• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 24
  • 13
  • 11
  • 7
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 209
  • 209
  • 209
  • 83
  • 55
  • 39
  • 34
  • 34
  • 32
  • 31
  • 29
  • 25
  • 24
  • 22
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

A Robust Synthetic Basis Feature Descriptor Implementation and Applications Pertaining to Visual Odometry, Object Detection, and Image Stitching

Raven, Lindsey Ann 05 December 2017 (has links)
Feature detection and matching is an important step in many object tracking and detection algorithms. This paper discusses methods to improve upon previous work on the SYnthetic BAsis feature descriptor (SYBA) algorithm, which describes and compares image features in an efficient and discreet manner. SYBA utilizes synthetic basis images overlaid on a feature region of interest (FRI) to generate binary numbers that uniquely describe the feature contained within the FRI. These binary numbers are then used to compare against feature values in subsequent images for matching. However, in a non-ideal environment the accuracy of the feature matching suffers due to variations in image scale, and rotation. This paper introduces a new version of SYBA which processes FRI’s such that the descriptions developed by SYBA are rotation and scale invariant. To demonstrate the improvements of this robust implementation of SYBA called rSYBA, included in this paper are applications that have to cope with high amounts of image variation. The first detects objects along an oil pipeline by transforming and comparing frame-by-frame two surveillance videos recorded at two different times. The second shows camera pose plotting for a ground based vehicle using monocular visual odometry. The third generates panoramic images through image stitching and image transforms. All applications contain large amounts of image variation between image frames and therefore require a significant amount of correct feature matches to generate acceptable results.
92

Utvärdering av programvara/molntjänst för framställning av ortofoton med UAS-data

Thorell, Fredrik, Nilsson, William January 2013 (has links)
Unmanned Aerial Vehicle (UAV) är en benämning på en obemannad flygande farkost. UAV är en benämning för själva farkosten och därför har Unmanned Aircraft System (UAS) tagit över eftersom det är ett begrepp som rör hela systemet som förutom flygfarkost innefattar start, landning, markstation och kommunikationslänk. Inom mätningsteknik är UAS ett relativt nytt begrepp och tekniken har sin historia mestadels inom det militära området. Syftet med denna studie är att analysera samt utvärdera två programvaror och en molntjänst för bearbetning och framtagning av ortofoto från UAS-data. De frågor som ställts inför arbetet är: kan en molntjänst ersätta ett avancerat datorprogram vid generering av ortofoton? Kan dessa datorprogram ge ett bra resultat utan hjälp av andra GIS-program? Vilket program är enklast att förstå och använda samt vilka är skillnaderna mellan programmen? Dessa frågor har besvarats genom användning av insamlat data och för att få utvärderingen rättvis har därför tre olika dataset skapats. Programtjänsterna som har utvärderats är Agisoft PhotoScan 0.9.0 och Pix4UAV Desktop/Cloud 2.1.2. Insamling av data har skett genom en flygning med en oktokopter över Fågelmyratippen i Dalarna. Resultaten visar att priset snabbt blir högt om endast Pix4UAV Cloud används och att överlag är PhotoScan billigare än Pix4UAV Desktop. Kvalitetsrapporten som följer med varje projekt är överskådlig i PhotoScan och mer ingående i Pix4UAV Desktop/Cloud. Trots samma indata blir utdatat olika vid bearbetning av de olika programmen, till exempel skiljer sig markupplösningen åt mellan programmen. Generellt är PhotoScan tydligare på att visa hur arbetsprocessen går till. Supporten hos båda företagen är bra, tips och tricks finns på respektive hemsida. Till PhotoScan finns även en manual för nedladdning samt en YouTube-kanal med instruktionsvideor. De enda slutsatserna vi drar är att Pix4UAV Cloud inte klarar av att ersätta ett avancerat bildbehandlingsprogram och att för tillfället bör ytterligare ett GIS-program användas som komplement för att få bästa resultat. I övrigt har vi endast skrapat på ytan av programmen och rekommenderar att läsaren tar till sig det vi skrivit under resultat och diskussion för att sedan bilda sig en egen uppfattning med hjälp av respektive programs prövotid. Till sist presenteras förslag på vidare studier inom ämnet. / Unmanned Aerial Vehicle (UAV) is a term for a remote controlled airbornevehicle. Since UAV is an acronym for the vehicle itself, Unmanned Aircraft Systems(UAS) has therefore replaced UAV, as it is a concept related to the wholesystem, beside the vehicle it also includes landing, ground station andcommunications link. Within land surveying UAS is a relatively new concept asthe technology has its history mainly associated to the military. The purposeof this study is to analyze and evaluate two software and a cloud service for processingand preparation of orthophotos from data collected with a UAS. The questions tobe answered in this thesis are: Can a cloud service replace an advancedcomputer software for generating orthophotos? Can these produce good resultswithout the help of other GIS software? Which software is the easiest tounderstand and to use and what are the main differences. These questions wereanswered by using collected data, and to get the evaluation fair three datasetshave been created. The software being evaluated are Agisoft PhotoScan andPix4UAV desktop/cloud. The data collection was done by a flight with an octokopterover Fågelmyratippen in Dalarna. The results show that the price quicklybecomes high if only Pix4UAV Cloud is used and that generally PhotoScan ischeaper than Pix4UAV Desktop. The quality report that comes with each projectis easy to understand in PhotoScan but more detailed in Pix4UAV Desktop/Cloud. Despitethe use of same data the results vary when processed, for example the groundresolution. Generally PhotoScan is better at showing the work process. Eachcompany’s support is good and they both have tips and tricks at their websites.On the Agisoft webpage there is a manual available for download and they alsohave a YouTube-channel with instruction videos. The conclusion is that thecloud service is not capable of replacing an advance image processing software.Another conclusion is that for the moment another GIS-program should be used toget the best results. We like to point out that we only scratched the surfaceof the software and we recommend that the reader embrace what we write inresults and discussion to then form their own opinion by using the softwareevaluation period. I the last part we present subjects of further study.
93

