• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 19
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 52
  • 52
  • 52
  • 18
  • 17
  • 14
  • 14
  • 11
  • 10
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Brillouin scattering in photonic crystal fiber : from fundamentals to fiber optic sensors / La diffusion Brillouin dans les fibres à cristaux photoniques : fondements et applications aux capteurs optiques

Stiller, Birgit 12 December 2011 (has links)
Le cadre général dans lequel s’insère ce travail de thèse est celui de l’étude de la diffusion Brillouin dans une nouvelle génération de fibres optiques à cristaux photoniques (PCFs). Ces fibres, qui présentent un arrangement périodique de micro-canaux d’air parallèles le long de la fibre, possèdent en effet des propriétés optiques et acoustiques remarquables et inédites par rapport aux fibres conventionnelles. De façon plus précise, nous montrons dans ce travail, par le biais de simulations numériques et de données expérimentales, que les fibres à cristaux photoniques offrent la possibilité de supprimer ou, à contrario, augmenter les interactions entre les photons et les phonons. Dans une première partie, nous présentons une méthode de cartographie des fluctuations longitudinales de la microstructure des fibres PCFs à l’aide d’un capteur distribué basé sur une méthode innovante d’écho Brillouin. Cette méthode, très sensible et à haute résolution, est directement intéressante pour caractériser et améliorer l’uniformité des PCFs lors de leur fabrication et également pour la détection des différentes contraintes de température et étirement induites le long des fibres. Sur le plan fondamental, notre système de mesure distribuée à haute résolution nous a également permis d’observer, pour la première fois à notre connaissance, le temps de vie des ondes acoustiques dans les fibres à cristaux photoniques et les fibres standard. Par ailleurs, sur le plan technique, nous avons développé une architecture simplifiée de capteur distribué combinant la technique des échos Brillouin et celle de la modulation différentielle par déplacement de phase avec un seul modulateur d’intensité. Nos résultats montrent une résolution centimétrique dans la zone de soudure entre deux fibres optiques à l’aide d’une impulsion de phase de 500 ps. Nous démontrons dans une deuxième partie la suppression directe et passive de la rétrodiffusion Brillouin stimulée dans une fibre optique micro structurée en faisant varier périodiquement le diamètre de la microstructure. Une augmentation de 4 dB du seuil de puissance Brillouin a été obtenue avec une variation de seulement 7% sur une période de 30m. Ce résultat est très intéressant car la diffusion Brillouin est un facteur limitant dans les systèmes de télécommunications par fibre optique et les lasers à fibre. La troisième et dernière partie est consacrée à l’étude numérique et expérimentale de la diffusion Brillouin en avant dans les fibres à cristaux photoniques. En plus de la suppression de la plupart des modes acoustiques transverses, nous montrons que cette diffusion Brillouin est fortement augmentée pour certains modes acoustiques à haute fréquence qui sont piégés au cœur de la microstructure. Nous avons également étudié une fibre à structure multi-échelle qui révèle l’excitation sélective de plusieurs phonons acoustiques à des fréquences allant jusqu’a 2GHz. Ces mesures ont étés confirmées par des simulations numériques basées sur une méthode vectorielle aux éléments finis. L’impact des irrégularités de la microstructure a aussi été mis en évidence.Mots clés : optique non linéaire, diffusion Brillouin, fibres optiques microstructurées, seuil Brillouin, capteurs Brillouin distribués. / Brillouin scattering is a fundamental nonlinear opto-acoustic interaction present in optical fibers with important implications in fields ranging from modern telecommunication networks to smart optical fiber sensors. This thesis is aimed at providing a comprehensive theoretical and experimental investigation of both forward and backward Brillouin scattering in next generation photonic crystal fibers in view of potential applications to above mentioned fields. We show in particular that these micro-structured optical fibers have the remarkable ability to either suppress or enhance photon-phonon interactions compared to what is commonly observed in conventional fibers. Firstly, this thesis provides a complete experimental characterization of several photonic crystal fibers using a novel highly-resolved distributed sensing technique based on Brillouin echoes. We perform distributed measurements that show both short-scale and long-scale longitudinal fluctuations of the periodic wavelength-scale air-hole microstructure along the fibers. Our mapping technique is very sensitive to structural irregularities and thus interesting for fiber manufacturers to characterize and improve the fiber uniformity during the drawing process. With this technique, we also report the first experimental observationof the acoustic decay time and the Brillouin linewidth broadening in both standard and photonic crystal fibers. Furthermore, we experimentally demonstrate a simplified architecture of our Brillouin echoes-based distributed optical fiber sensor with centimeter spatial resolution. It is based on differential phase-shift keying technique using a single Mach-Zehnder modulator to generate a pump pulse and a _-phase-shifted pulse with an easy and accurate adjustment of delay. These sensing techniques are also applied to distributed strain measurement. Another aspect of this thesis is the investigation of a novel method for suppressing stimulated Brillouin scattering that is detrimental to optical fiber transmissions and fiber lasers. We experimentally study several fibers and a demonstrate 4 dB increase of the Brillouin threshold in a photonic crystal fiber by varying periodically the core diameter by only7%. The efficiency of this passive technique is verified by use of our distributed sensing technique where the oscillating Brillouin frequency shift is clearly observed.Lastly, we present experimental and numerical results demonstrating the simultaneous vi Abstract frequency-selective excitation of several guided acoustic Brillouin modes in a photonic crystal fiber with a multi-scale structure design. These guided acoustic modes are identified by using a full vector finite-element model to result from elastic radial vibrations confined by the air-silica microstructure. We further show the strong impact of structural irregularities of the fiber on the frequency and modal shape of these acoustic resonances
42

