χρησιμοποιούνται ως συστατικά σε ένα ευρύ φάσμα γαλακτωμάτων τροφίμων. Σκοπός της παρούσας εργασίας είναι η εύρεση των κατάλληλων συνθηκών για την παρασκευή σταθερών γαλακτωμάτων πρωτεϊνών γάλακτος. Το μέγεθος των λιποσφαιριδίων διαδραματίζει τον κυρίαρχο ρόλο στη σταθερότητα του γαλακτώματος πρωτεϊνών γάλακτος. Η μέτρηση του μεγέθους των λιποσφαιριδίων έγινε με την τεχνική της Μονοφασικής Χρωματογραφίας Φυγοκεντρικού Πεδίου. Πιο συγκεκριμένα, μελετήθηκε η επίδραση της συγκέντρωσης (0,5 έως 3,0% w/w) και του τύπου (πρωτεΐνες ορού και καζεΐνες) των πρωτεϊνών γάλακτος, καθώς και των συνθηκών ομογενοποίησης (πίεση ομογενοποίησης 200 έως 600bar) του γαλακτώματος. Επίσης, μελετήθηκε η επίδραση της συγκέντρωσης γαλακτωματοποιητών εμπορίου (Tween 80) στη σταθερότητα των γαλακτωμάτων. Επιπρόσθετα, έγινε κινητική μελέτη συσσωμάτωσης των γαλακτωμάτων από πρωτεΐνες γάλακτος και στη συνέχεια μελετήθηκαν πιο συγκεκριμένα τα γαλακτώματα καζεϊνών, με σκοπό τον προσδιορισμό της σταθεράς ταχύτητας της συσσωμάτωσης των λιποσφαιριδίων σε θερμοκρασίες 30,5 και 80 ᵒC. Αυξάνοντας την πίεση ομογενοποίησης του γαλακτώματος παρατηρήθηκε μείωση της διαμέτρου των λιποσφαιριδίων. Τα γαλακτώματα που ομογενοποιήθηκαν σε πίεση μεγαλύτερη των 500 bar παρουσίασαν ευρύτερη κατανομή μεγέθους, λόγω της υψηλής θερμοκρασίας που αναπτύχθηκε κατά τη διάρκεια της ομογενοποίησης. Η πρωτεϊνική συγκέντρωση έχει σημαντικές επιπτώσεις στις φυσικοχημικές ιδιότητες του γαλακτώματος (λάδι σε νερό). Αυξανόμενης της συγκέντρωσης των πρωτεϊνών γάλακτος, μειώθηκε αισθητά η διάμετρος των λιποσφαιριδίων του γαλακτώματος και σε χαμηλές συγκεντρώσεις πρωτεϊνών (<1%κ.β.) παρατηρήθηκε σχηματισμός συσσωματωμάτων. Παρατηρήθηκε μικρή μεταβολή της διαμέτρου των λιποσφαιριδίων των γαλακτωμάτων που σχηματίστηκαν με διαφορετικές αναλογίες κλασμάτων πρωτεϊνών ορού/καζεϊνών. Οι δύο τύποι των πρωτεϊνών του γάλακτος παρουσίασαν πολύ καλή γαλακτωματοποιητική δράση και τα γαλακτώματα που σχηματίστηκαν ήταν πολύ σταθερά. Παρατηρήθηκε ότι, αυξάνοντας τη συγκέντρωση των πρωτεϊνών του ορού γάλακτος και ταυτόχρονα μειώνοντας τη συγκέντρωση των καζεϊνών, μειώθηκε η διάμετρος των λιποσφαιριδίων του γαλακτώματος. Η σταθερότητα των γαλακτωμάτων σε σχέση με τον χρόνο οφείλεται στη δομή των μορίων των πρωτεϊνών που σταθεροποιούν τα γαλακτώματα αυτά. Κατά συνέπεια, τα μόρια των καζεϊνών και των πρωτεϊνών ορού, προσδίδουν διαφορετικές ιδιότητες στα γαλακτώματα λόγω της διαφορετικής δομής τους. Τα γαλακτώματα που σχηματίστηκαν με καζεΐνες ήταν πιο ανθεκτικά στην θερμοκρασία και παρουσίασαν μακροπρόθεσμη σταθερότητα σε σχέση με τα γαλακτώματα που περιείχαν μόνο πρωτεΐνες ορού. Η υπολογισθείσα φαινόμενη σταθερά συσσωμάτωσης των γαλακτωμάτων καζεϊνών στη θερμοκρασία των 30,5 ᵒC βρέθηκε να είναι σχεδόν 14 φορές μικρότερη από αυτή των γαλακτωμάτων που συσσωματώθηκαν στη θερμοκρασία 80,0 ᵒC. Επομένως, η διαδικασία της συσσωμάτωσης συμβαίνει ταχύτερα σε πιο υψηλές θερμοκρασίες θέρμανσης για τα γαλακτώματα καζεϊνών, ωστόσο έφτασαν στο μέγιστο βαθμό συσσωμάτωσης σε ίδιο χρονικό διάστημα. / In the food industry, when referring to an oil-in-water emulsion, is usually described in which oil is dispersed in the form of small spherical droplets in the continuous phase. Food emulsions are thermodynamically