• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 71
  • 71
  • 34
  • 31
  • 24
  • 18
  • 17
  • 17
  • 17
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Short-term hydropower production scheduling : feasibility and modeling / Planification de la production hydroélectrique au court terme : faisabilité et modélisation

Sahraoui, Youcef 09 June 2016 (has links)
Dans le secteur électrique et chez EDF, l'optimisation mathématique est utilisée pour modéliser et résoudre des problèmes de gestion de la production d'électricité.Citons quelques applications : la modélisation des problèmes d'équilibre des marchés, la gestion des risques d'épuisement des barrages, la programmation des arrêts de tranches nucléaires.Plus particulièrement l'hydroélectricté est une énergie renouvelable, peu chère, flexible mais limitée.Exploiter l'hydraulique constitue donc un enjeu important.Nous nous intéressons à des problèmes d'optimisation de Programmation Non Linéaire en Nombres Entiers (PNLNE) dont les variables de décision sont continues ou discrètes et dont les fonctions exprimant l'objectif et les contraintes sont linéaires ou non.Les non-linéarités et la combinatoire induite par les variables entières rendent les PNLNE difficiles à résoudre.En effet les méthodes existantes n'arrivent pas toujours à résoudre les grands PNLNE à l'optimalité avec des temps de calcul limités.En amont des performances de résolution, la faisabilité est une question préliminaire à aborder puisqu'il faut s'assurer que les PNLNE à résoudre admettent des solutions.Lorsqu'il y a des infaisabilités dans des modèles complexes, il est très utile mais très difficile de les analyser.Par ailleurs la résolution de PNLNE est plus difficile si l'on requiert une certification de la précision exacte des résultats.En effet les méthodes résolutions sont en général mises en oeuvre en arithmétique flottante, ce qui peut donner lieu à une précision approchée.Nous abordons deux problèmes d'optimisation liés à la planification de la production hydraulique, Hydro Unit-Commitment (HUC) en Anglais.Etant données des ressources d'eau finies dans les barrages l'objet du HUC est de prescrire des programmes de production les plus rentables qui soient compatibles avec les spécifications techniques des usines hydrauliques.Le volume, le débit et la puissance sont représentés par des variables continues tandis que l'activation des turbines est communément formulée avec des variables binaires.Les non-linéarités proviennent en général des fonctions qui expriment la puissance générée en fonction du volume et du débit.Nous distinguons deux problèmes : un PLNE avec des caractéristiques linéaires et discrètes et un PNL avec des caractéristiques non linéaires et continues.Dans le 2ème chapitre, nous traitons de la faisabilité d'un HUC réel en PLNE.Comparé à un HUC standard le modèle inclut deux spécifications supplémentaires : des points de fonctionnements discrets sur la courbe puissance-débit ainsi que des niveaux cibles pour le volume des réservoirs.Les complications liées aux données réelles et au calcul numérique, associées aux spécifications du modèle rendent notre problème difficile à résoudre et souvent infaisable.Nous procédons par étape pour identifier et traiter les sources d'infaisabilité, à savoir les erreurs numériques et les infaisabilités de modélisation, pour rendre le problème faisable.Des résultats numériques étayent l'efficacité de notre méthode sur un ensemble de test de 66 instances réelles qui contient de nombreuses infaisabilités.Le 3ème chapitre porte sur l'adaptation de l'algorithme Multiplicative Weights Update (MWU) à la PNLNE.Cette adaptation est fondée sur une reformulation paramétrée spécifique dénommée pointwise.Nous définissons des propriétés souhaitables pour obtenir de bonnes reformulations pointwise et nous fournissons des règles pour adapter l'algorithme étape par étape.Nous démontrons que notre matheuristique du MWU conserve une garantie d'approximation relative contrairement à la plupart des heuristiques.Le