Projeto e construção de um amplificador paramétrico óptico operando no infravermelho médio / Design and construction of an optical parametric amplifier operating in the mid-infrared

Mendonça, Marcela de Freitas 24 May 2010 (has links)
Um Amplificador Paramétrico Óptico (optical parametric amplifier - OPA) é uma fonte de luz coerente, de alta qualidade e sintonizável, baseada em processos ópticos não-lineares de segunda ordem. Alguns modelos possuem largura de banda estreita e um amplo intervalo de sintonia, podendo alcançar regiões que vão desde o ultravioleta até o infravermelho médio. A nossa motivação para construir este amplificador paramétrico óptico é sua utilização em experimentos de espectroscopia vibracional de superfícies através do processo óptico não-linear de segunda ordem, geração de soma de frequências (sum-frequency generation - SFG), que é uma técnica que exige fontes sintonizáveis no infravermelho médio e com altas intensidades de pico e largura de banda estreita. O objetivo desse trabalho foi projetar, montar e testar um amplificador paramétrico óptico capaz de produzir pulsos sintonizáveis de alta energia no infravermelho médio (λ ~ 2,5 a 10 μm) a partir de um laser de bombeio que fornece pulsos de 25 ps, com alta energia em λ = 1064 nm. Para obter-se uma geração de infravermelho bastante eficiente, foi proposto um projeto inovador para amplificadores paramétricos de picossegundos, utilizando-se a geração de supercontínuo de luz branca como feixe sinal do estágio de amplificação paramétrica. O pulso de bombeio (λ = 1064 nm) é dividido em duas partes: a primeira, de menor energia, é utilizada para gerar um pulso de alta largura espectral no infravermelho próximo (supercontínuo de luz branca de picossegundos). Uma fração espectral desse pulso é selecionada através de um monocromador e utilizada como semente do estágio de amplificação paramétrica. O cristal amplificador paramétrico (sulfeto de prata e gálio, AgGaS2) é então bombeado pelo restante do pulso de bombeio e simultaneamente amplifica a semente sintonizável no infravermelho próximo e gera um novo pulso de frequência complementar no infravermelho médio. Foram testados vários meios para geração de supercontínuo, mas os melhores resultados foram obtidos em uma cubeta de 10 cm de comprimento com uma mistura de água e água deuterada (3 % em volume de H2O em D2O) e em uma fibra fotônica não-linear com 2 m de comprimento. Usando o supercontínuo como feixe semente, observou-se amplificação paramétrica no caso do feixe gerado na fibra fotônica com um ganho de 260 vezes, mas não com o feixe gerado na mistura de água/água deuterada, presumivelmente pela maior instabilidade desse supercontínuo. / An Optical Parametric Amplifier (OPA) is a tunable light source of high quality, coherent radiation, based on second-order nonlinear optical processes. Some models have a narrow spectral bandwidth and a tuning range from the ultraviolet to the mid-infrared. The motivation for building this optical parametric amplifier is its use in vibrational spectroscopy of surfaces by a second-order nonlinear optical process, sum-frequency generation (SFG), which is a technique that requires tunable sources in the mid-infrared with narrow bandwidth and high peak intensities. The purpose of this work is to design, implement and test an OPA to generate tunable high energy pulses tuneable in the mid-infrared (λ ~ 2.5 to 10 μm) from a pumping laser that provides 25 ps pulses with high energy at λ = 1064 nm. For an efficient mid-infrared generation, we propose an innovative design for picosecond parametric amplifiers, using the near infrared portion of a white-light supercontinuum pulse as the seed beam for the parametric amplifier. The pump pulse (λ = 1064 nm) is divided into two parts: the first one, with lower energy, generates a high spectral width pulse in the near infrared (white-light supercontinuum picosecond pulse). A spectral fraction of this pulse is selected through a monochromator and is used as seed for the parametric amplification stage. The second part of the laser beam pumps the parametric amplifier crystal (silver gallium sulfide, AgGaS2) which simultaneously amplifies the tunable seed beam in the near infrared and generates a new pulse with complementary frequency in the mid-infrared. Several media were tested for supercontinuum generation, but the best results were obtained with a 10 cm long cuvette with a mixture of water and deuterated water (3 % volume of H2O in D2O) and with a 2 m long nonlinear photonic crystal fiber. Using the supercontinuum as a seed beam, we have obtained parametric amplification of the seed generated by the photonic fiber with a gain of 260 times, but not of the beam generated by the water mixture, presumably because of its significantly higher instability.
43

