• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 53
  • 9
  • 7
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 157
  • 157
  • 157
  • 45
  • 42
  • 40
  • 36
  • 28
  • 24
  • 18
  • 14
  • 13
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Optimization of Recombinant Protein Production by a Fungal Host

Gheshlaghi, Reza January 2007 (has links)
The natural ability of filamentous fungi to synthesize, glycosylate, and secrete high levels of protein products has made them potentially attractive hosts for heterologous protein production. Advances in fungal genetics enabled the expression of several high value proteins in filamentous fungi. Particularly the genus, Aspergillus has proven to be potentially useful for the expression of eukaryotic gene products. This thesis pertains to the optimization of recombinant protein production by the fungal host, Aspergillus niger. The target recombinant protein of interest is hen egg white lysozyme (HEWL). This protein encoded in the genome resulting in relatively stable gene construct; however, it is subject to extracellular protease attack. The objective of the proposed research is the development and application of engineering methodology for the analysis and optimization of a fungal bioprocess for recombinant protein production. The underlying hypothesis is that a significant improvement of target protein productivity is achievable by using appropriate optimization techniques. To accomplish this, during the first phase of this study a statistically based experimental method was used to systematically elucidate the effect of medium components (starch, peptone, ammonium sulfate, yeast extract, and CaCl₂.2H₂O) on hen egg white lysozyme production by Aspergillus niger HEWL WT-13-16. A 2⁵⁻¹ fractional factorial design augmented with center points revealed that peptone, starch, and ammonium sulfate were the most significant factors, whereas the other medium components were not important within the levels tested. Then, the method of steepest ascent was employed to approach the proximity of optimum. This task was followed by a central composite design to develop a response surface for medium optimization. The optimum medium composition for lysozyme production was found to be: starch 34 g/L, peptone 34 g/L, ammonium sulfate 11.9 g/L, yeast extract 0.5 g/L, and CaCl₂.2H₂O 0.5 g/L. This medium was projected to produce theoretically 212 mg/L lysozyme. Using this optimized medium, an experimentally observed maximum lysozyme concentration of 209±18 mg/L verified the applied methodology. A second optimization approach was based on metabolic flux analysis (MFA). A comprehensive metabolic network comprising three intracellular compartments (cytoplasm, mitochondrion and peroxisome) was developed for Aspergillus niger. The metabolic flux network included carbohydrate and amino acid metabolism in both anabolic and catabolic reactions. According to experimental observations, the time course of fermentation was divided into five phases, each with unique physiological properties. The network was used to form a set of linear algebraic equations based on the stoichiometry of the reactions by assuming pseudo-steady state for intracellular metabolites. The metabolic flux model consists of 137 metabolites and 287 processes, of which 181 represent biochemical conversions and 106 represent transport processes between the different compartments and the extracellular environment. In addition, due to the physiological evidence some biochemical reactions considered to be active only in one direction. Linear programming was used for optimizing of the specific growth rate as the objective function in combination with 37 measured input and output fluxes of the key metabolites to evaluate corresponding intracellular flux distributions throughout the batch fermentations. The general applicability of the methodology was evaluated by establishing commonality to optimize recombinant HEWL production. The proposed model was able to predict correctly the specific growth rate, oxygen uptake rate, and carbon dioxide evolution rate with good precision. The results of the metabolic flux and sensitivity analysis were employed for medium design. Growth was biphasic; glucose was utilized initially as the carbon source and was followed by its oxidation product, gluconate, later. Logarithmic sensitivity analysis revealed that the addition of proline, alanine and glutamate benefited growth in defined media. The experimental observations and flux analysis showed that tyrosine was a potential candidate for biomass production improvement. The two amino acids, namely proline and tyrosine benefited biomass production during the initial growth phases. Glutamate and alanine were particularly important during the latter stages of the batch process. A series of growth studies were conducted with the identified amino acids added in the medium. In these preliminary nutritional experiments the contribution to growth enhancement was 46% for proline, 23% for glutamate, and 22% for tyrosine. Model predictions were further verified by conducting batch and fed-batch fermentations in a 7- liter bioreactor. The programmed addition of four amino acids (proline, glutamate, alanine, and tyrosine) according to a predetermined schedule resulted in a 44% improvement in biomass and 41% improvement in recombinant protein production. The experiments also confirmed the model prediction that extra amount of amino acids besides the identified ones would not significantly enhance biomass and the recombinant protein production. A computer-based control system was developed for the on-line monitoring and control of the major state variables (e.g., temperature, pH, and DO) during the time course of fermentation. The graphical programming environment, LabVIEW was used to acquire and integrate these variables in a supervisor computer. The temperature of the bioreactor during sterilization and fermentation was controlled using a cascade methodology. The controller parameters of the master and slave loops were determined experimentally to yield a smooth response with minimum overshoot of both the bioreactor and jacket temperatures. The program scheduled various required steps in an established order during the fermentation. This feature of the software guarantees that every necessary operation will be met. The graphical representation of the process is displayed on the screen and helps the user to follow the process and perform the required adjustments. Furthermore, different variables can be observed simultaneously and saved in text or spreadsheet files for further analysis.
102