unstable. Nevertheless, food scientists are able to slow down the above physicochemical mechanisms responsible for emulsion instability and thus, extend the self-life of such products by a relatively simple and well studied process, termed emulsification. Surface active materials termed emulsifiers, such as proteins help produce small droplets and contribute to the stability of the emulsion. Emulsifiers decrease the interfacial tension between the oil and water phases through rapid adsorption to the surface of the newly formed oil droplets. Milk proteins (caseins and whey proteins) are well known surfactants and hence are used as ingredients in a wide range of food emulsions. One of the important parameters affecting the quality, appearance and taste of the final food products is the particle size of the ingredients included. For example, particle size of fat globules plays predominant role in the stability of the milk-protein stabilized emulsion. Milk protein-stabilized model emulsions were formed using high-pressure homogenization and the effect of homogenization pressure during emulsification, protein concentration, type of milk proteins (casein and whey proteins) and the effect of the surfactant Tween-80 were studied. The kinetic of milk protein emulsions aggregation was also studied and moreover, the apparent rate constant was calculated for the aggregation of caseinate stabilized emulsions in different temperatures (30,5 and 80,0 ᵒC). Sedimentation field flow fractionation was employed for the size characterization of oil droplets and the results obtained are consistent with those of other studies. Increasing protein content results in significant reduction in emulsion particle size for the concentration range (0.5 – 3.0 % w/w) employed in this study. Low protein content (<1%) may be correlated with bridging flocculation leading to increased particle size, as indicated by optical microscopy. Similarly, increasing pressure during the homogenization process results in decreasing significantly the particle size of the oil-in-water emulsions, for the pressure range (200 – 600 bar) utilized in this study. Increased heating associated with high levels of pressure during the homogenization process, can result in changes in the oil or protein structure, which in turn may have an impact on the physicochemical properties of the oil-in-water emulsions on a long-term basis. The two types of milk proteins appeared to be both good emulsifiers and the formed emulsions were very stable. Increasing whey protein content and together decreasing the casein content, results in small reduction in emulsion particle size. Different proteins depending on their composition and structure posses’ properties, which render them, better emulsifiers than others. Caseinate stabilized emulsions were more resistant in heating time than whey stabilized emulsions. The calculated apparent rate constant for the aggregation of caseinate stabilized emulsions at the temperature of 30,5 ᵒC was found to be fourteen times smaller than the one at the temperature of 80,0 ᵒC. Therefore, the aggregation process is faster in high temperatures for caseinate stabilized emulsions, although the maximum of aggregation point is attained at the same time in both temperatures.
358