MWU est comparée à la méthode Multi-Start pour résoudre un HUC en PNL et les résultats numériques penchent en faveur du MWU. / In the electricity industry, and more specifically at the French utility company EDF, mathematical optimization is used to model and solve problems related to electricity production management.To name a few applications: planning for capacity investments, managing depletion risks of hydro-reservoirs, scheduling outages and refueling for nuclear plants.More specifically, hydroelectricity is a renewable, cheap, flexible but limited source of energy.Harnessing hydroelectricity is thus critical for electricity production management.We are interested in Mixed-Integer Non-Linear Programming (MINLP) optimization problems.They are optimization problems whose decision variables can be continuous or discrete and the functions to express the objective and constraints can be linear or non-linear.The non-linearities and the combinatorial aspect induced by the integer variables make these problems particularly difficult to solve.Indeed existing methods cannot always solve large MINLP problems to the optimum within limited computational timeframes.Prior to solution performance, feasibility is preliminary challenge to tackle since we want to ensure the MINLP problems to solve admit feasible solutions.When infeasibilities occur in complex models, it is useful but not trivial to analyze their causes.Also, certifying the exactness of the results compounds the difficulty of solving MINLP problems as solution methods are generally implemented in floating-point arithmetic, which may lead to approximate precision.In this thesis, we work on two optimization problems - a Mixed-Integer Linear Program (MILP) and a Non-Linear Program (NLP) - related to Short-Term Hydropower production Scheduling (STHS).Given finite resources of water in reservoirs, the purpose of STHS is to prescribe production schedules with largest payoffs that are compatible with technical specifications of the hydroelectric plants.While water volumes, water flows, and electric powers can be represented with continuous variables, commitment statuses of turbine units usually have to be formulated with binary variables.Non-linearities commonly originate from the Input/Output functions that model generated power according to water volume and water flow.We decide to focus on two distinguished problems: a MILP with linear discrete features and a NLP with non-linear continuous features.In the second chapter, we deal with feasibility issues of a real-world MILP STHS.Compared with a standard STHS problem, the model features two additional specifications:discrete operational points of the power-flow curve and mid-horizon and final strict targets for reservoir levels.Issues affecting real-world data and numerical computing, together with specific model features, make our problem harder to solve and often infeasible.Given real-world instances, we reformulate the model to make the problem feasible.We follow a step-by-step approach to exhibit and cope with one source of infeasility at a time, namely numerical errors and model infeasibilities.Computational results show the effectiveness of the approach on an original test set of 66 real-world instances that demonstrated a high occurrence of infeasibilities.The third chapter is about the transposition of the Multiplicative Weights Update algorithm to the (nonconvex) nonlinear and mixed integer nonlinear programming setting, based on a particular parametrized reformulation of the problem - denoted pointwise.We define desirable properties for deriving pointwise reformulation and provide generic guidelines to transpose the algorithm step-by-step.Unlike most metaheuristics, we show that our MWU metaheuristic still retains a relative approximation guarantee in the NLP and MINLP settings.We benchmark it computationally to solve a hard NLP STHS.We find it compares favorably to the well-known Multi-Start method, which, on the other hand, offers no approximation guarantee.
52