Some Contributions to Design Theory and Applications

Mandal, Abhyuday 13 June 2005 (has links)
The thesis focuses on the development of statistical theory in experimental design with applications in global optimization. It consists of four parts. In the first part, a criterion of design efficiency, under model uncertainty, is studied with reference to possibly nonregular fractions of general factorials. The results are followed by a numerical study and the findings are compared with those based on other design criteria. In the second part, optimal designs are dentified using Bayesian methods. This work is linked with response surface methodology where the first step is to perform factor screening, followed by response surface exploration using different experiment plans. A Bayesian analysis approach is used that aims to achieve both goals using one experiment design. In addition we use a Bayesian design criterion, based on the priors for the analysis approach. This creates an integrated design and analysis framework. To distinguish between competing models, the HD criterion is used, which is based on the pairwise Hellinger distance between predictive densities. Mixed-level fractional factorial designs are commonly used in practice but its aliasing relations have not been studied in full rigor. These designs take the form of a product array. Aliasing patterns of mixed level factorial designs are discussed in the third part. In the fourth part, design of experiment ideas are used to introduce a new global optimization technique called SELC (Sequential Elimination of Level Combinations), which is motivated by genetic algorithms but finds the optimum faster. The two key features of the SELC algorithm, namely, forbidden array and weighted mutation, enhance the performance of the search procedure. Illustration is given with the optimization of three functions, one of which is from Shekel's family. A real example on compound optimization is also given.
103

Recombinant Therapeutic Protease Production By Bacillus Sp.