Optimalizace konstrukce bezpilotního prostředku vyráběného technologií Fused Deposition Modelling (FDM) / Structural optimization of 3D-printed Unmanned Aerial Vehicle

Sladký, Martin January 2021 (has links)
This master thesis deals with the design of the internal wing structure of 3D printed flying wing VUT 714. As a part of this work was performed a load calculation, static strenght test, comparative FEM analysis and subsequently topology optimization was performed. The outcome of this master thesis is a rational design of the wing internal structure based on the load calculation and knowledge of effect of this load on the structure.
94

Edge Processing of Image for UAS Sense and Avoidance

Rave, Christopher J. 26 August 2021 (has links)
No description available.
95

Rozšíření řídicího systému modelu letadla Skydog o podporu vzdáleného a samočinného řízení Android aplikací / Expansion of Skydog Aircraft Model Control System by Remote and Autonomous Control by Android Application

Boček, Michal January 2014 (has links)
The thesis aims to design and implement an Android application with ability to control the autopilot of the Skydog aircraft model using the wireless telemetry. The application shall receive data from an aircraft model gathered from various installed sensors. These data shall be then processed and corresponding instructions for autopilot shall be sent back. When collision with terrain or obstacle is detected, the application shall send instructions to autopilot to avoid such collision. RRT algorithm is used to find collision-free flight trajectory. Database of known obstacles and digital terrain model are provided to application in formats XML and GeoTIFF respectively.
96

Conception et commande de robots parallèles volants / Design and control of flying parallel robots