Hybrid nanophotonic elements and sensing devices based on photonic crystal structures

Barth, Michael 12 July 2010 (has links)
Die vorliegende Forschungsarbeit widmet sich der Entwicklung und Untersuchung neuartiger photonischer Kristallstrukuren für Anwendungen in den Gebieten der Nanophotonik und Optofluidik. Dabei konzentriert sich eine erste Serie von Experimenten auf die Charakterisierung und Optimierung photonischer Kristallresonatoren im sichtbaren Spektralbereich, wobei bisher unerreichte Resonatorgüten von bis zu 3400 gezeigt werden können. Diese Strukturen werden anschließend als Plattformen zur Herstellung von hybriden nanophotonischen Bauelementen verwendet, indem externe Partikel (wie z.B. Diamant-Nanokristalle und Metall-Nanopartikel) in kontrollierter Art und Weise an die Resonatoren gekoppelt werden. Zu diesem Zweck wird eine Nanomanipulationsmethode entwickelt, welche Rastersonden zur gezielten Positionierung und Anordnung von Partikeln auf den photonischen Kristallstrukturen benutzt. Verschiedene Arten solcher Hybridelemente werden realisiert und untersucht, einschließlich diamant-gekoppelter Resonatoren, plasmon-gekoppelter Resonatoren und Metall-Diamant Hybridstrukturen. Außer für Anwendungen auf dem Gebiet der Nanophotonik werden verschiedene photonische Kristallstrukturen auch hinsichtlich ihres Leistungsvermögens als biochemische Sensorelemente erforscht. Zum ersten Mal wird eine umfassende numerische Analyse der optischen Kräfte auf Objekte im Nahfeld photonischer Kristallresonatoren durchgeführt, welche neue Möglichkeiten zum Einfang sowie zur Detektion und Untersuchung biologischer Partikel in integrierten optofluidischen Bauteilen bieten. Weiterhin werden unterschiedliche photonische Kristallfasern bezüglich ihrer Detektionssensitivität in Absorptions- und Fluoreszenzmessungen untersucht, wobei sich eine klare Überlegenheit von selektiv befüllten Hohlkern-Designs im Vergleich zu Festkern-Fasern offenbart. / This thesis deals with the development and investigation of novel photonic crystal structures for applications in nanophotonics and optofluidics. Thereby, a first series of experiments focuses on the characterization and optimization of photonic crystal cavities in the visible wavelength range, demonstrating unprecedented cavity quality factors of up to 3400. These structures are subsequently employed as platforms for the creation of advanced hybrid nanophotonic elements by coupling external particles (such as diamond nanocrystals and metal nanoparticles) to the cavities in a well-controlled manner. For this purpose, a nanomanipulation method is developed, utilizing scanning probes for the deterministic positioning and assembly of particles on the photonic crystal structures. Various types of such hybrid elements are realized and investigated, including diamond-coupled cavities, plasmon-coupled cavities, and metal-diamond hybrid structures. Apart from applications in nanophotonics, different types of photonic crystal structures are also studied with regard to their performance as biochemical sensing elements. For the first time a thorough numerical analysis of the optical forces exerted on objects in the near-field of photonic crystal cavities is conducted, providing novel means to trap, detect, and investigate biological particles in integrated optofluidic devices. Furthermore, various types of photonic crystal fibers are studied with regard to their detection sensitivity in absorption and fluorescence measurements, revealing a clear superiority of selectively infiltrated hollow-core designs in comparison to solid-core fibers.
44

Projeto e construção de um amplificador paramétrico óptico operando no infravermelho médio / Design and construction of an optical parametric amplifier operating in the mid-infrared