Korkmaz, Nuriye 01 August 2007 (has links) (PDF)
The first aim of this study is the development of extracellular recombinant therapeutic protease streptokinase producing Bacillus sp., and the second aim is to determine fermentation characteristics for streptokinase production. In this context, the signal (pre-) DNA sequence of B.licheniformis (DSM1969) extracellular serine alkaline protease enzyme gene (subC: Acc. No. X03341) was ligated to 5&rsquo / end of the streptokinase gene (skc: Acc. No. S46536) by SOE (Gene Splicing by Overlap Extension) method through PCR. The resulting hybrid gene pre(subC)::skc was cloned into the pUC19 plasmid. Then, the hybrid gene was sub-cloned to pMK4 plasmid which is an E. coli-Bacillus shuttle vector with high copy number and high stability. Recombinant plasmid pMK4::pre(subC)::skc was finally transferred into B. subtilis (npr- apr-) and B. licheniformis 749/C (ATCC 25972) species. Streptokinase production capacities of these two recombinant Bacillus species were compared. The highest production was observed in recombinant B. lichenifomis 749/C (ATCC 25972) strain in a defined medium which was optimized in terms of carbon and nitrogen sources by a statistical approach, namely Response Surface Methodology (RSM). RSM evaluated the streptokinase concentration as the response and the medium components as the independent variables. The highest recombinant streptokinase concentration was found as 0.0237 kgm-3 at glucose and (NH4)2HPO4 concentrations of 4.530 and 4.838 kgm-3 respectively. The fermentation and oxygen transfer characteristics of the streptokinase production were investigated in a 3 dm3 pilot scale batch bioreactor (Braun CT2-2) equipped with temperature, pH, foam, air inlet and agitation rate controls having a working volume of VR=1.65 dm3 using the production medium optimized for the recombinant B. lichenifomis 749/C (ATCC 25972) strain. Streptokinase and &amp / #946 / -lactamase activities, cell, glucose and organic acid concentrations, dissolved oxygen, pH, oxygen uptake rate, overall liquid phase mass transfer coefficient for oxygen, maintenance coefficient for oxygen, specific cell growth rate and yield coefficients were determined through the bioprocess. The bioprocess of recombinant streptokinase production was performed at uncontrolled pH of these bioreactor operation conditions: air inlet rate of Q0/VR=0.5 vvm, and the agitation rate of N=400min-1. The resulting streptokinase volumetric activity reached its maximum as 1.16 PUml-1 (0.0026 g/l streptokinase) at t=20 h.
104

Optimization Of Mannanase Production From Recombinant Aspergillus Sojae And Analysis Of Galactomannan Hydrolysis

Ozturk, Bengu 01 April 2008 (has links) (PDF)
Aspergillus fumigatus produces enzymes required for the hydrolysis of galactomannans like locust bean gum. Among these enzymes endo-beta-1,4 mannanase is also produced at high levels. However, the fungus is not safe for use in the food industry. Therefore, the gene encoding endo-beta-1,4-mannanase of A. fumigatus IMI 385708 was previously cloned in our laboratory into Aspergillus sojae ATCC11906 which is a safe microorganism for use in food applications. Altogether eight transformants were obtained. It was shown that some of these transformants overproduce the enzyme because of expression under the control of glyceraldehyde-3-phosphate dehydrogenase promoter and fusion to the glucoamylase signal and pro-peptide coding region of Aspergillus niger. In this study, mannanase production of these transformants was compared with A. fumigatus and A. sojae transformant AsT1 showed c. 12 fold increase with the maximum activity of 352 U/ml. The effects of initial medium pH and number of spores on activity were investigated and maximum activity was achieved at pH 7.0 and the number of spores was found as 3.6 &times / 106. Optimization of the growth conditions for maximum mannanase production in shake flasks by using the best mannanase producing transformant AsT1 was carried out by using Box-Behnken design under Response Surface Methodology. The highest beta-mannanase activity on the fourth day of cultivation at 30 &ordm / C was obtained as 363 U/ml in the optimized medium containing 7% sugar beet molasses, 0.43% NH4NO3, 0.1% K2HPO4, 0.05% MgSO4 as the weight/volume percentage at 207 rpm. On sixth day of cultivation under the optimized conditions, the highest mannanase activity was achieved as 482 U/ml which is 1.4 fold of 352 U/ml activity found on glucose medium previously. After 48 h of LBG hydrolysis by 40 U of mannanase, mannotriose, 61-galactosyl-beta-D-mannotriose and 63,64-di-alpha-galactosyl-beta-1,4-mannopentaose were found as the main products via HPLC analysis.
105

