• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 294
  • 25
  • 25
  • 8
  • 7
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 530
  • 134
  • 122
  • 83
  • 81
  • 77
  • 65
  • 61
  • 58
  • 57
  • 56
  • 56
  • 52
  • 50
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Implementing a Control Strategy for a Cable-­driven Ankle Exoskeleton / Implementering av en kontrollstrategi för ett kabeldrivet ankel exoskelett

Zhu, Yu January 2021 (has links)
Ankle exoskeletons are designed to help people with movement weakness to restore the walking ability . However, people with gait pathology, for instance, drop foot, usually have difficulties in lifting the front part of foot during gait. Thus, different from health subjects, both plantarflexion and dorsiflexion assistance are needed for them to walk better. The purpose of this thesis is to implement an EMG-­driven control strategy for a cable­driven ankle exoskeleton while exploring the use of reinforcement learning in exoskeleton control. The work uses an EMG­-driven musculoskeletal model to predict ankle joint torque. The model uses EMG signals from 4 lower­-limb muscles related to plantarflexion and dorsiflexion to obtain ankle torque and stiffness. The dynamic model for an ankle exoskeleton is built for simulation. The reinforcement learning controller is designed for the ankle exoskeleton tracking the desired ankle joint torques. Based on simulation results, two main conclusions can be drawn, one is that the proposed control strategy can provide precise torque assistance; the other is that using reinforcement learning to track the desired assistive trajectories is effective. / Ankel exoskeletons är utformade för att hjälpa människor med rörelsessvaghet att återställa gångförmågan. Men personer med gångpatologi, till exempel faller fot, har vanligtvis svårt att lyfta den främre delen av foten under gång. Således, annorlunda än hälsoämnen, behövs både plantarflexion- och dorsiflexionshjälp för att de ska kunna gå bättre. Syftet med denna avhandling är att implementera en EMG­-driven kontrollstrategi för ett kabeldrivet vristexoskelet samtidigt som man utforskar användningen av förstärkningsinlärning vid exoskeletskontroll. Arbetet använder en EMG­-driven muskuloskeletal modell för att förutsäga fotledets vridmoment. Modellen använder EMG-­signaler från 4 nedre extremiteter muskler relaterade till plantarflexion och dorsiflexion för att uppnå vridmoment och styvhet. Den dynamiska modellen för ett fotoskeleton är byggd för simulering. Förstärkningsinlärningskontrollern är utformad för fotledets exoskelett som spårar önskade vridmoment i fotleden. Baserat på simuleringsresultat kan två huvudsakliga slutsatser dras, en är att den föreslagna kontrollstrategin kan ge exakt momenthjälp; den andra är att det är effektivt att använda förstärkningslärande för att spåra de önskade hjälpbanorna.
372

Development of a Low-Cost and Easy-to-Use Wearable Knee Joint Monitoring System / A Wearable Knee Joint Monitoring System

Faisal, Abu Ilius January 2020 (has links)
The loss of mobility among the elderly has become a significant health and socio-economic concern worldwide. Poor mobility due to gradual deterioration of the musculoskeletal system causes older adults to be more vulnerable to serious health risks such as joint injuries, bone fractures and traumatic brain injury. The costs associated with the treatment and management of these injuries are a huge financial/social burden on the government, society and family. Knee is one of the key joints that bear most of the body weight, so its proper function is essential for good mobility. Further, Continuous monitoring of the knee joint can potentially provide important quantitative information related to knee health and mobility that can be utilized for health assessment and early diagnoses of mobility-related problems. In this research work, we developed an easy-to-use, low-cost, multi-sensor-based wearable device to monitor and assess the knee joint and proposed an analysis system to characterize and classify an individual’s knee joint features with respect to the baseline characteristics of his/her peer group. The system is composed of a set of different miniaturized sensors (inertial motion, temperature, pressure and galvanic skin response) to obtain linear acceleration, angular velocity, skin temperature, muscle pressure and sweat rate of a knee joint during different daily activities. A database is constructed from 70 healthy adults in the age range from 18 to 86 years using the combination of all signals from our knee joint monitoring system. In order to extract relevant features from the datasets, we employed computationally efficient methods such as complementary filter and wavelet packet decomposition. Minimum redundancy maximum relevance algorithm and principal component analysis were used to select key features and reduce the dimension of the feature vectors. The obtained features were classified using the support vector machine, forming two distinct clusters in the baseline knee joint characteristics corresponding to gender, age, body mass index and knee/leg health condition. Thus, this simple, easy‐to‐use, cost-effective, non-invasive and unobtrusive knee monitoring system can be used for real-time evaluation and early diagnoses of joint disorders, fall detection, mobility monitoring and rehabilitation. / Thesis / Master of Applied Science (MASc)
373