Marcela de Freitas Mendonça 24 May 2010 (has links)
Um Amplificador Paramétrico Óptico (optical parametric amplifier - OPA) é uma fonte de luz coerente, de alta qualidade e sintonizável, baseada em processos ópticos não-lineares de segunda ordem. Alguns modelos possuem largura de banda estreita e um amplo intervalo de sintonia, podendo alcançar regiões que vão desde o ultravioleta até o infravermelho médio. A nossa motivação para construir este amplificador paramétrico óptico é sua utilização em experimentos de espectroscopia vibracional de superfícies através do processo óptico não-linear de segunda ordem, geração de soma de frequências (sum-frequency generation - SFG), que é uma técnica que exige fontes sintonizáveis no infravermelho médio e com altas intensidades de pico e largura de banda estreita. O objetivo desse trabalho foi projetar, montar e testar um amplificador paramétrico óptico capaz de produzir pulsos sintonizáveis de alta energia no infravermelho médio (λ ~ 2,5 a 10 μm) a partir de um laser de bombeio que fornece pulsos de 25 ps, com alta energia em λ = 1064 nm. Para obter-se uma geração de infravermelho bastante eficiente, foi proposto um projeto inovador para amplificadores paramétricos de picossegundos, utilizando-se a geração de supercontínuo de luz branca como feixe sinal do estágio de amplificação paramétrica. O pulso de bombeio (λ = 1064 nm) é dividido em duas partes: a primeira, de menor energia, é utilizada para gerar um pulso de alta largura espectral no infravermelho próximo (supercontínuo de luz branca de picossegundos). Uma fração espectral desse pulso é selecionada através de um monocromador e utilizada como semente do estágio de amplificação paramétrica. O cristal amplificador paramétrico (sulfeto de prata e gálio, AgGaS2) é então bombeado pelo restante do pulso de bombeio e simultaneamente amplifica a semente sintonizável no infravermelho próximo e gera um novo pulso de frequência complementar no infravermelho médio. Foram testados vários meios para geração de supercontínuo, mas os melhores resultados foram obtidos em uma cubeta de 10 cm de comprimento com uma mistura de água e água deuterada (3 % em volume de H2O em D2O) e em uma fibra fotônica não-linear com 2 m de comprimento. Usando o supercontínuo como feixe semente, observou-se amplificação paramétrica no caso do feixe gerado na fibra fotônica com um ganho de 260 vezes, mas não com o feixe gerado na mistura de água/água deuterada, presumivelmente pela maior instabilidade desse supercontínuo. / An Optical Parametric Amplifier (OPA) is a tunable light source of high quality, coherent radiation, based on second-order nonlinear optical processes. Some models have a narrow spectral bandwidth and a tuning range from the ultraviolet to the mid-infrared. The motivation for building this optical parametric amplifier is its use in vibrational spectroscopy of surfaces by a second-order nonlinear optical process, sum-frequency generation (SFG), which is a technique that requires tunable sources in the mid-infrared with narrow bandwidth and high peak intensities. The purpose of this work is to design, implement and test an OPA to generate tunable high energy pulses tuneable in the mid-infrared (λ ~ 2.5 to 10 μm) from a pumping laser that provides 25 ps pulses with high energy at λ = 1064 nm. For an efficient mid-infrared generation, we propose an innovative design for picosecond parametric amplifiers, using the near infrared portion of a white-light supercontinuum pulse as the seed beam for the parametric amplifier. The pump pulse (λ = 1064 nm) is divided into two parts: the first one, with lower energy, generates a high spectral width pulse in the near infrared (white-light supercontinuum picosecond pulse). A spectral fraction of this pulse is selected through a monochromator and is used as seed for the parametric amplification stage. The second part of the laser beam pumps the parametric amplifier crystal (silver gallium sulfide, AgGaS2) which simultaneously amplifies the tunable seed beam in the near infrared and generates a new pulse with complementary frequency in the mid-infrared. Several media were tested for supercontinuum generation, but the best results were obtained with a 10 cm long cuvette with a mixture of water and deuterated water (3 % volume of H2O in D2O) and with a 2 m long nonlinear photonic crystal fiber. Using the supercontinuum as a seed beam, we have obtained parametric amplification of the seed generated by the photonic fiber with a gain of 260 times, but not of the beam generated by the water mixture, presumably because of its significantly higher instability.
45