Optimization Of Bioethanol Production From Kitchen Waste

Uncu, Oya Nihan 01 January 2010 (has links) (PDF)
Kitchen waste, which is collected in large amounts from cafeterias, restaurants, dining halls, food processing plants, and household kitchens, have become a valuable material for bioprocess engineering. Due to the high carbohydrate fraction, kitchen waste has great potential to be used as a potential substrate for ethanol production. Utilization of it as a raw material in ethanol fermentation would also contribute to reduction of costs. In the first part of this study, the effect of pretreatment method and enzymatic hydrolysis on glucose production was evaluated. Dry baker&rsquo / s yeast, Saccharomyces cerevisiae, was used in fermentation experiments conducted with and without fermentation medium at pH 4.5 and 30oC for 48 hours. Close values of glucose concentration were obtained from no pretreated and hot water treated samples. The fermentation results indicated that ethanol can be produced at similar concentrations in bioreactors with and without fermentation medium addition (p &gt / 0.05). Thus, it is concluded that use of kitchen wastes as is disposed and without fermentation medium in ethanol fermentation could lower the cost to a large extent. In the second part of this study, the effects of solid load, which is proportional to the glucose concentration (10% to 20% (w/w)), inoculum level of Saccharomyces cerevisiae (5% to 15% (v/v)), and fermentation time (48 to 96 h) on production of bioethanol from kitchen waste were studied using Response Surface Methodology (RSM). A three-factor Box Behnken design was used. Ethanol concentration was used as a response in the resulting experimental design. High Pressure Liquid Chromatography (HPLC) method was used to determine ethanol and glucose concentrations. The statistical analysis of the constructed model developed by RSM suggested that linear effects of solid load, inoculum level, and fermentation time and quadratic effects of inoculum level and fermentation time were all significant (p &lt / 0.05) on bioethanol production. The model was verified by additional runs, which were not present in the design matrix. It was found that the constructed model could be used to determine successfully the bioethanol concentration with &gt / 90% precision. An optimum ethanol concentration of 32.16 g/L was suggested by the model with 20% (w/w) solid load, 8.85% (v/v) inoculum level and 58.8 hours of fermentation. Further study is needed to evaluate the optimal fermentation conditions in a large scale fermentation
106

Experimental and Numerical Investigations of Confluent Round Jets

Svensson, Klas January 2015 (has links)
Unconfined multiple interacting confluent round jets are interesting from a purely scientific point of view, as interaction between neighboring jets brings additional complexity to the flow field. Unconfined confluent round jets also exist in various engineering applications, such as ventilation supply devices, sewage disposal systems, combustion burners, chemical mixing or chimney stacks. Even so, little scientific attention has been paid to unconfined confluent round jets. The present work uses both advanced measurement techniques and computational models to provide deeper understanding of the turbulent flow field development of unconfined confluent round jets. Both Laser Doppler Anemometry (LDA) and Particle Image Velocimetry (PIV) have been used to measure mean velocity and turbulence properties within two setups, consisting of a single row of 1×6 jets and a square array of 6×6 confluent jets. Simulations using computational fluid dynamics (CFD) of the 6×6 setup were conducted using three different Reynolds Averaged Navier-Stokes (RANS) turbulence models: the standard k-ε, the RNG k-ε and the Reynolds Stress model (RSM). The results from the CFD simulations were compared with experimental data. The employed RANS turbulence models were all capable of accurately predicting mean velocities and turbulent properties in the investigated confluent jet array. In general the RSM and k-ε std. models provided smaller deviations between numerical and experimental results than the RNG k-ε model. In terms of mean velocity the second-order closure model (RSM) was not found to be superior to the less complex standard k-ε model. The validated CFD model was employed in a parametrical investigation, including five independent variables: inlet velocity, nozzle diameter, nozzle edge-to-edge spacing, nozzle height and the number of jets in the array. The parametrical investigations made use of statistical methods in the form of response surface methodology. The derived response surface models provided information on the principal influence and relative importance of the investigated parameters within the investigated design space. The positions of the jets within the array strongly influence both mean velocity and turbulence. In all investigated setups the jets experience merging and combining. Square arrays also include considerable jet convergence, which was not present in the 1×6 jet array. Due to the jet convergence in square arrays the turbulent flow field, especially for jets far away from the array center, is affected by mean flow curvature. Jets located along the sides of square jet arrays experience strong jet-to-jet interactions that result in considerable jet deformation, shorter potential core, higher turbulent kinetic energy and faster velocity decay compared to other jets. Jets located at the corners of the array do not interact as strongly with neighboring jets as do the jets along the sides. The locations of merging and combined points differ considerably between different jets and different jet configurations. As the jets combine a zone with uniform stream-wise velocity and low turbulence intensity forms in the center of square jet arrays. This zone has been called Confluent Core Zone (CCZ) due to its similarities with the potential core zone of a single jet. Within the CCZ the appropriate scaling length changes from nozzle diameter to the effective source diameter. The parametrical investigation showed that nozzle diameter and edge-to-edge nozzle spacing were the most important of the investigated parameters, reflecting a strong dependence on dimensionless jet spacing, S/d0. Higher S/d0 delays both merging and combining of the jets and leads to a CCZ with lower velocity and longer downstream extension. Increasing the array size leads to a reduced combined point distance, a stronger inwards displacement of jets in the outer part of the array, and reduced entrainment near the nozzles. A higher inlet velocity was found to increase the jet convergence in the investigated square confluent jet arrays. Nozzle height generally has minor impact on the investigated response variables.
107