Effects of heat treatments on the safety and nutritional properties of whole grain barley

Boyd, Lindsey 11 January 2016 (has links)
Health claims for barley β-glucan (BG) have prompted the development of more food products using barley. Some new products do not use any form of heat treatment which could become an issue as barley has been found to have high microbial contamination. The aim of this research was to evaluate current commercial barley products for microbial and BG quality and determine the effects of different heat treatments on the safety and physicochemical properties of BG of whole grain barley. Three heat treatments (micronization, roasting and conditioning) were performed on 3 cultivars of barley (CDC Rattan, CDC McGwire and CDC Fibar). The microbial quality was measured with standard plate count (SPC), yeast and mould (MYC), and coliforms/E. coli. Only 4 of the 17 commercial barley products tested met acceptable microbial limits used in this study. All 3 heat treatments reduced SPC, MYC and coliforms to acceptable levels. BG was extracted using an in vitro digestion method to determine its viscosity, molecular weight (MW) and solubility. Heat-treated barley increased the BG viscosity and MW compared to the untreated barley. The effect of heat treatment on starch pasting, particle size and colour were also evaluated. Overall, heat treatments improved the safety and potential health benefits of whole grain barley. / February 2016
359

Caracterização físico-química do leite de ovelhas da raça Lacaune e análise do rendimento de coalhada com Caracterização física do soro obtido

Fava, Luisa Wolker January 2012 (has links)
O leite ovino se diferencia do das demais espécies devido à sua riqueza em sólidos. Contudo, mesmo no caso de raças especializadas, a produção de leite é representativamente menor, em termos de volume, quando comparado ao leite de vaca. Em função disso, o resfriamento prolongado ou o congelamento do leite podem ser uma alternativa ao produtor e à indústria. Sendo assim, os objetivos do presente estudo foram avaliar o efeito do resfriamento e do congelamento, por sete dias, sobre as características físico-químicas do leite de ovelhas da raça Lacaune, considerando a influência dos meses do ano, sobre o rendimento da coalhada produzida e as características físicas do soro obtido. Também foi verificada a influência do resfriamento e do congelamento no comportamento reológico, viscosidade e distribuição do tamanho de partículas do leite. Foram realizadas coletas mensais de leite, no período de janeiro a dezembro de 2011, em quatro propriedades produtoras de leite de ovelha, localizadas no Rio Grande do Sul, sendo as amostras encaminhadas ao Laboratório LEITECIA, da UFRGS. Cada amostra foi dividida em três alíquotas: a primeira era analisada no mesmo dia e as restantes armazenadas até sete dias, uma em refrigeração (5ºC) e outra em congelamento doméstico (- 18ºC). As análises realizadas foram: determinação da densidade, pH, acidez titulável, estabilidade ao etanol e estabilidade térmica. Uma alíquota de cada amostra era encaminhada ao Laboratório de Qualidade do Leite, da Embrapa Clima Temperado, para determinação da composição química do leite. Avaliou-se o rendimento da coalhada obtida com cada uma das amostras compostas de leite fresco, resfriado e congelado. O volume de soro foi medido e realizou-se análise de determinação da densidade, pH e acidez titulável. A viscosidade das amostras de leite foi determinada utilizando-se viscosímetro rotacional (Brookfield DV-II + Pro Viscometer, modo LVF, spindle CS4-25). A descrição do comportamento reológico foi feita através da relação entre a taxa de deformação e a tensão de cisalhamento e da aplicação do modelo da Lei da Potência. A comparação dos valores de viscosidade quando os fluidos apresentaram comportamento newtoniano foi realizada a 60 rpm. A distribuição do tamanho de partículas do leite foi determinada através da técnica de difração de laser. Os parâmetros utilizados foram diâmetro médio das partículas, uniformidade da distribuição (Span) e a área de superfície específica. A composição do leite não apresentou variação significativa quando comparados os diferentes tratamentos (P>0,05). Contudo, os teores de proteína e lactose apresentaram variação sazonal. O resfriamento do leite afetou as características físicas das amostras, apresentando menor pH e maior acidez titulável, com a consequente diminuição da estabilidade térmica. Na produção da coalhada, o resfriamento e o congelamento do leite ovino não afetaram o rendimento. A densidade dos soros obtidos não apresentou variação. Porém, o soro da coalhada de leite resfriado apresentou-se mais ácido. As amostras de leite de ovelha analisadas demonstraram comportamento newtoniano. A viscosidade das amostras não foi afetada pelo congelamento do leite, porém o resfriamento provocou aumento deste parâmetro analisado. O diâmetro médio das partículas não apresentou variações. Conclui-se que o congelamento do leite, por até sete dias, não interfere na sua caracterização físico-química. / Ewe milk differs from other species due to its richness in solids. However, even in the case of specialized breeds, milk production is representatively smaller in volume compared to cow milk. As a result, prolonged chilling or freezing of the milk can be an alternative to the dairy producer and the industry. The objectives of this study were to evaluate the effect of cooling and freezing for seven days, on the physicochemical characteristics of milk from Lacaune ewes, considering the influence of the months of the year on the income produced curd and physical characteristics of the whey obtained. The effect of chilling and freezing on rheological properties, viscosity and particle size distribution of the milk were also observed. Milk samples were collected monthly from January to December 2011 in four dairy of Lacaune sheep located in Rio Grande do Sul. Samples were sent to the laboratory LEITECIA, UFRGS. Each sample was divided into three aliquots: the first was analyzed on the same day and the remaining stored up to seven days, one under refrigeration (5ºC) and other under freezing (- 18ºC). Density, pH, titratable acidity, ethanol stability and thermal stability were performed in three aliquots. One aliquot of each sample was sent to the Milk Quality Laboratory of Embrapa Clima Temperado for determination of chemical composition. The three aliquots were used to produce cheese. The yield of the obtained curd in each of the samples comprised from fresh, chilled and frozen milk was determined, as well as volume, density, pH and titratable acidity from whey. Viscosity of milk samples was determined using a rotational viscometer. The description of rheological behavior was made using the relationship between shear rate and shear stress by application of Potency Law model. Comparison of viscosity values, as the fluid showed Newtonian behavior, was performed at 60 rpm. Particle size distribution was determined by laser diffraction technique. Parameters used were average particle diameter, uniformity of distribution (Span) and specific surface area. Milk composition did not change significantly when comparing the different treatments (P> 0.05). However, protein and lactose showed seasonal variation. Milk chilling affected the physical characteristics of the samples, with lower pH and higher acidity, with a consequent decrease in thermal stability. In the production of curd, chilling and freezing of ewe milk did not affect yield. Whey density did not change, although chilled milk produced more acidic whey. Viscosity of the samples was not affected by freezing, but chilling caused an increased viscosity. Average particle diameter showed no variations. In conclusion, freezing of ewe milk for seven days does not interfere with its physic-chemical characterization.
360