Six, Damien 04 December 2018 (has links)
La manipulation aérienne est l’un des défis de la robotique au cours de cette dernière décennie. L’un des freins au développement des manipulateurs aériens est l’autonomie limitée des drones, réduite par la charge et la consommation électrique du manipulateur embarqué. Une solution pour dépasser cette limite passe par la collaboration de plusieurs drones dans une tâche de manipulation. Cette thèse porte sur la conception et la commande d’un nouveau type de véhicule autonome aérien destiné à la manipulation. Le concept consiste à faire collaborer plusieurs drones, en particulier des quadricoptères, au travers d’une architecture passive polyarticulée. Le robot ainsi obtenu est une fusion entre l’architecture passive d’un robot parallèle et plusieurs drones. L’étude du modèle dynamique de cette classe de robots met en avant un découplage dans le modèle dynamique. Ce découplage permet la conception d’une commande en cascade qui assure la stabilisation et le suivi de trajectoire pour ces robots. Deux cas d’étude sont ensuite déclinés dans cette thèse : un robot parallèle volant à deux drones et un robot parallèle volant à trois drones. Pour ces deux robots, une simulation numérique est effectuée afin de valider le fonctionnement de la commande. Ces simulations ont également permis de valider la possibilité de changer la configuration de l’architecture passive en vol. Les travaux ont été portés avec succès jusqu’au stade expérimental pour le robot volant à deux drones. / Aerial manipulation is one of the challenges of robotics over the last decade. One of the constraints on the development of aerial manipulators is the limited autonomy of drones, reduced by the load and energy consumption of the on-board manipulator. One way to overcome this limit is to have several drones collaborate on a manipulation task. This thesis deals with the design and control of a new type of autonomous aerial vehicle for manipulation tasks. The concept consists in the collaboration of several drones, in particular quadrotors, through a polyarticulated passive architecture. The robot thus obtained is a fusion between the passive architecture of a parallel robot and several drones. The study of the dynamic model of this robot class highlights a decoupling in the dynamic model. This decoupling allows the design of a cascade control law. This controller provides stabilization and trajectory tracking for these robots. Two study cases are then presented in this thesis: a flying parallel robot with two drones and a flying parallel robot with three drones. For these two robots, a numerical simulation is performed to validate the controller performances. These simulations also allowed to validate the reconfiguration abilities of passive architecture in flight. The work was successfully carried to the experimental stage for the flying robot with two drones.
97

Utvärdering av noggrannhet i digitala terrängmodeller framtagna med totalstation, NRTK, UAV och NH / Accuracy evaluation in digital terrain models produced with total station, NRTK, UAV and NH

Jansson, Wilma January 2020 (has links)
Det finns flertal användningsområden för digitala höjdmodeller där det krävs hög noggrannhet för att problematik och ekonomiska konsekvenser inte ska uppstå. Digitala höjdmodeller kan användas till volymberäkning, projektering och geografiska analyser. Digitala höjdmodeller kan kategoriseras som antingen digital ytmodell eller digital terräng-modell. Då hög noggrannhet eftersträvas i digitala terrängmodeller har SIS framställt en standard benämnd SIS-TS 21144:2016 som beskriver hur inmätning och kontroll av data till digitala terrängmodeller ska hanteras. För insamling av höjdinformation till en digital terrängmodell finns olika terrestra och flygburna mätmetoder. Vanliga terrestra mätmetoder är totalstation, GNSS och terrester laserskanning medan flygburna mätmetoder är flygburen laserskanning eller olika metoder med digital fotogrammetri. Syftet med studien är att undersöka noggrannheten hos höjdmodeller kategoriserade som digitala terräng-modeller. Insamling av höjdinformation skedde med totalstation, GNSS-metoden NRTK och UAV samt inhämtning av LAS-data från NH för tre olika karaktäristiska grönområden inom Karlstad med omnejd. SIS-TS 21144:2016 har klassificerat terrängmodeller beroende på användningsområde och terräng. Klassificeringen går mellan klass 1–10 och varje klass har en maximal tolerans i höjd. För studien har tre studieområden som går under klassificeringarna klass 2, klass 3 och klass 5 valts ut för undersökning. Samtliga studieområden är avgränsade till 40 x 40 meter. Innan insamling av data markerades och mättes bakåtobjekt och avvägning genomfördes. Samtlig insamlad data bearbetades i programvaran SBG Geo och UAV data bearbetades även i programvaran Agisoft PhotoScan Professional. För kontroll av samtliga terrängmodeller genomfördes inmätning av tre kontrollprofiler med totalstation enligt SIS-TS 21144:2016. Resultatet visade att UAV är inom tolerans för samtliga studieområden medan NH-data resulterade i enstaka kontrollpunkter utanför klassningens tolerans för samtliga studie-områden. De två terrestra mätmetoderna är båda inom tolerans för klass 2 och varsin kontrollpunkt utanför tolerans för klass 5. Vid studieområde klass 3 är fem kontrollpunkter för totalstation utanför tolerans respektive åtta för NRTK. Vid analys av vilken mätmetod som resulterar i noggrannast terrängmodell inom samtliga studieområden krävs beaktning av antal inmätningspunkter och trianglar som terrängmodellen är uppbyggd av. För klass 2 ger de flygburna mätmetoderna flest antal inmätningspunkter och trianglar medan UAV resulterar i betydligt högre värden för de två resterande studieområdena. Antal inmätnings-punkter för de terrestra mätmetoderna har operatör beslutat om under mätning, vilket har kunnat ökas för att generera terrängmodeller som består av fler trianglar. Resultatet från studien visar att UAV resulterar i terrängmodeller som klarar toleranser inom undersökta studieområden och SIS-TS 21144:2016 klassificeringar. / There are previous research about digital terrain models and how different methods of producing digital terrain models varies in accuracy and there are several different methods to produce a digital terrain models.  In this study the following methods, tools and data are used to produce digital terrain models over three different characteristic study areas: total station, GNSS, UAV and NH. Previous work has failed to address the accuracy given by these four methods over the same three characteristic study areas thus preventing the understanding of most suitable methods for different areas. In this study three different green areas have been studied and the different digital terrain models has been produced and controlled with SIS standard SIS-TS 21144:2016. Data in form of height information were collected by the aforementioned methods and processed to generate results over the accuracy of each methods. The results shows that UAV provide most accurately digital terrains models in least time spent in field but also total station and GNSS generate digital terrain models that are accurate.
98