Parameter Optimization Of Steel Fiber Reinforced High Strength Concrete By Statistical Design And Analysis Of Experiments

Ayan, Elif 01 January 2004 (has links) (PDF)
This thesis illustrates parameter optimization of compressive strength, flexural strength and impact resistance of steel fiber reinforced high strength concrete (SFRHSC) by statistical design and analysis of experiments. Among several factors affecting the compressive strength, flexural strength and impact resistance of SFRHSC, five parameters that maximize all of the responses have been chosen as the most important ones as age of testing, binder type, binder amount, curing type and steel fiber volume fraction. Taguchi and regression analysis techniques have been used to evaluate L27(313) Taguchi&amp / #65533 / s orthogonal array and 3421 full factorial experimental design results. Signal to noise ratio transformation and ANOVA have been applied to the results of experiments in Taguchi analysis. Response surface methodology has been employed to optimize the best regression model selected for all the three responses. In this study Charpy Impact Test, which is a different kind of impact test, have been applied to SFRHSC for the first time. The mean of compressive strength, flexural strength and impact resistance have been observed as around 125 MPa, 14.5 MPa and 9.5 kgf.m respectively which are very close to the desired values. Moreover, this study is unique in the sense that the derived models enable the identification of underlying primary factors and their interactions that influence the modeled responses of steel fiber reinforced high strength concrete.
108

Parameter Optimization Of Chemically Activated Mortars Containing High Volumes Of Pozzolan By Statistical Design And Analysis Of Experiments

Aldemir, Basak 01 January 2006 (has links) (PDF)
ABSTRACT PARAMETER OPTIMIZATION OF CHEMICALLY ACTIVATED MORTARS CONTAINING HIGH VOLUMES OF POZZOLAN BY STATISTICAL DESIGN AND ANALYSIS OF EXPERIMENTS Aldemir, BaSak M.S., Department of Industrial Engineering Supervisor: Prof. Dr. &Ouml / mer Saat&ccedil / ioglu Co-Supervisor: Assoc. Prof. Dr. Lutfullah Turanli January 2006, 167 pages This thesis illustrates parameter optimization of early and late compressive strengths of chemically activated mortars containing high volumes of pozzolan by statistical design and analysis of experiments. Four dominant parameters in chemical activation of natural pozzolans are chosen for the research, which are natural pozzolan replacement, amount of pozzolan passing 45 &amp / #956 / m sieve, activator dosage and activator type. Response surface methodology has been employed in statistical design and analysis of experiments. Based on various second-order response surface designs / experimental data has been collected, best regression models have been chosen and optimized. In addition to the optimization of early and late strength responses separately, simultaneous optimization of compressive strength with several other responses such as cost, and standard deviation estimate has also been performed. Research highlight is the uniqueness of the statistical optimization approach to chemical activation of natural pozzolans.
109

