Spelling suggestions: "subject:"[een] PEMFC"" "subject:"[enn] PEMFC""
201 |
Electrocatalyst Development And Modeling Of Nonisothermal Two-phase Flow For Pem Fuel CellsFicicilar, Berker 01 May 2011 (has links) (PDF)
A macro-homogeneous, nonisothermal, two-phase, and steady state mathematical model is developed to investigate water and thermal management in polymer electrolyte membrane (PEM) fuel cells. An original two-phase energy balance approach is used to catch the thermal transport phenomena in cases when there is a signicant temperature
dierence between the fuel cell temperature and the reactants inlet temperatures like during cold start-up. Model considers in depth electrode kinetics for both anode and cathode reactions. External and internal mass transfer resistances on fuel cell performance are accounted by means of a thin-film and agglomerate approach.
Developed model accounts for all substantial transport phenomena including diffusion of multi-component gas mixtures in the porous media, electrochemical reactions in the
catalytic regions, water and proton transport through the solid polymer electrolyte, transport of electrons within the solid matrix, heat transport in the gas and solid phases, phase change and transport of water through porous diffusion media and catalyst layers. In this study, it is truly shown how significant heat and water transport are to overall fuel cell performance. Model predictions are validated by comparison
with experimental data, involving polarization curves, saturation and temperature gradients.
For optimal electrode kinetics purposes, an alternative novel hollow core mesoporous shell (HCMS) carbon supported Pt and Pt-Pd electrocatalysts were synthesized by microwave irradiation. HCMS carbon spheres were produced by two different carbon precursors with the template replication of solid core mesoporous shell (SCMS) silica spheres. Compared to Pt/VX and ETEK electrocatalysts, HCMS carbon based Pt
and Pt-Pd electrocatalysts showed promising cathode and anode electrodics performance in the fuel cell environment.
|
202 |
OPTIMISATION DES PROPRIETES DE CONDUCTION ELECTRIQUE ET DE PASSIVITE D'ACIERS INOXYDABLES POUR LA REALISATION DE PLAQUES BIPOLAIRES DE PILE A COMBUSTIBLE DE TYPE PEMFCAndre, Johan 30 October 2007 (has links) (PDF)
Parmi les nouvelles technologies pour l'énergie inscrites dans un contexte de développement durable, les piles à combustible à membrane échangeuse de protons (PEMFC) présentent des aspects séduisants. Toutefois, pour rendre cette technologie compatible avec une application à grande échelle, elle doit répondre à des exigences strictes en terme de coût, performance, et durabilité. Cette thèse s'inscrit dans ce cadre, en proposant d'optimiser les propriétés de conduction électrique et de passivité d'aciers inoxydables pour la réalisation de plaques bipolaires pour PEMFC, en remplacement du graphite, le matériau de référence.<br />Ce travail fait l'inventaire des modes de dégradation de performances possibles lors de l'emploi d'aciers inoxydables et des moyens pour y remédier. Les propriétés des films passifs sur aciers inoxydables ont été étudiées, ainsi que leur modification par des solutions industrielles de traitements de surfaces bas coût, sans revêtement.<br />Des caractérisations ex situ de la tenue à la corrosion et de la conduction électrique des matériaux envisagés ont été effectuées. La spectroscopie d'impédance électrochimique, la mesure de la teneur en cations métalliques après essai, et des analyses de surface des aciers inoxydables par microscopie et spectroscopie de photoélectrons, ont permis d'étudier le vieillissement de deux nuances d'aciers inoxydables dans différents états et plusieurs conditions représentatives d'une exposition en milieu PEMFC. Des corrélations entre les propriétés semiconductrices, la composition, et la structure des couches passives ont été envisagées, sans toutefois aboutir à une identification claire de tous les paramètres responsables de la conductivité électrique et de la passivité des couches.<br />L'état industriel de livraison des tôles ne convient pas à un emploi direct en pile pour satisfaire les critères de durabilité et performance pour des conditions classiques de fonctionnement. Une modification de surface étudiée apporte une nette amélioration de la conduction électrique à l'état initial, qui se dégrade au vieillissement, tout en restant à un niveau supérieur à l'état industriel de réception. Ce traitement augmente également la résistance à la corrosion, particulièrement côté anodique.