Optimisation of power system security with high share of variable renewables : Consideration of the primary reserve deployment dynamics on a Frequency Constrained Unit Commitment model / Optimisation de la sûreté d’un système électrique en présence des énergies renouvelables intermittentes : Intégration de contraintes de déploiement de la réserve primaire dans un outil journalier de placement de production

Cardozo Arteaga, Carmen 10 March 2016 (has links)
Le placement de production (UC pour unit commitment) est une famille de problèmes d'optimisation qui déterminent l’état et la puissance de consigne des groupes de production pour satisfaire la demande électrique à moindre coût. Traditionnellement, une contrainte de sûreté détermine un certain volume de capacité raccordée disponible, appelé la réserve, destinée à gérer l'incertitude. Néanmoins, dans les petits systèmes la contrainte de réserve fixe peut entraîner dans certains cas une violation du critère N-1 bien que le volume de réserve minimale soit respecté. Plus récemment, la part croissante de production variable à partir de sources renouvelables (ENR) peut conduire à des programmes d’appel qui ne garantissent plus la sûreté même dans les grands systèmes.Pour y faire face, différentes techniques d'atténuation des impacts ont été proposées telle que la révision des modèles de placement de la production pour inclure une meilleure représentation de la dynamique du système. Cette sous-famille des problèmes UC est formellement définie dans ces travaux comme le problème FCUC (frequency constrained unit commitment). Elle vise à maintenir la fréquence au-dessus d'un certain seuil, et éviter ainsi le délestage par sous-fréquence (DSF).La première partie de ces travaux identifie les défis dans la formulation du problème FCUC. D’une part, la contrainte de fréquence est fortement non-linéaire par rapport aux variables de décision du problème UC. D’autre part, elle est difficile à approcher par des fonctions analytiques. La simulation séquentielle d'un modèle UC classique et d’un modèle de réponse primaire de la fréquence est alors proposée. L’intérêt d’une formulation plus fidèle de la contrainte de sûreté est donc révélé. La deuxième partie de ces travaux étudie l'impact des ENR sur la réponse primaire de la fréquence. Le besoin de formuler des modèles de FCUC plus précis est mis en avant.La troisième partie des travaux examine le coût, les bénéfices et les limitations des modèles FCUC, basés sur des contraintes indirectes sur certains paramètres dynamiques des unités de production. Il est montré que, bien que l'application de contraintes de sécurité indirectes assure la sûreté dans certains pas horaires, l'effet inverse peut apparaître à un autre instant. Ainsi, l’efficacité des leviers dépend fortement du point de fonctionnement du système. Il en est de même pour le coût de la solution. Cette étude met en évidence la nécessité de nouvelles méthodes pour traiter correctement la contrainte sur le creux de fréquence afin d'assurer l'optimalité et efficacité de la solution.Finalement, la quatrième partie des travaux offre une nouvelle formulation du problème FCUC suivant une approche de décomposition de Bender. La décomposition de Bender sépare un problème d'optimisation avec une certaine structure en deux parties : le problème maître et le problème esclave. Dans le cas du FCUC, le problème maître propose des plans de production candidats (états des groupes) et le problème esclave assure le respect des contraintes de fréquence par le biais d'un modèle de plans sécants. Les résultats de simulation montrent que la représentation plus précise du creux de fréquence au niveau du problème esclave réduit le risque de DSF et le coût de la sécurité par rapport à d'autres modèles de FCUC. / The Unit Commitment problem (UC) is a family of optimisation models for determining the optimal short-term generation schedule to supply electric power demand with a defined risk level. The UC objective function is given by the operational costs over the optimisation horizon. The constraints include, among others, technical, operational and security limits. Traditionally, the security constraints are given by the requirement of a certain volume of on-line spare capacity, which is called the reserve and is meant to handle uncertainty, while preventing the interruption of power supply. It is commonly specified following a static reliability criterion, such as the N-1 rule.Nevertheless, in small systems the fixed, and a priori defined, reserve constraint could entail a violation of the N-1 criterion, although the reserve constraint was met. More recently, the increasing share of variable generation from renewable sources (V-RES), such as wind and solar, may lead to UC solutions that no longer ensure system security. Therefore, different impact mitigation techniques have been proposed in literature, which include the revision of UC models to provide a better representation of the system dynamics. This subfamily of UC models is formally defined in this work as the frequency constrained UC problem (FCUC), and aims to keep the frequency above a certain threshold, following pre-defined contingencies, by adding enhanced security constraints. In this work this topic is addressed in four parts.The first part identifies the main challenge of formulating the FCUC problem. Indeed, the frequency minimum, also called the frequency nadir, constraint is strongly non-linear on the decision variables of the UC model. Moreover, the behaviour of the frequency nadir regarding the binary decision variables is hard to approximate by analytical functions. Thus, a sequential simulation approach is proposed, based on a classic UC model and a reduced order model of the primary frequency response. The potential benefits of a smarter allocation of the primary reserve is revealed.The second part of this work investigates the impact of V-RES sources on the primary frequency response. The underlying processes that lead to the increase of the Under-Frequency Load Shedding (UFLS) risk are thoroughly discussed. The need of formulating more accurate FCUC models is highlighted.The third part of this work examines the cost/benefit and limitation of FCUC models based on indirect constraints over certain dynamic parameters of the generating units. A methodology is proposed that assesses the effectiveness and optimality of some existing V-RES impact mitigation techniques, such as the increase of the primary reserve requirement, the prescription of an inertia requirement, the authorisation of V-RES dispatch-down or the consideration of fast non-synchronous providers of frequency regulation services. This study showed the need for new methods to properly handle the frequency nadir constraint in order to ensure optimality, without compromising the optimisation problem’s tractability.The fourth part of this work offers a new formulation of the FCUC problem following a Bender’s decomposition approach. This method is based on the decomposition of an optimisation problem into two stages: the master and the slave problems. Here, the master problem deals with the generating unit states and the slave problem handles the frequency nadir constraints through a cutting plane model. Simulation results showed that the more accurate representation of the frequency nadir in the slave problem reduces the risk of UFLS and the security cost, with respect to other FCUC models, such as those based on inertia constraints. In addition, the optimality of the global solution is guaranteed; although the convergence of the master problem is slow, due to the well-known tailing off effect of cutting plane methods.
53