Produção de passas de talo de abacaxi pérola por processo osmo-solar

Falcao Filho, Ronaldo dos Santos 27 September 2011 (has links)
Made available in DSpace on 2015-04-17T14:49:14Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1368291 bytes, checksum: c9504d31896cd49c514d45cee104f03b (MD5) Previous issue date: 2011-09-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The objective of the present work was to produce pineapple stem raisin by means of osmo-solar drying. The raw material was selected taking into account parameters such as: color of the rind and level of soluble solids from the fruits. A type 23 factorial design was preceded with 4 repetitions at the central point, for further optimization of the osmotic dehydration using the methodology of surface responses. The partially dry product obtained from the osmotic dehydration, utilizing as conditions the ones from the planning, passed through complementary sun drying by means of a solar drier, build with assessable materials such as joined wood, aluminum plates, glass boards, matte black paint, Styrofoam and coal. The raw material, the product partially dehydrated and the final product had their compositions analyzed. The evaluation of the dimensions of the pineapples showed little variation, with a CV < 10%, an important factor for the standardization and control of the industrial processes. The raw material also presented a high level of soluble solids and low level of acidity, proving the analyzed pineapple useful for in natura consumption and for the industrial processing of several products, among them alcoholic and non-alcoholic beverages. Furthermore, the raw material has proven to be an excellent source of vitamin C, with a concentration of such nutrient higher than what is daily recommend according to legislation. The adopted linear factors have presented themselves to be adequate, they were fairly adjusted and predictive for the loss of (PA) and weight loss (PP) and fairly adjusted and predictive to gain of solids and gain of solid-loss of water ratio (GS:PA). Analyzing the level curves and surface of answer of the optimization parameters GS:PA, built from the statistical models, it was determined the ideal conditions of osmotic dehydration which were: T = 50 ºC, C = 40 g 100 g-1 and F:SO= 3:20. In evaluation, the Sun dryer presented and average temperature of 41.2 ºC against 35.7 ºC of natural air and maximum temperature of 46 ºC, besides the minimal relative air humidity of 37%. The product obtained after the draught presented humidity of 13.70 g 100 g-1 obeying the legislation concerning the maximum levels of humidity for dehydrated fruit. / O objetivo deste trabalho foi produzir passas de talo de abacaxi pérola por processo de secagem combinado osmo-solar. Selecionou-se a matéria-prima levando em consideração parâmetros como: cor da casca e teor de sólidos solúveis da fruta. Procedeu-se um planejamento fatorial do tipo 23 com 4 repetições no ponto central, para posterior otimização de desidratação osmótica usando a metodologia de superfícies de resposta. O produto parcialmente seco obtido a partir da desidratação osmótica, utilizando-se como condições às obtidas no planejamento, passou por secagem solar complementar em secador solar, construído com materiais acessíveis, tais como: madeira compensada, folhas de alumínio, placas de vidro, esmalte sintético preto fosco, isopor e carvão. A matéria-prima, o produto parcialmente desidratação e o produto final, tiveram a sua composição analisada. A avaliação das dimensões dos abacaxis mostrou pequena variação, com CV < 10%, fator importante para a padronização e controle de processos industriais. A matériaprima ainda apresentou alto teor de sólidos solúveis e baixo teor de acidez, fazendo o abacaxi analisado propício para o consumo in natura e para o processamento industrial de diversos produtos, entre eles: bebidas alcoólicas e não-alcoólicas. Além disso, a matéria-prima mostrou-se excelente fonte de vitamina C, com concentração deste nutriente superior à sua recomendação diária, preconizada pela legislação. Os modelos lineares adotados apresentaram-se adequados, sendo bastante ajustados e preditivos para a perda de água (PA) e perda de peso (PP) e razoavelmente ajustados e preditivos para o ganho de sólidos e razão ganho de sólidos-perda de água (GS:PA). Analisando-se as curvas de nível e superfície de resposta do parâmetro de otimização GS:PA, construídos a partir dos modelos estatísticos, determinaram-se as condições ideais de desidratação osmótica que foram: T = 50 ºC, C = 40 g 100 g-1 e F:SO= 3:20. Em avaliação, o secador solar apresentou temperatura média de 41,2 ºC contra 35,7 ºC do ar ambiente e temperatura máxima de 46 ºC, além de umidade relativa mínima do ar secagem de 37%. O produto obtido após a secagem apresentou umidade de 13,70 g 100 g-1 atendendo o a legislação quanto ao teor máximo de umidade para fruta desidratada.
110