|
203 |
Biomass-fuelled PEM FuelCell systems for small andmedium-sized enterprisesGuan, Tingting January 2015 (has links)
Biomass-fuelled proton exchange membrane fuel cells (PEMFCs) offer asolution for replacing fossil fuel for hydrogen production. Through using thebiomass-derived hydrogen as fuel, PEMFCs may become an efficient andsustainable energy system for small and medium-sized enterprises. The aim ofthis thesis is to evaluate the performance and potential applications of biomassfuelledPEMFC systems which are designed to convert biomass to electricity andheat. Biomass-fuelled PEMFC systems are simulated by Aspen plus based ondata collected from experiments and literature.The impact of the quality of the hydrogen-rich gas, anode stoichiometry, CH4content in the biogas and CH4 conversion rate on the performance of the PEMFCis investigated. Also, pinch technology is used to optimize the heat exchangernetwork to improve the power generation and thermal efficiency.For liquid and solid biomass, anaerobic digestion (AD) and gasification (GF),respectively, are relatively viable and developed conversion technologies. ForAD-PEMFC, a steam reformer is also needed to convert biogas to hydrogen-richgas. For 100 kWe generation, the GF-PEMFC system yields a good technicalperformance with 20 % electrical efficiency and 57 % thermal efficiency,whereas the AD-PEMFC system only has 9 % electrical efficiency and 13 %thermal efficiency. This low efficiency is due to the low efficiency of theanaerobic digester (AD) and the high internal heat consumption of the AD andthe steam reformer (SR). For the environmental aspects, the GF-PEMFC systemhas a high CO2 emissions offset factor and the AD-PEMFC system has anefficient land-use.The applications of the biomass-fuelled PEMFC systems are investigated on adairy farm and an olive oil plant. For the dairy farm, manure is used as feedstockto generate biogas through anaerobic digestion. A PEMFC qualified for 40 %electrical efficiency may generate 360 MWh electricity and 680 MWh heat peryear to make a dairy farm with 300 milked cows self-sufficient in a sustainableway. A PEMFC-CHP system designed for an olive oil plant generating annual 50000 m3 solid olive mill waste (SOMW) and 9 000 m3 olive mill waste water(OMW) is simulated based on experimental data from the Biogas2PEM-FCproject1. After the optimization of the heat exchanger network, the PEMFC-CHP system can generate 194 kW electricity which corresponds to 62 % of the totalelectricity demand of the olive oil plant.The economic performance of the PEMFC and biogas-fuelled PEMFC areassessed roughly including capital, operation & maintenance (O&M) costs of thebiogas plant and the PEMFC-CHP, the cost of heat and electricity, and the valueof the digestate as fertilizer. / <p>QC 20151109</p>
|
204 |
Compréhension par établissement de courbes d'étalonnage de la structure des membranes perfluorées sulfoniques pour pile à combustibleMoukheiber, Eddy 11 July 2011 (has links) (PDF)
Ce travail de thèse a pour but l'étude des effets de la contamination cationique sur la membrane électrolyte afin d'élaborer des outils de caractérisation et de diagnostic de cette pollution. Premièrement, la caractérisation physico-chimique de membranes PFSA commerciales a révélé des paramètres pertinents de structure et de propriété, qui ont été étudiés en fonction de leur dépendance à la capacité d'échange ionique (IEC).Deuxièmement, les propriétés thermiques des membranes contaminées par des cations ont révélé des changements dépendant fortement de l'acidité de Lewis du cation (LAS). Cette tendance a été corrélée à la nature de l'interaction des différents cations avec les groupements polaires de la chaîne polymère, révélée par FTIR. Enfin, l'influence du taux de pollution sur les différents paramètres thermiques et structuraux nous a permis de révéler ceux qui sont pertinents non seulement à l'identification mais aussi à la quantification de la pollution. Une application des courbes d'étalonnage a été réalisée sur des membranes vieillies issues de systèmes réels après fonctionnement.