Estimating CO2 reductions from renewable energy sources : The impact of power system nonlinearities / Uppskattning av förnybara energikällors inverkan på koldioxidutsläppen från elsystemet : en undersökning av icke-linjära faktorer

Berglund, Kristoffer January 2022 (has links)
Replacing conventional generation with renewable generation in power systems is essential for reducing CO2 emissions. It is important to know how effective renewables are in reducing CO2 emissions. Since CO2 reduction cannot be measured directly, different methods have been used to estimate reduction of CO2 emissions. The two most common methods are econometric models and dispatch models. Econometric models apply regression analysis using historical data for CO2 emissions, power production, and electricity demand to estimate CO2 reduction. On the other hand, dispatch models are detailed optimization simulations of power systems where the objective is to calculate the cost-optimal dispatch of the power plants. The dispatch model finds the optimal dispatch for a base case and counterfactual case. In the counterfactual case, the renewable generation in the system is modified. From the difference in CO2 emissions between the two cases, an estimation of CO2 reduction can be made. Recent studies have shown that dispatch models and econometric models can give different estimations of CO2 reduction. However, these studies did not include several factors that can increase CO2 emissions, such as; transmission constraints, security requirements, and non-linear factors. Examples of non-linear factors are; minimum dispatched energy of generating units, start up emissions, minimum up- and downtime for generating units, and energy generated during start-up and shut-down. This thesis examines if there is an agreement between econometric models and dispatch models for estimating CO2 reduction and if the agreement changes when more non-linear factors are considered. To examine these questions a systematic comparison has been done. Two econometric models are constructed, a linear econometric model and a polynomial linear econometric model. The polynomial linear econometric model is constructed to take into account non-linear factors. Eight dispatch models are constructed with increasing modelling complexity. Four model versions do not include any non-linear factors and four include non-linear factors. The results showed that the agreement between econometric and dispatch models is fairly good, except for versions that contain transmission constraints. The simulation is executed in a fictional test system that is not dimensioned for wind power generation at the given buses. Therefore is possible that transmission constraints impacts the reduction of CO2 too heavily. Furthermore, the results show that the non-linear factors contribute to CO2 emission and consequently lower the estimation of CO2 reduction. However, no conclusion can be made if the agreement between econometric and dispatch models divert when more non-linear factors are considered. / Världens utsläpp av CO2 måste minska för att inte jorden ska drabbas av drastiska klimatförändringar som temperaturhöjningar. Idag står elproduktionen för ungefär en fjärdedel av världens utsläpp av CO2. Därmed måste dagens elproduktion och elkraftsystem minska sina utsläpp av CO2 . Ett viktigt verktyg för att kraftsystem ska minska sina utsläpp av CO2 är expansion av förnybar elproduktion. Dock så går det inte att mäta direkt hur mycket CO2-utsläppen minskar vid expansion av förnybar elproduktion. Därför har flera olika estimeringsmetoder utvecklats för att uppskatta CO2-reduktion. De två vanligaste metoderna är ekonometriska modeller och produktionssimuleringsmodeller. Ekonometriska modeller använder sig av regressionsanalys med historiska tidsserier som; CO2 -utsläpp, kraftproduktion och elförbrukning för att uppskata CO2 -minskningen. Produktionssimuleringsmodeller är detaljerade optimeringssimuleringar där avsikten är att beräkna den kostoptimala användningen av kraftverk i ett system. Tidigare studier har visat att ekonometriska modeller och produktionssimuleringsmodeller kan ge olika uppskattningar av CO2 -reduktion. Dock har produktionssimuleringsmodellerna i studierna inte tagit hänsyn till flera faktorer som kan påverka CO2-utsläppen, som t.ex. överföringsbegränsningar, säkerhetsbegräsningar och icke-linjära faktorer. Exempel på icke-linjära faktorer är minimal produktion av energi för varje kraftverk, CO2 -utsläpp vi uppstart, minimal upp- och nertid och produktion vid uppstart och nedstänging för varje generator. Den här uppsatsen undersöker om de två metoderna ekonometriska modeller och produktionssimuleringsmodeller liknade uppskattningar av CO2 -reduktion och hur överrenstämmelsen mellan modellerna påverkas när man beaktar icke-linjära faktorer. För att försöka besvara dessa frågor har en systematisk jämförelse utförts. Två ekonometriska modeller har konstruerats, en linjär och en polynom-linjär ekonometrisk modell. Den polynom-linjära ekonometriska modellen tar i beaktning icke-linjära faktorer. Åtta produktionssimuleringsmodeller har konstruerats och de åtta olika modellerna har formulerats i en ökande ordning av noggrannhet. Fyra av modellerna tar inte hänsyn till några icke-linjära faktorer och fyra av modellerrna tar hänsyn till icke-linjära faktorer.
54