Tratamento de efluente da produção de trifluralina por oxidação-coagulação com ferrato de potássio e processos fenton combinados

Wilde, Marcelo Luís 27 October 2006 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / The so called amination water (AW), an effluent stream from the industrial production of the trifluraline herbicide, toxic and recalcitrant to conventional treatments such as the microbiological, was submitted to a combined advanced process. For the degradation study of this effluent a recent, promising alternative was chosen - the potassium ferrate (K2FeO4) oxidation-coagulation - that demonstrates high oxidant capability (from 2.2 up to 0.72 V) in a large pH range. In this study, a response surface methodology (RSM) design using pH and K2FeO4 concentration as independent variables, and the absorptiometric color reduction as a dependent one, was applied. The resultant regression equation for the quadratic model of the star design was nAbs (%) = 26.142 - 1.044A - 2.065A2 - 0.941B - 0.505B2 + 1.55AB. The second order results of the star design from the variance analysis (ANOVA) showed that the quadratic model is better than the lineal, and gave evidence that, a maximum of 29% absorptiometric color reduction occurs, when an initial pH of 7 and lower K2FeO4 concentration were used. By the same conditions, the reduction of the chemical oxygen demand (COD) was 49.5%. As the reduction of potassium ferrate generate ferric iron salts in aqueous solution, there is a great potential for its combined use as Fe(III) source for Fenton reagent, generating hydroxyl radicals (HO·) by addition of H2O2 to the reaction system. A new design based on RSM was applied, evaluating the potentiality of the oxidationcoagulation-Fenton like process having the pH, Fe(VI) -> Fe(III) and H2O2 as independent variables, and absorptiometric color reduction efficiency as evaluation responses for the dependent variable. The resulting regression equation for the quadratic model was nAbs (%) = 36.9 - 21.58A + 8.37A2 + 1.36B + 0.92B2 + 1.08C + 1.52C2 + 1.27AB - 1.34AC + 1.33BC. The ANOVA results evidenced that the maximum absorptiometric color reduction occurs by pH 3, and by correspondent 10 g L-1 de Fe(VI) and 20 g L-1 hydrogen peroxide. The absorptiometric color and COD reduction were 96% and 57%, respectively. An efficiency increase of the HO· radical generation was achieved when the previous process was combined to UV irradiation, carrying out the so called oxidation-coagulationphoto-Fenton like process. As before, a RSM was applied, where the pH, Fe(VI) -> Fe(III) concentration, H2O2 concentration and temperature were evaluated as independent variables. The efficiency of the absorptiometric color reduction was chosen as dependent variable. The resulting regression equation for the quadratic model was nAbs (%) = 38.3 - 20.2A + 8.12A2 - 0.27B + 3.73B2 + 0.3C + 3.6C2 + 1.67D + 3.1D2 + 1.72AB + 0.51AC - 1.82AD + 0.74BC - 1.11BD + 0.03CD. The ANOVA results evidenced that the maximum absorptiometric color reduction occurs by pH 3 and by 10 g L-1 de Fe(VI) and 20 g L-1 hydrogen peroxide amounts, at 60 °C. The maxima efficiencies achieved for the effluent stream treatment by the oxidationcoagulation-photo-Fenton process were 95% and 85%, for absorptiometric color and COD reduction, respectively. The high efficiency of the combined process as an oxidative-coagulant-oxidative pretreatment for posterior conventional process (e.g., microbiological treatment) can be looked out as an interesting and advantageous alternative for the AW