Técnicas de pós-processamento em fibras de cristal fotônico

Gerosa, Rodrigo Mendes 27 January 2011 (has links)
Made available in DSpace on 2016-03-15T19:37:37Z (GMT). No. of bitstreams: 1 Rodrigo Mendes Gerosa.pdf: 5257410 bytes, checksum: d0ee4897567ff7f2299a46312ebcc2f1 (MD5) Previous issue date: 2011-01-27 / Fundo Mackenzie de Pesquisa / In this work two techniques are described for post-processing photonic crystal fibers (PCFs), which were developed to change their guidance properties. The first technique consists of selectively closing holes of the PCF microstructure, thus allowing, among other things, to fill in some holes with materials such as liquids, polymers and nanoparticles. The other technique consists of selectively collapsing holes in the PCF cross-section using differential pressure and an optical fiber fusion splicer, and is based on techniques previously demonstrated for PCF tapering. With the first technique a simple and effective way of sealing liquid core fibers is demonstrated, which avoids evaporation. The study of PCFs with complex cores formed by the original core of a solid-core fiber and an oil-filled hole adjacent to the core was also undertaken with this technique and provided a strong interaction between light and the filled channel, as well as a high sensitivity to temperature (displacement of 5.35 nm/°C in the observed spectral structures). With the use of the second technique, the collapse of a hole adjacent to the solid core of a PCF allowed the development of a modal Mach-Zehnder allfiber interferometer, with a spectral modulation depth of 9.5 dB, which is similar to that of other PCF modal interferometers reported in the literature, and a sensitivity to temperature of -54 pm/°C, which is about 4 times higher than that of Bragg gratings in conventional optical fibers. The same technique was used to obtain optical coupling between two cores of a photonic crystal fiber with 3 initially uncoupled cores. / Nesse trabalho são descritas duas técnicas de pós-processamento em fibras de cristal fotônico (PCFs, do inglês Photonic Crystal Fibers) desenvolvidas para alterar suas propriedades de guiamento. A primeira consiste em fechar seletivamente buracos da microestrutura das PCF possibilitando assim, entre outras coisas, o preenchimento de alguns buracos com materiais como líquidos, polímeros e nanopartículas. A outra técnica consiste em se colapsar seletivamente buracos da seção transversal da microestrutura de uma PCF utilizando pressão diferencial e uma máquina de emendas para fibras ópticas, sendo baseada em técnicas previamente demonstradas para o afilamento (tapering) de PCFs. Com a utilização da primeira dessas técnicas é apresentada uma maneira simples e eficiente de se vedar fibras com núcleo líquido, evitando-se assim a evaporação. O estudo de PCFs com núcleos complexos, formados pelo núcleo original de uma fibra de núcleo sólido e um buraco adjacente ao núcleo preenchido por óleo foi também realizado com essa técnica, proporcionando uma grande interação da luz com o canal preenchido e uma alta sensibilidade a temperatura (deslocamento de 5,35 nm/°C nas estruturas espectrais observadas). Utilizado-se a segunda técnica, o colapso de um buraco adjacente ao núcleo sólido de uma PCF permitiu o desenvolvimento de um interferômetro modal de Mach-Zehnder totalmente a fibra, apresentando uma profundidade de modulação espectral de 9,5 dB, semelhante à de outros interferômetros modais em PCFs reportados na literatura, e uma sensibilidade a temperatura de -54 pm/°C, cerca de 4 vezes maior do que a de redes de Bragg em fibras ópticas convencionais. A mesma técnica foi utilizada para se obter o acoplamento óptico entre 2 núcleos de uma fibra de cristal fotônico com 3 núcleos inicialmente desacoplados.
46

Dispositivos fotônicos a partir da micromanipulação das propriedades de fibras ópticas