Stochastic Optimization for Integrated Energy System with Reliability Improvement Using Decomposition Algorithm

Huang, Yuping 01 January 2014 (has links)
As energy demands increase and energy resources change, the traditional energy system has been upgraded and reconstructed for human society development and sustainability. Considerable studies have been conducted in energy expansion planning and electricity generation operations by mainly considering the integration of traditional fossil fuel generation with renewable generation. Because the energy market is full of uncertainty, we realize that these uncertainties have continuously challenged market design and operations, even a national energy policy. In fact, only a few considerations were given to the optimization of energy expansion and generation taking into account the variability and uncertainty of energy supply and demand in energy markets. This usually causes an energy system unreliable to cope with unexpected changes, such as a surge in fuel price, a sudden drop of demand, or a large renewable supply fluctuation. Thus, for an overall energy system, optimizing a long-term expansion planning and market operation in a stochastic environment are crucial to improve the system's reliability and robustness. As little consideration was paid to imposing risk measure on the power management system, this dissertation discusses applying risk-constrained stochastic programming to improve the efficiency, reliability and economics of energy expansion and electric power generation, respectively. Considering the supply-demand uncertainties affecting the energy system stability, three different optimization strategies are proposed to enhance the overall reliability and sustainability of an energy system. The first strategy is to optimize the regional energy expansion planning which focuses on capacity expansion of natural gas system, power generation system and renewable energy system, in addition to transmission network. With strong support of NG and electric facilities, the second strategy provides an optimal day-ahead scheduling for electric power generation system incorporating with non-generation resources, i.e. demand response and energy storage. Because of risk aversion, this generation scheduling enables a power system qualified with higher reliability and promotes non-generation resources in smart grid. To take advantage of power generation sources, the third strategy strengthens the change of the traditional energy reserve requirements to risk constraints but ensuring the same level of systems reliability In this way we can maximize the use of existing resources to accommodate internal or/and external changes in a power system. All problems are formulated by stochastic mixed integer programming, particularly considering the uncertainties from fuel price, renewable energy output and electricity demand over time. Taking the benefit of models structure, new decomposition strategies are proposed to decompose the stochastic unit commitment problems which are then solved by an enhanced Benders Decomposition algorithm. Compared to the classic Benders Decomposition, this proposed solution approach is able to increase convergence speed and thus reduce 25% of computation times on the same cases.
55

Challenges in Renewable Energy Integration

Madaeni, Seyed Hossein 14 August 2012 (has links)
No description available.
56

Stochastic lagrangian relaxation in power scheduling of a hydro-thermal system under uncertainty