treatment, as well as other recalcitrant streams. / A produção industrial do herbicida trifluralina gera a corrente efluente água de aminação (AA), tóxica e recalcitrante a processos convencionais, tais como o tratamento microbiológico. Para o estudo da degradação deste efluente escolheu-se uma recente e promissora alternativa para a degradação de biorecalcitrantes - a oxidação-coagulação com Ferrato de Potássio (K2FeO4) - que demonstra alto poder oxidante, de 2,2 a 0,72 V, em toda faixa de pH. Foi aplicado, também, neste estudo, a metodologia de planejamento com superfície de resposta (RSM), tendo-se como variáveis independentes, o pH e a concentração de K2FeO4; e como variável dependente, a remoção de cor. A equação de regressão resultante do planejamento estrela, para o modelo quadrático, é nAbs (%)= 26,142 - 1,044A - 2,065A2 - 0,941B - 0,505B2 + 1,55AB. Os resultados do modelo de superfície de resposta de segunda ordem, na forma de análise de variância (ANOVA), demonstraram que o modelo quadrático é superior ao modelo linear e evidenciaram que a máxima redução da cor absorciométrica (29%) ocorre com pH inicial 7 e com a menor concentração de ferrato de potássio utilizada. Da mesma forma, obteve-se redução da demanda química de oxigênio (DQO) de 49,5%. Como a redução do ferrato de potássio produz sais de Fe(III) em solução, aproveitouse a grande potencialidade para a combinação como fonte de íons férricos para o reagente Fenton, adicionando H2O2 para a geração de radicais hidroxil (HO·). Foi, então, aplicado um novo planejamento baseado em RSM, avaliando a potencialidade do processo de oxidaçãocoagulação-Fenton com as variáveis independentes pH, concentração de Fe(VI) -> Fe(III) e H2O2, e, como variável dependente para a avaliação dos resultados, a eficiência da redução da cor absorciométrica. A equação de regressão resultante deste planejamento, para o modelo quadrático, que se mostrou superior ao modelo linear é nAbs (%) = 36,9 - 21,58A + 8,37A2 + 1,36B + 0,92B2 + 1,08C + 1,52C2 + 1,27AB - 1,34AC + 1,33BC. Os resultados da análise ANOVA evidenciaram que a máxima redução da cor absorciométrica ocorre quando o pH inicial foi 3, usando-se 10g L-1 de Fe(VI) e 20 g L-1 peróxido de hidrogênio. Assim, se obteve ainda redução da cor absorciométrica da ordem de 96% e, da DQO, de 57%. Por ainda acreditar num aumento da eficiência da geração de radicais HO·, o processo anterior foi combinado à radiação UV, realizando-se então o chamado processo oxidaçãocoagulação-foto-Fenton e, como nos anteriores, através de RSM avaliaram-se as variáveis independentes, pH, concentração de Fe(VI) -> Fe(III), H2O2 e temperatura. Como variável dependente foi escolhida a redução da cor absorciométrica. A equação resultante para este planejamento, para o modelo quadrático, superior ao linear, é nAbs (%) = 38,3 - 20,2A + 8,12A2 - 0,27B + 3,73B2 + 0,3C + 3,6C2 + 1,67D + 3,1D2 + 1,72AB + 0,51AC - 1,82AD + 0,74BC - 1,11BD + 0,03CD. Os resultados da ANOVA demonstraram que a máxima redução ocorreu quando o pH inicial foi 3, usando-se 10 g L-1 de Fe(VI), 20 g L-1 peróxido de hidrogênio e temperatura de 60 °C. A máxima eficiência alcançada no tratamento do efluente AA pelo processo de oxidação-coagulação-foto-Fenton foi de 95% e, de 85%, para a cor absorciométrica e a DQO, respectivamente. A eficiência dos processos estudados, como pré-tratamento oxidativo-coagulanteoxidativo para posterior tratamento convencional (ex. microbiológico), pode ser interessante alternativa para o tratamento da corrente recalcitrante AA.

Page generated in 0.0801 seconds