Design and Evaluation of Geometric Nonlinearities using Joined-Wing SensorCraft Flight Test Article

Garnand-Royo, Jeffrey Samuel 14 June 2013 (has links)
The Boeing Joined-Wing SenorCraft is a novel aircraft design that has many potential benefits, especially for surveillance missions. However, computational studies have shown the potential for nonlinear structural responses in the joined-wing configuration due to aerodynamic loading that could result in aft wing buckling. The design, construction, and flight testing of a 1/9th scale, aeroelastically tuned model of the Joined-Wing SensorCraft has been the subject of an ongoing international collaboration aimed at experimentally demonstrating the nonlinear aeroelastic response in flight. To accurately measure and capture the configuration\'s potential for structural nonlinearity, the test article must exhibit equivalent structural flexibility and be designed to meet airworthiness standards. Previous work has demonstrated airworthiness through the successful flight of a Geometrically Scaled Remotely Piloted Vehicle. The work presented in this thesis involves evaluation of an aeroelastically tuned design through ground-based experimentation. The result of these experimental investigations has led to the conclusion that a full redesign of the forward and aft wings must be completed to demonstrate sufficient geometric nonlinearity for the follow-on Aeorelastically Tuned Remotely Piloted Vehicle. This thesis also presents flight test plans for the aeroelastically tuned RPV. / Master of Science
99

The Integration of Iterative Convergent Photogrammetric Models and UAV View and Path Planning Algorithms into the Aerial Inspection Practices in Areas with Aerial Hazards