|
205 |
Étude du fonctionnement et optimisation de la conception d'un système pile à combustible PEM exploité en cogénération dans le bâtimentHubert, Charles-Émile 06 December 2005 (has links) (PDF)
La pile à combustible à membrane polymère (PEMFC) est une technologie prometteuse pour la micro-cogénération et pourrait voir son marché se développer au moment de la libéralisation du marché européen de l'énergie, portée par des incitations fiscales grâce à sa relative vertu environnementale. Cette thèse vise à étudier le comportement et la conception d'une PEMFC alimentée par un mélange riche en hydrogène obtenu par reformage de gaz naturel, en situation réelle dans un bâtiment, exploitée en cogénération d'électricité et de chaleur. L'étude et l'optimisation de ce système sont menées en s'appuyant sur le fonctionnement d'un prototype réel, le RCU-4500 (4 kW électriques, 6 kW thermiques), expérimenté dans le cadre d'un projet de recherche national. En premier lieu, l'analyse approfondie du fonctionnement du prototype installé permet de comprendre qualitativement et quantitativement un exemple de ce type de système, en le situant dans son contexte technologique. Des mesures de consommation, de puissance électrique produite et de puissance thermique valorisée sont effectuées et une analyse du contrôle-commande est dressée. Une modélisation en régime permanent est développée et validée grâce aux nombreuses données expérimentales fournies par le projet. En second lieu, l'utilisation prédictive du modèle permet de proposer trois variantes de systèmes virtuels avec une nouvelle architecture et stratégie de gestion. Cela est fait en optimisant le rendement électrique puis la valorisation de la chaleur et la récupération de l'eau pour avoir un dispositif globalement autosuffisant en eau. Ces variantes s'appuient aussi sur des améliorations réelles de fonctionnement, réalisées avec succès lors d'essais sur l'une des cinq unités du projet. L'appréhension du procédé dans son ensemble, en tenant compte des interactions entre les différents sous-systèmes, est une nouveauté par rapport aux autres travaux publiés sur ce type de système.
|
206 |
Catalyseurs multimétalliques nano-organisés pour pile à combustible PEM / Multimetal nano-organized catalysts for PEM fuel cellLepesant, Mathieu 09 October 2014 (has links)
La diminution du coût des catalyseurs est l'une des conditions nécessaires pour rendre la technologie PEMFC économiquement viable au grand public. Ces catalyseurs, habituellement composés de nanoparticules de platine, sont limités par leur coût, leur performance et leur durabilité. La nanostructuration est une des solutions envisageables pour ces catalyseurs car elle permet d'augmenter considérablement la surface spécifique, de diminuer le chargement en platine et d'augmenter les performances pour la réaction de réduction de l'oxygène, la plus limitante dans la technologie PEMFC.Les travaux présentés dans ce mémoire, ont été réalisés autour de deux types de particules nanostructurées (particules coeur-coquille et particules creuses) à base de platine ou d'alliage de platine. Ces particules ont été étudiées, caractérisées en électrochimie à 3 électrodes (électrode tournante disque-anneau et montage demi-pile) puis intégrées dans des systèmes pile à combustible. Nous avons observé les améliorations de performances offertes par ce type de particules électro-catalytiques vis-à-vis de la réaction de réduction de l'oxygène. Puis nous avons commencé à étudier et à optimiser leur intégration dans les piles à combustible en conditions réelles de fonctionnement. / The decrease in cost of catalysts is one of the conditions necessary to make economically viable PEMFC technology to the general public. These catalysts, usually composed of platinum nanoparticles, are limited by cost, performance and durability. Nanostructuring is one of the possible solutions for these catalysts because it greatly increases the surface area, reducing the platinum loading and increase performance for the reaction of oxygen reduction, the most limiting in PEMFC technology.The works presented in this thesis were performed on two types of nanostructured particles (core-shell particles, hollow particles) based on platinum or platinum alloy. These particles have been studied, characterize in electrochemistry to 3 electrodes (rotating ring-disk electrode and half-cell assembly) and then integrated in fuel cell systems. We observed performance improvements offered by this type of electro-catalytic particles towards the reduction reaction of oxygen and then we started studying and optimize their integration into fuel cells and actual conditions of operation.