Gerosa, Rodrigo Mendes 26 August 2015 (has links)
Made available in DSpace on 2016-03-15T19:38:54Z (GMT). No. of bitstreams: 1 RODRIGO MENDES GEROSA.pdf: 6396087 bytes, checksum: b904e08a314dcda72a403496699b5206 (MD5) Previous issue date: 2015-08-26 / Fundo Mackenzie de Pesquisa / This thesis describes the development of new photonic devices produced by micromanipulation of the optical fibers properties, i.e., the change, in the micrometer scale, of the fiber s optical and/or geometrical properties. In this context, three lines of research have been followed, using different optical fiber processing techniques and considering different types of devices. In the first line, the coupling of two cores in a photonic crystal fiber with three initially uncoupled cores was demonstrated. The couplers had an insertion loss estimated at ~1 dB and exhibited spectral modulations with a depth up to 18 dB. They also showed high sensitivity to polarization, which can be exploited in fiber polarization beamsplitters. For this work, we used a technique that modifies the fiber structure by applying local differential pressure and heating. In the second line, a Rhodamine dye laser was develop with a fully fiber integrated optofluidic cavity. It was possible to maintain a high flow of the dye solution, up to 400 μL / min, which allowed the use of a pump laser with a high repetition rate (1 kHz), and, at the same time, the degradation of the gain medium was not observed. An optical conversion rate of up to 9% and a pump energy threshold lower than 1 mJ were obtained. A splicing technique was used, in which an angled cleaved capillary fiber was fused to a conventional fiber, thereby leaving a side inlet open for the fluid flow. The third line aimed at the incorporation of carbon nanomaterials to optical fibers. In this case, two approaches were employed: in one of them, polymeric films, with a thickness of 20 μm, containing carbon nanotubes were produced on the face of optical fiber patchcords; such patchcords have been inserted into erbium-doped fiber laser cavities to act as saturable absorbers in order to obtain mode-locking operation. Pulses with durations down to 364 fs were obtained with 10.2 nm bandwidths. The films were formed when a micro-droplet of a carbon nanotube suspension on an optical adhesive was placed on the surface of optical fiber connectors, with the use of a micropipette. Within the same line, photonic crystal fibers (PCFs) with homogeneous graphene oxide films covering the inner walls of their capillaries were obtained. The homogeneity was confirmed by Raman spectroscopy and by the loss per fiber length, as measured by the cut back method. A PCF was also spliced to conventional connectorized fiber patchcords and incorporated into a laser cavity to generate pulses. The film production was consisted of inserting a graphene oxide suspension into the PCF capillaries, after which the solvent was dried. / Essa tese descreve o desenvolvimento de novos dispositivos fotônicos produzidos a partir da micromanipulação das propriedades de fibras ópticas, isto é, da alteração em escala micrométrica, das propriedades ópticas e/ou geométricas destas. Nesse contexto, três linhas de trabalho foram seguidas, utilizando diferentes técnicas de processamento de fibras ópticas e levando à demonstração de diferentes tipos de dispositivos. Na primeira linha foi demostrado o acoplamento de dois núcleos em uma fibra de cristal fotônico com três núcleos inicialmente desacoplados. Os acopladores apresentaram uma perda de inserção estimada de ~1 dB e exibiram modulações espectrais com uma profundidade de até 18 dB. Apresentaram também uma sensibilidade elevada à polarização, que pode ser explorada em divisores de polarização (polarization beamsplitters) a fibra. Para isso foi utilizada uma técnica de alteração da estrutura da fibra através da aplicação de pressão diferencial e aquecimento local,. Na segunda linha foi desenvolvido um laser do corante Rodamina com uma cavidade optofluídica totalmente integrada em fibra. Nela, era possível manter um alto fluxo da solução de corante, de até 400 μl/min, o que permitiu utilizar um laser de bombeio com alta taxa de repetição (1kHz) sem observar-se degradação do meio de ganho. Uma taxa de conversão óptica de até 9% e uma energia de limiar (threshold) menor que 1 μJ foram obtidas. Utilizou-se aqui uma técnica de emenda através da qual uma fibra capilar clivada em ângulo era emendada com uma fibra convencional, deixando assim uma entrada lateral para fluidos. A terceira linha visou incorporar nanomateriais de carbono a fibras ópticas. Nesse caso duas abordagens foram empregadas: em uma, filmes poliméricos com espessuras de 20 μm e contendo nanotubos de carbono foram produzidos na face de conectores de cordões de fibra ópticas; esse cordões foram inseridos em cavidades laser a fibra dopada com érbio para atuar como absorvedores saturáveis para a obtenção de mode locking. Com isso foram obtidos pulsos de até 364 fs e espectros com larguras de banda de 10,2 nm. Os filmes foram formados a partir de uma microgota de uma suspensão de nanotubos de carbono em adesivos ópticos que foi colocada sobre a face de conectores de fibra óptica com uma micropipeta. Ainda na mesma linha obtiveram-se fibras de cristal fotônico (PCFs) com filmes de óxido de grafeno homogêneos no interior de seus capilares. A homogeneidade foi comprovada através de espectroscopia Raman e pela medida da perda em função do comprimento das fibras, realizada através do método cut back. Uma PCF foi, ainda, emendada a cordões de fibra convencional conectorizados e incorporada a cavidades laser para geração de pulsos. A produção dos filmes foi realizada através da inserção de uma suspensão de óxido de grafeno nos capilares de PCFs de núcleo sólido, após o qual o solvente era secado.
47

Sources lasers déclenchées nanosecondes : Applications à la spectroscopie Raman cohérente sous champ électrique / Nanosecond pulsed lasers : Applications of coherent Raman spectroscopy by electric field excitation