Freeman, Michael James 01 December 2020 (has links)
Small unmanned aerial vehicles (sUAV) can produce valuable data for inspections, topography, mapping, and 3D modeling of structures. Used by multiple industries, sUAV can help inspect and study geographic and structural sites. Typically, the sUAV and camera specifications require optimal conditions with known geography and fly pre-determined flight paths. However, if the environment changes, new undetectable aerial hazards may intersect new flight paths. This makes it difficult to construct autonomous flight path missions that are safe in post-hazard areas where the flight paths are based on previously built models or previously known terrain details. The goal of this research is to make it possible for an unskilled pilot to obtain high quality images at key angles which will facilitate the inspections of dangerous environments affected by natural disasters through the construction of accurate 3D models. An iterative process with converging variables can circumvent the current deficit in flying UAVs autonomously and make it possible for an unskilled pilot to gather high quality data for the construction of photogrammetric models. This can be achieved by gaining preliminary photogrammetric data, then creating new flight paths which consider new developments contained in the generated dense clouds. Initial flight paths are used to develop a coarse representation of the target area by aligning key tie points of the initial set of images. With each iteration, a 3D mesh is used to compute a new optimized view and flight path used for the data collection of a better-known location. These data are collected, the model updated, and a new flight path is computed until the model resolution meets the required heights or ground sample distances (GSD). This research uses basic UAVs and camera sensors to lower costs and reduce the need for specialized sensors or data analysis. The four basic stages followed in the study include: determination of required height reductions for comparison and convergent limitation, construction of real-time reconnaissance models, optimized view and flight paths with vertical and horizontal buffers constructed from previous models, and develop an autonomous process that combines the previous stages iteratively. This study advances the use of autonomous sUAV inspections by developing an iterative process of flying a sUAV to potentially detect and avoid buildings, trees, wires, and other hazards in an iterative manner with minimal pilot experience or human intervention; while optimally collecting the required images to generate geometric models of predetermined quality.
100

Motion Planning Framework for Unmanned Aerial Vehicles in Dynamic Environments

Zhu, Yufei January 2021 (has links)
The usage of Unmanned Aerial Vehicles (UAVs) to navigate autonomously in a dynamic environment is becoming more common. It is important that a UAV can generate collision-free trajectories and also be able to modify them to adapt to environment changes over the entire duration of navigation. The objective of this thesis is to present an optimized motion planning framework for UAV in dynamic environments. The proposed framework consists of two modules, which are optimized motion planner and dynamic scene generator. The optimized motion planner utilizes an asymptotically optimal sampling-based motion planning algorithm, RRTX, and extends RRTX with an optimizer based on Covariant Hamiltonian Optimization for Motion Planning (CHOMP) algorithm to optimize trajectories. A dynamic environment has obstacles that unpredictably appear, disappear or move. The optimized motion planner reacts to environment changes and finds collision-free trajectories during the navigation. Dynamic scene generator contains an obstacle information messenger and UAV simulator. This module is to simulate UAV, obstacles, and planned trajectories in a Unity scene. UAV simulator utilizes Flightmare, which is a flexible modular quadrotor simulator that contains a rendering engine built on Unity and a physics engine for dynamics simulation. The built framework is evaluated in simulations and the results show that the framework enables a UAV to navigate autonomously without colliding with any obstacles in dynamic environments. / Användningen av obemannade luftfarkoster för att navigera autonomt i dynamiska miljöer blir allt vanligare. Det är viktigt att en obemannade luftfarkost kan generera kollisionsfria banor och ändra dem för förändringar i miljöer under hela navigering. Detta examensarbete undersöker optimerad banplanering ramverket för obemannade luftfarkoster i dynamiska miljöer. Ramverket består av två delar: en optimerad banplanerare, och en dynamiska scen modul. Den optimerad banplaneraren använder en asymptotiskt optimala samplingsbaserade banplaneringsalgoritm, RRTX, och förlänger RRTX med en optimala lösning baserad på Covariant Hamiltonian Optimization for Motion Planning (CHOMP) algoritm för att optimera banor. En dynamiska miljö har hinder som oförutsägbart dyker upp, försvinner eller rör sig. Den optimerad banplaneraren reagerar på förändringar i miljöer och hittar kollisionsfria banor under navigeringen. Den dynamiska scen modulen består av en informationsbudbärare för hinder och en simulator för obemannade luftfarkoster. Denna modul ska simulera obemannade luftfarkoster, hinder och banor i en Unity scen. Den simulatorn för obemannade luftfarkoster använder Flightmare, som är en flexibel modulär simulator för quadrotorer. Flightmare består av en återgivningsmotor byggd på Unity och en fysikmotor för dynamiska simuleringar. Ramverket har testats i simuleringar. Resultat från simuleringar bekräftar att det ramverket gör att en obemannade luftfarkost kan navigera autonomt utan att kollidera med några hinder i dynamiska miljöer.

Page generated in 0.0582 seconds