|
207 |
Membranes hybrides pour pile à combustible / Hybrid membranes for fuel cellZamanillo López, Isabel 16 December 2015 (has links)
La pile à combustible est une solution d'avenir pour produire de l'électricité propre. Cependant des problèmes technologiques limitent pour le moment un déploiement à grande échelle. C’est au cœur de pile et plus particulièrement de la membrane conductrice ionique séparant l’anode et la cathode, que certaines difficultés se posent. Nous pouvons ainsi citer l’impossibilité d’améliorer l’efficacité du catalyseur et le rendement du dispositif en augmentant simplement la température de fonctionnement (100 - 120°C). En effet, la membrane de référence (Nafion) perd ses propriétés thermomécaniques au-delà de 80°C, alors que les membranes alternatives (offrant une meilleure stabilité thermomécanique) sont victimes d’un vieillissement chimique trop rapide qui induit un arrêt inopiné du dispositif. Pour lever ce verrou technologique, nous proposons une nouvelle stratégie qui repose sur le développement de membranes nano-composites constituées d'une matrice ionomère commerciale (non réticulée) dans laquelle nous introduirons des précurseurs aptes à former une phase sol-gel offrant une stabilisation chimique et thermomécanique (réticulée). C'est le contrôle de la chimie de ce réseau, de sa morphologie et de sa localisation dans la membrane hôte qui permettra l'amélioration des propriétés de la membrane hybride ainsi obtenue.Nous avons réalisé une analyse minutieuse de l'effet d’un traitement hydrothermique sur la microstructure des membranes sPEEK. Grâce à cette analyse nous pouvons relier la microstructure avec les propriétés fonctionnelles de l’ionomère pour obtenir des membranes sPEEK mieux nanostructurées et donc plus performantes. Le procédé sol-gel permet la croissance de la phase sol-gel sans perturbation de la nanostructuration initiale de l'ionomère. Cette stratégie permet donc de contrôler la distribution et la morphologie de la phase inorganique.Le processus d'élaboration des membranes hybrides a été étudié. Nous avons étudié l'influence des paramètres de fabrication sur les propriétés des membranes hybrides, et ainsi pu produire des membranes hybrides optimisées. Les propriétés physiques et chimiques de ces membranes ont été évaluées par de nombreuses techniques (SANS, IR, DMA, etc.). L'influence de la structure chimique (degré de réticulation) du réseau sol-gel des membranes hybrides et l'impact de la teneur en sol-gel et de sa distribution (morphologie) dans la membrane hôte sur les propriétés fonctionnelles sont présentés. Nous observons une grande influence du dégrée de réticulation et de la quantité de sol-gel présent dans la membrane qui conditionne les propriétés fonctionnelles de la membrane. / Fuel cell is a promising solution for clean production of hydrogen based energy. However to achieve a large-scale deployment of this technology, issues remain to be addressed. One of the remaining problems concerns the heart of the cell (polymer membrane sandwiched between two electrodes). We can stress the fact that it is impossible to improve the catalyst efficiency and the cell performance by a simple increase of the operating temperature (100-120 °C). Indeed the reference membrane (Nafion) exhibit a step decrease of its thermomechanical properties beyond 80 °C, whereas alternative membranes (with a better thermomechanical stability) are victims of a much faster chemical aging resulting into unexpected failure of the device.Our main objective is to develop novel hybrid membranes consisting of a commercial ionomer matrix in which we will introduce precursors capable to form a sol-gel phase. It will result on membrane composed of two interpenetrating phases, an ion conductive non-crosslinked polymer phase and a crosslinked inorganic phase providing chemical and thermomechanical stabilization. The control of the chemistry of this sol-gel phase, its morphology and its location in the membrane, which will improve the membrane properties, are essential to consider the development of these membranes for fuel cells.A careful analysis of the hydrothermal treatment effect on the microstructure of sPEEK membranes has been performed. Thanks to this analyse we can relate the microstructure with the functional properties of the polymer. The sol-gel process enables the growth of the sol-gel phase without disturbance of the initial nanostructured membrane. This strategy makes possible to control the distribution and morphology of the inorganic phase.The elaboration process of hybrid membrane has been studied. We presented the influence of elaboration parameters regarding the best conditions to prepare an optimized hybrid membrane. The physical and chemical properties of the inorganic phase were evaluated by many techniques (SANS, IR, DMA, etc.). The influence of the chemical structure (cross-linking degree) of the sol-gel network andthe impact of the sol-gel content and its distribution (morphology) into the host membrane on their functional properties is presented. We observed the great influence of cross-linking degree and of the amount of sol-gel present in the membrane which determines the functional properties of the membrane.