Nowak, Matthias Peter 01 December 2000 (has links)
Wir betrachten ein Kraftwerkssystem mit thermischen Blöcken und Pumpspeicherwerken und entwickeln dafür ein Modell für den kostenoptimalen Wochenbetrieb. Auf Grund der Ungewißheit des Bedarfs an elektrischer Energie ist das mathematische Modell ein mehrstufiges stochastisches Problem. Dieses Modell beinhaltet viele gemischt-ganzzahlige stochastische Entscheidungsvariablen. Die Variablen einzelner Einheiten sind aber nur durch wenige Nebenbedingungen miteinander verbunden, welches die Zerlegung in stochastische Teilprobleme erleichtert. Diese stochastischen Teilprobleme besitzen deterministische Analoga, deren Lösungsverfahren entsprechend erweitert werden können. In dieser Arbeit werden ein Abstiegsverfahren für stochastische Speicherprobleme und eine Erweiterung der dynamischen Programmierung auf stochastische Probleme betrachtet. Die Lösung des dualen Problems führt zu Schattenpreisen, die bestimmte Einsatzentscheidungen bevorteilen. Die Heuristik zur Suche von primalen zulässigen Punkten wertet eine Folge von zugeordneten Economic-Dispatch-Problemen aus. Die Kombination der Einschränkung auf dual bevorzugte Fahrweisen (Lagrangian reduction) mit der Auswertung einer Folge von Economic-Dispatch-Problemen (Facettensuche) führt zu einem effizienten Verfahren. Die numerischen Ergebnisse an Hand realistischer Daten eines deutschen Versorgungsunternehmens rechtfertigen diesen Zugang. / We consider a power generation system comprising thermal units and pumped hydro storage plants, and introduce a model for its weekly cost-optimal operation. Due to the uncertainty of the load, the mathematical model represents a dynamic (multi-stage) stochastic program. The model involves a large number of mixed-integer (stochastic) decisions but its constraints are loosely coupled across operating power units. The coupling structure is used to design a stochastic Lagrangian relaxation method, which leads to a decomposition into stochastic single unit subproblems. The stochastic subproblems have deterministic counterparts, which makes it easy to develop algorithms for the stochastic problems. In this paper, a descent method for stochastic storage problems and an extension of dynamic programming towards stochastic programs are developed. The solution of the dual problem provides multipliers leading to preferred schedules (binary primal variables). The crossover heuristics evaluates the economic dispatch problems corresponding to a sequence of such preferred schedules. The combination of the restriction on dual preferred schedules (Lagrangian reduction) with the evaluation of a sequence (facet search) leads to an efficient method. The numerical results on realistic data of a German utility justify this approach.
57

Third harmonic management and flexible charging for the integration of electric vehicles into the grid

Hernandez, Jorge Eliezer 08 June 2015 (has links)
Electric vehicle (EV) development has gone into an accelerated pace in recent years to address pressing concerns on energy security, the environment, and the sustainability of transportation. The future market success of EVs is still uncertain, but the current shift in the automotive industry is indicating a possible bright future for EVs. Because of its unique load characteristics, an extensive deployment of EVs will not only bring challenges to power systems, but will enable new opportunities as well. The objective of this work is to address the increased third harmonic currents expected with the introduction of EVs and to explore the potential of leveraging flexible EV charging to increase wind power production. Since EV chargers rely on a nonlinear power conversion process to obtain a controllable DC source from the utility AC supply, it is expected that these devices will aggravate third harmonic current issues. In fact, utility harmonic field data show that, even without EVs, distribution feeders are already experimenting elevated levels of third harmonic currents. To address present and future utility harmonic filtering needs, a practical third harmonic hybrid active filter for medium voltage (MV) applications is proposed. Its design is based on strict utility requirements of cost, reliability, and ease of system implementation. The operation and performance of the proposed filter is verified through simulations and two experimental setups, one tested at 7.2 kV. Furthermore, a system impact study of the proposed filter is performed using actual data for a typical residential/small commercial distribution feeder. Because vehicles remain stationary most of the time, EVs have the potential of being flexibly charged, providing a spectrum of opportunities for system operators. The recent increase in wind power penetration in the U.S. is raising concerns on how to accommodate this stochastic renewable energy resource in day-ahead scheduling operations. In this work, a detailed integrated day-ahead scheduling framework is developed to explore the impact of leveraging flexible EV charging to balance out the variability and uncertainty of wind power generation. It is determined that the full benefits of balancing wind power generation with flexible EV charging may not be achieved in congested power systems. A potential solution based on deploying power routers (PRs) to augment the flexibility of the transmission system is proposed. Simulation results are presented for a test system based on the IEEE 39-bus system.
58