An investigation of rainfall characteristics, erosivity and soil erosion on Round Island, Mauritius

Calvert, Darren Rhett 02 1900 (has links)
Round Island is a small (208 ha) islet of volcanic origin located 22.5 km north east of mainland Mauritius and has been classified as a nature reserve since 1957. Two sites were chosen for the installation of environmental monitoring equipment. A series of Gerlach troughs were installed to capture surface sediment transported by runoff, which were used to document sediment yields and determine the particle size distribution. Overall, rainfall and erosivity on Round Island is far less, when compared to mainland Mauritius. However, erosivity from Round Island (2,314.76 MJ.mm.ha-1.h-1.yr-1) is slightly above the global average of 2,190 MJ.mm.ha-1.h-1.yr-1. In terms of sediment transport, the annual sediment movement rates for Round Island were established during this study (0.1248 t.ha-1.yr-1) and were found to be considerably lower than Mauritius (10 t.ha-1.yr-1), as well as other tropical island such as Kauai (0.86 t.ha-1.yr-1) and O’ahu (0.6 t.ha-1.yr-1). Thus, although the estimated rates of soil erosion are very low for humid tropical regions, these rates only reflect the contemporary environmental conditions and cognisance of the landscape history should be incorporated into assessments of soil erosion / Geography / M. Sc. (Geography)

Page generated in 0.1518 seconds