|
208 |
Improved Pt-utilization efficiency of low Pt-loading PEM fuel cell electrodes using direct membrane depositionBreitwieser, Matthias, Klingele, Matthias, Britton, Benjamin, Holdcroft, Steven, Zengerle, Roland, Thiele, Simon 27 October 2020 (has links)
Direct membrane deposition was used to produce record platinum catalyst utilization efficiency polymer electrolyte membrane fuel cells. The novel membrane fabrication technique was applied to gas diffusion electrodes with low Pt-loadings of 0.102 and 0.029 mg/cm2. Under oxygen atmosphere and 300 kPaabs total pressure, 88 kW/gPt cathodic catalyst utilization efficiency with a symmetrical Pt-loading of 0.029 mg/cm2 on the anode and cathode side was achieved. This is 2.3 times higher than the Pt-utilization efficiency of a reference fuel cell prepared using a commercial Nafion N-211 membrane and identical catalyst layers, emphasizing that the improvement is purely attributable to the novel membrane fabrication technique. This value represents the highest Pt-utilization efficiency reported in literature. The results strongly motivate the application of employing direct membrane deposition techniques to prepare low resistance polymer electrolyte thin films in order to compensate for kinetic losses introduced when using low catalyst loadings.
|
209 |
A fully spray-coated fuel cell membrane electrode assembly using Aquivion ionomer with a graphene oxide/cerium oxide interlayerBreitwieser, Matthias, Bayer, Thomas, Büchler, Andreas, Zengerle, Roland, Lyth, Stephen M., Thiele, Simon 27 October 2020 (has links)
A novel multilayer membrane electrode assembly (MEA) for polymer electrolyte membrane fuel cells (PEMFCs) is fabricated in this work, within a single spray-coating device. For the first time, direct membrane deposition is used to fabricate a PEMFC by spraying the short-side-chain ionomer Aquivion directly onto the gas diffusion electrodes. The fully sprayed MEA, with an Aquivion membrane 10 μm in thickness, achieved a high power density of 1.6 W/cm2 for H2/air operation at 300 kPaabs. This is one of the highest reported values for thin composite membranes operated in H2/air atmosphere. By the means of confocal laser scanning microscopy, individual carbon fibers from the gas diffusion layer are identified to penetrate through the micro porous layer (MPL), likely causing a low electrical cell resistance in the range of 150 Ω cm2 through the thin sprayed membranes. By spraying a 200 nm graphene oxide/cerium oxide (GO/CeO2) interlayer between two layers of Aquivion ionomer, the impact of the electrical short is eliminated and the hydrogen crossover current density is reduced to about 1 mA/cm2. The peak power density of the interlayer-containing MEA drops only by 10% compared to a pure Aquivion membrane of similar thickness.
|
210 |
Micro combined heat and power management for a residential systemTichagwa, Anesu January 2013 (has links)
Fuel cell technology has reached commercialisation of fuel cells in application areas such as residential power systems, automobile engines and driving of industrial manufacturing processes. This thesis gives an overview of the current state of fuel cell-based technology research and development, introduces a μCHP system sizing strategy and proposes methods of improving on the implementation of residential fuel cell-based μCHP technology. The three methods of controlling residential μCHP systems discussed in this thesis project are heat-led, electricity-led and cost-minimizing control. Simulations of a typical HT PEMFC -based residential μCHP unit are conducted using these control strategies. A model of a residential μCHP system is formulated upon which these simulated tests are conducted. From these simulations, equations to model the costs of running a fuel-cell based μCHP system are proposed. Having developed equations to quantify the running costs of the proposed μCHP system a method for determining the ideal size of a μCHP system is developed. A sizing technique based on industrial CHP sizing practices is developed in which the running costs and capital costs of the residential μCHP system are utilised to determine the optimal size of the system. Residential thermal and electrical load profile data of a typical Danish household are used. Having simulated the system a practical implementation of the power electronics interface between the fuel cell and household grid is done. Two topologies are proposed for the power electronics interface a three-stage topology and a two-stage topology. The efficiencies of the overall systems of both topologies are determined. The system is connected to the grid so the output of each system is phase-shifted and DC injection, harmonic distortion, voltage range and frequency range are determined for both systems to determine compliance with grid standards. Deviations between simulated results and experimental results are recorded and discussed and relevant conclusions are drawn from these.
|
Page generated in 0.0323 seconds