Οικονομική λειτουργία συστήματος ηλεκτρικής ενέργειας

Παπανικολάου, Δημήτριος 21 February 2008 (has links)
Σκοπός αυτής της Διπλωματικής είναι η μελέτη του προβλήματος οικονομικής κατανομής φορτίου και η μελέτη του προβλήματος ένταξης μονάδων ενός καθαρά θερμικού συστήματος. Το πρόβλημα της οικονομικής κατανομής φορτίου και της ένταξης μονάδων εξετάζονται αρχικά θεωρητικά. Στα πλαίσια αυτής της Διπλωματικής γίνεται και εφαρμογή της οικονομικής κατανομής φορτίου και της ένταξης μονάδων σ' ένα ενδεικτικό δίκτυο δοκιμών με χρήση Η/Υ. Για την οικονομική κατανομή φορτίου χρησιμοποιείται το πρόγραμμα Economic Dispatch Program και για την ένταξη μονάδων, τα προγράμματα Unit Commitment και Unitcom. Επίσης εξετάζεται συνοπτικά το Ελληνικό σύστημα ηλεκτρικής ενέργειας και δίνονται τα βασικά σημεία της Απελευθέρωσης Αγοράς Ηλεκτρικής Ενέργειας στην Ελλάδα. / This diploma essay's purpose is to study the economic dispatch problem and the unit commitment problem of a simple thermal power system. Initially, the economic dispatch problem and the unit commitment problem are examined theoretically. In this essay takes place an application of the economic dispatch problem and an application of the unit commitment problem, in an indicative test network, with the use of a PC. For the economic dispatch problem is used the Economic Dispatch Program and for the unit commitment problem are used the Unit Commitment and Unitcom programs. Furthermore, in this essay are concisely examined the Hellenic power system and the release of the Hellenic electric market.
59

On the Dynamics and Statics of Power System Operation : Optimal Utilization of FACTS Devicesand Management of Wind Power Uncertainty

Nasri, Amin January 2014 (has links)
Nowadays, power systems are dealing with some new challenges raisedby the major changes that have been taken place since 80’s, e.g., deregu-lation in electricity markets, significant increase of electricity demands andmore recently large-scale integration of renewable energy resources such aswind power. Therefore, system operators must make some adjustments toaccommodate these changes into the future of power systems.One of the main challenges is maintaining the system stability since theextra stress caused by the above changes reduces the stability margin, andmay lead to rise of many undesirable phenomena. The other important chal-lenge is to cope with uncertainty and variability of renewable energy sourceswhich make power systems to become more stochastic in nature, and lesscontrollable.Flexible AC Transmission Systems (FACTS) have emerged as a solutionto help power systems with these new challenges. This thesis aims to ap-propriately utilize such devices in order to increase the transmission capacityand flexibility, improve the dynamic behavior of power systems and integratemore renewable energy into the system. To this end, the most appropriatelocations and settings of these controllable devices need to be determined.This thesis mainly looks at (i) rotor angle stability, i.e., small signal andtransient stability (ii) system operation under wind uncertainty. In the firstpart of this thesis, trajectory sensitivity analysis is used to determine themost suitable placement of FACTS devices for improving rotor angle sta-bility, while in the second part, optimal settings of such devices are foundto maximize the level of wind power integration. As a general conclusion,it was demonstrated that FACTS devices, installed in proper locations andtuned appropriately, are effective means to enhance the system stability andto handle wind uncertainty.The last objective of this thesis work is to propose an efficient solutionapproach based on Benders’ decomposition to solve a network-constrained acunit commitment problem in a wind-integrated power system. The numericalresults show validity, accuracy and efficiency of the proposed approach. / <p>The Doctoral Degrees issued upon completion of the programme are issued by Comillas Pontifical University, Delft University of Technology and KTH Royal Institute of Technology. The invested degrees are official in Spain, the Netherlands and Sweden, respectively.QC 20141028</p>
60