El bassri, Farid 08 December 2014 (has links)
Du fait de leur compacité, leur robustesse et leur faible coût, les microlasers impulsionnels nanosecondes constituent des sources particulièrement attractives pour de nombreux systèmes de détection et d'analyse, en particulier les cytomètres en flux ou les dispositifs pour la spectroscopie CARS (Coherent Raman Anti Stokes Scattering). Cependant, ces applications nécessitent des performances améliorées en ce qui concerne la gigue temporelle et la cadence de répétition accessible. Dans sa première partie, cette thèse propose des solutions originales pour atteindre les performances requises à partir de microlasers passivement déclenchés, grâce à la mise en oeuvre d'une cavité hybride couplée, pompée par une onde modulée en intensité. Une cadence de répétition supérieure à 30 kHz avec une gigue demeurant inférieure à 200 ns est atteinte. Le potentiel de microlasers à fibres déclenchés par modulation du gain pour monter en cadence est aussi évalué, montrant que des impulsions à faible gigue, à une cadence de plus de 2 MHz peuvent être produites. Enfin, la dernière partie est consacrée à la mise au point et à l'exploitation d'un nouveau système de spectroscopie CARS assisté par une excitation électrique haute tension. Ce dispositif, réalisé à partir d'un microlaser amplifié, permet de s'affranchir du bruit de fond non résonnant des mesures et de réaliser une analyse spectroscopique fine de la réponse de différents milieux d'intérêt sous champ continu ou impulsionnel, pouvant conduire à une nouvelle méthode de microdosimétrie de champ. Diverses applications, dont la granulométrie à l'échelle micro ou nanométrique ou l'identification de marqueurs pour la biologie, sont démontrées. / Thanks to their compactness, robustness and low cost, pulsed nanosecond microlasers are particularly attractive sources for different detection and analysis systems, particularly flow cytometers or devices for CARS (Coherent Anti Raman Stokes Scattering) spectroscopy. However, these applications require reduced time jitter and increased repetition rate. The first part of this thesis proposes novel solutions to achieve the required performance from passively Q-switched microlasers, which are based on an hybrid coupled-cavity and intensitymodulated pump wave. A repetition rate greater than 30 kHz with jitter remaining lower than 200 ns is reached. Pulsed fiber microlasers operating by gain switching are also studied, showing that pulses with low timing jitter, at a repetition rate of more than 2 MHz can be obtained. The last part is devoted to the development and the implementation of a new system of CARS spectroscopy assisted by a high-voltage electrical stimulation. This device, based on an amplified microlaser, allows to substract the non-resonant background noise in the measurements. Thus, a fine spectroscopic analysis of the response of different environments of interest in continuous or pulsed field can be achieved. It may lead to a new method for field microdosimetry. Various applications, including granulometry at the micro or nanometric scale and the identification of markers for biology, are shown.
48

Development of a method to overcome the power threshold during supercontinuum generation based on an Yb-doped photonic crystal fiber

Baselt, Tobias, Taudt, Christopher, Nelsen, Bryan, Lasagni, Andrés Fabián, Hartmann, Peter 16 September 2019 (has links)
Optical coherence tomography benefits from the high brightness and bandwidth, as well as the spatial coherence of supercontinuum (SC) sources. The increase of spectral power density (SPD) over conventional light sources leads to shorter measuring times and higher resolutions. For some applications, only a portion of the broad spectral range can be used. Therefore, an increase of the SPD in specific limited spectral regions would provide a clear advantage over spectral filtering. This study describes a method to increase the SPD of SC sources by amplifying the excitation wavelength inside of a nonlinear photonic crystal fiber (PCF). An ytterbium-doped PCF was manufactured by a nanopowder process and used in a fiber amplifier setup as the nonlinear fiber medium. The performance of the fiber was compared with a conventional PCF that possesses comparable parameters. Finally, the system as a whole was characterized in reference to common solid-state laser-based photonic SC light sources. An order-of-magnitude improvement of the power density was observed between the wavelengths from 1100 to 1350 nm.
49

Sources fibrées de paires de photons : caractérisation et influence de la non-uniformité / Fibered photon-pair sources : characterization and influence of nonuniformity