PRÉ-DESPACHO DE POTÊNCIA ATIVA CONSIDERANDO AS ÓTICAS DOS AGENTES GERADORES E DO OPERADOR DO SISTEMA / PRE-ORDER IN ACTIVE POWER CONSIDERING THE OPTICIANS OF AGENTS GENERATORS AND SYSTEM OPERATOR

Pereira Neto, Aniceto de Deus 25 July 2008 (has links)
Made available in DSpace on 2016-08-17T14:52:49Z (GMT). No. of bitstreams: 1 Aniceto_de_Deus_Pereira_Neto.pdf: 1168768 bytes, checksum: adc4488efe00f3201345ff8a783ac6bb (MD5) Previous issue date: 2008-07-25 / The restructuring and deregulation of electricity markets has caused signi¯cant changes in electrical power systems in several countries. This process has result in a market-based competition by creating an open market environment. In this new environment each generation company runs the Unit Commitment to maximize their pro¯ts, and have no obligation to meet the energy and spinning reserve demands, as happened in the past. With this new structure, the Unit Commitment problem has received special attention, since generation companies in actual model always seek the maximum pro¯t without concern to serve all demands. On the other hand, there is the system operator, which always seeks to optimize overall system at the lowest cost. So, there are two di®erent situations into this competitive market environment: generators seeking the maximum bene¯t without concern to the system security operating, and independent system operator seeking always operate the system safely and at less cost. This work presents the mathematical models and the solution Unit Commitment problem, which was implemented considering two view points: the generation companies and the system independent operator views. Moreover, an auction model is extended to PRD in a horizon of 24 hours. This auction model simulates the interaction between generators and system operator to meet demands and security of the system. The idea is to stimulate the players to o®er products to energy (primary) and reserve (Ancilar Service) markets using only prices o®ered by market operator for each product. This iterative process is ¯nalized when generators supply su±cient to meet demand, and not cause any violation on °ow limits in transmission lines. The solution method proposed for Unit Commitment is based on evolution strategies and Lagrange Relaxation, resulting in a robust hybrid algorithm. The method have been validated in a test system composed of 6 buses, 7 transmission lines and 10 generating units. The results showed the e±ciency of the hybrid model proposed, which was able to solve the unit commitment problem in its various models considered here. / A reestruturação dos mercados de energia elétrica provocou mudanças significativas nos sistemas elétricos de potência de diversos países. Neste novo ambiente, cada empresa de geração executa individualmente o Pré-Despacho para maximizar seus benefícios financeiros, e não têm a obrigação em atender suas demandas de potência e reserva girante, como acontecia no modelo tradicional. Por outro lado existe o operador do sistema, o qual sempre busca a otimização global do sistema ao menor custo. Assim, têm-se duas situações distintas neste ambiente competitivo: os geradores buscando o máximo benefício sem preocupação com a segurança operativa do sistema, e o operador independente buscando sempre operar o sistema de forma segura e ao menor custo. Este trabalho apresenta as modelagens matemáticas e a solução do Pré- Despacho executado sob os dois pontos de vista: dos agentes de geração e do operador independente do sistema. Além do mais, um modelo de leilão é estendido para o PRD num horizonte de 24 horas. Este modelo simula a interação entre os agentes de geração e o operador do sistema na busca por uma solução única que concilie o interesse de ambos. A idéia é estimular os agentes geradores a ofertarem os produtos para os mercados de energia (primário) e de reserva (Serviço Ancilar) mediante oferta de preços pelo operador do mercado para os respectivos produtos. Esse procedimento iterativo é finalizado quando a oferta dos geradores for suficiente para atender completamente a demanda e, não provocar violações em nenhum limite de fuxos na malha de transmissão. O método de solução proposto para o Pré-Despacho é baseado em estratégias evolutivas e Relaxação de Lagrange, resultando em um modelo híbrido robusto. Os modelos e técnicas foram validados em um sistema teste composto por 6 barras, 7 linhas de transmissão e 10 unidades geradoras. Os resultados obtidos demonstraram a eficiência do método de solução, o qual se mostrou capaz de resolver o problema de Pré-Despacho nas suas diversas modelagens utilizadas.

Page generated in 0.0713 seconds