Harlé, Thibault 20 December 2018 (has links)
Les sources de paires de photons constituent un bloc de base pour les technologies de traitement et transmission de l'information quantique. Une source consistant en une fibre microstructurée à coeur liquide permet à la fois une réduction du bruit de diffusion Raman, une adaptation simple et efficace aux réseaux de télécommunication quantique, et l'ajustement de ses propriétés d'émission par ingénierie de la microstructure et choix du liquide non linéaire. Ces recherches se concentrent sur l'étude de l'émission de paires de photons d'une telle source, et du mélange à quatre ondes à leur origine. Nous soulignons le manque d'une description quantitative correcte des phénomènes non linéaires à l'origine des paires dans les modèles existants, et en proposons un se basant sur le champ D pour y parvenir. Nous mettons expérimentalement en évidence l'inconsistance avec la forme de spectre usuellement attendue les sources de paires de photons. Pour l'expliquer, nous développons un modèle rendant compte de la non-uniformité du guide, soit la variation de ses propriétés de propagation sur sa longueur. Par une approche analytique initiale simple de cette caractéristique, nous exposons l'étalement du spectre et la diminution du taux maximum d'émission de paires. Une description numérique par morceaux apporte une description plus proche de la réalité et met en lumière la très forte sensibilité du spectre à la non-uniformité. Un autre effet de cette dernière se traduit par la différenciation du spectre selon le sens de propagation de la lumière dans le guide. Lors de l'intrication en polarisation des paires dans un dispositif de type boucle Sagnac, cette non-réciprocité dégrade la visibilité des paires. Pour compenser cet effet, nous proposons une solution simple de symétrisation du profil des fibres à leur fabrication, appuyée par de premiers résultats encourageants. Cette étude ouvre la voie à la prise en compte des non-uniformités inhérentes aux guides réels, impactant fortement leur émission de paires de photons. / Photon-pair sources are a basic block for implementation of quantum information and telecommunication. A microstructured fibered source with liquid core induce a Raman scattering noise reduction, and at the same time allows a simple and lossless coupling to telecom network, with an engineering of its emission properties through the structure and liquid choices. This work focus on four-wave mixing leading to photon pairs emission in such a source. As existing models lack a correct emph{quantitative} description of nonlinear phenomena for pairs emission, we propose here one based on the D field to do so. We show a mismatch between the spectrum form usually expected and the experimental one. To explain this, we develop a model describing the effects of guide nonuniformity, meaning variation of its propagation properties along itself. Through an initial and simple analytical approach, we demonstrate the spectrum spreading and the diminution of the maximum of emission pairs rate. With a piece-wise numerical description for real guides, we highlight the very strong sensitivity of the emission spectrum towards nonuniformity. Another effect arising from this feature is the spectrum differentiation depending on the propagation direction within the guide. Upon pairs polarization entanglement by inserting the guide into a Sagnac loop interferometer, such nonreciprocity induces a deterioration of pairs visibility. In order to counteract this effect, we propose, based on first encouraging results, a simple solution involving a symmetrization of fibers profile during their manufacture. This study paves the way for taking into account inherent nonuniformity of real waveguides, which strongly impacts their photon pair emission.
50

Specialty Fiber Lasers and Novel Fiber Devices

Jollivet, Clemence 01 January 2014 (has links)
At the Dawn of the 21st century, the field of specialty optical fibers experienced a scientific revolution with the introduction of the stack-and-draw technique, a multi-steps and advanced fiber fabrication method, which enabled the creation of well-controlled micro-structured designs. Since then, an extremely wide variety of finely tuned fiber structures have been demonstrated including novel materials and novel designs. As the complexity of the fiber design increased, highly-controlled fabrication processes became critical. To determine the ability of a novel fiber design to deliver light with properties tailored according to a specific application, several mode analysis techniques were reported, addressing the recurring needs for in-depth fiber characterization. The first part of this dissertation details a novel experiment that was demonstrated to achieve modal decomposition with extended capabilities, reaching beyond the limits set by the existing mode analysis techniques. As a result, individual transverse modes carrying between ~0.01% and ~30% of the total light were resolved with unmatched accuracy. Furthermore, this approach was employed to decompose the light guided in Large-Mode Area (LMA) fiber, Photonic Crystal Fiber (PCF) and Leakage Channel Fiber (LCF). The single-mode performances were evaluated and compared. As a result, the suitability of each specialty fiber design to be implemented for power-scaling applications of fiber laser systems was experimentally determined. The second part of this dissertation is dedicated to novel specialty fiber laser systems. First, challenges related to the monolithic integration of novel and complex specialty fiber designs in all-fiber systems were addressed. The poor design and size compatibility between specialty fibers and conventional fiber-based components limits their monolithic integration due to high coupling loss and unstable performances. Here, novel all-fiber Mode-Field Adapter (MFA) devices made of selected segments of Graded Index Multimode Fiber (GIMF) were implemented to mitigate the coupling losses between a LMA PCF and a conventional Single-Mode Fiber (SMF), presenting an initial 18-fold mode-field area mismatch. It was experimentally demonstrated that the overall transmission in the mode-matched fiber chain was increased by more than 11 dB (the MFA was a 250 ?m piece of 50 ?m core diameter GIMF). This approach was further employed to assemble monolithic fiber laser cavities combining an active LMA PCF and fiber Bragg gratings (FBG) in conventional SMF. It was demonstrated that intra-cavity mode-matching results in an efficient (60%) and narrow-linewidth (200 pm) laser emission at the FBG wavelength. In the last section of this dissertation, monolithic Multi-Core Fiber (MCF) laser cavities were reported for the first time. Compared to existing MCF lasers, renown for high-brightness beam delivery after selection of the in-phase supermode, the present new generation of 7-coupled-cores Yb-doped fiber laser uses the gain from several supermodes simultaneously. In order to uncover mode competition mechanisms during amplification and the complex dynamics of multi-supermode lasing, novel diagnostic approaches were demonstrated. After characterizing the laser behavior, the first observations of self-mode-locking in linear MCF laser cavities were discovered.

Page generated in 0.0658 seconds