Development and Assessment of Smart Textile Systems for Human Activity Classification

Mokhlespour Esfahani, Mohammad Iman 13 September 2018 (has links)
Wearable sensors and systems have become increasingly popular for diverse applications. An emerging technology for physical activity assessment is Smart Textile Systems (STSs), comprised of sensitive/actuating fiber, yarn, or fabric that can sense an external stimulus. All required components of an STS (sensors, electronics, energy supply, etc.) can be conveniently embedded into a garment, providing a fully textile-based system. Thus, STSs have clear potential utility for measuring health-relevant aspects of human activity, and to do so passively and continuously in diverse environments. For these reasons, STSs have received increasing interest in recent studies. Despite this, however, limited evidence exists to support the implementation of STSs during diverse applications. Our long-term goal was to assess the feasibility and accuracy of using an STS to monitor human activities. Our immediate objective was to investigate the accuracy of an STS in three representative applications with respect to occupational scenarios, healthcare, and activities of daily living. A particular STS was examined, consisting of a smart socks (SSs), using textile pressure sensors, and smart undershirt (SUS), using textile strain sensors. We also explored the relative merits of these two approaches, separately and in combination. Thus, five studies were completed to design and evaluate the usability of the smart undershirt, and investigate the accuracy of implementing an STS in the noted applications. Input from the SUS led to planar angle estimations with errors on the order of 1.3 and 9.4 degrees for the low-back and shoulder, respectively. Overall, individuals preferred wearing a smart textile system over an IMU system and indicated the former as superior in several aspects of usability. In particular, the short-sleeved T-shirt was the most preferred garments for an STS. Results also indicated that the smart shirt and smart socks, both individually and in combination, could detect occupational tasks, abnormal and normal gaits, and activities of daily living with greater than 97% accuracy. Based on our findings, we hope to facilitate future work that more effectively quantifies sedentary periods that may be deleterious to human health, as well as detect activity types that may be help or hinder health and fitness. Such information may be of use to individuals and workers, healthcare providers, and ergonomists. More specifically, further analyses from this investigation could provide strategies for: (a) modifying a sedentary lifestyle or work scenario to a more active one, and (b) helping to more accurately identify occupational injury risk factors associated with human movement. / PHD / The use of interactive or “smart” textiles that have sensing material(s) incorporated into them supports an emerging technology for physical activity assessment called Smart Textile Systems (STSs). STSs are an increasingly useful technology for researchers, athletes, patients, and others. Our aims in the current study were the development and assessment of a new smart undershirt (SUS) that was designed to monitor low-back and shoulder motions, and to evaluate the preferred placement and usability of two STSs. We also assessed the accuracy of two smart garments, smart socks (SSs) and the SUS, both individually and in combination. Accuracy was evaluated in terms of the ability of these systems to distinguish between diverse simulated occupational tasks, normal and abnormal walking patterns, and several typical daily activities. Our investigation indicated that STSs could discriminate between different human activities common in three domains: occupational scenarios, healthcare, and activities of daily life. We also found that both smart garments (i.e., SSs and SUS) provided similar accuracy for activity classification, typically exceeding 97%, and thus there was no clear superiority between these two smart garments. We conclude that, overall, smart garments represent a promising area of research and a potential alternative for discriminating and monitoring a range of human activities. Use of this technology in the future may have positive implications for health promotion.
374

Statistical and Machine Learning Methods for Precision Medicine

Fei, Wenbo January 2025 (has links)
Precision medicine aims to tailor medical care and treatment plans based on an individual's characteristics. This dissertation develops machine learning methods to extract meaningful features from digital marker signatures and address the challenges of learning individualized treatment rules using clinical trials and observational studies. The first part of this dissertation proposes a joint nonparametric Bayesian approach that extends the hierarchical Dirichlet process autoregressive hidden Markov model with subject-specific transitions. This model allows for simultaneous learning of latent states across multiple subjects and repeated intensive measurements, facilitating symptom monitoring through wearable device technologies as an objective, low-cost, real-time alternative in movement disorders. The second part introduces a novel approach to integrate the intermediate outcomes from multiple domains through a modified restrictive Boltzmann machine (RBM) model, such that clinical or biological measures can be combined into a personalized composite outcome. This model facilitates the use of interim measures in learning individualized treatment rules for early detection of non-responders and early intervention to improve final outcomes in mental disorders. In the third part, we develop a novel framework for effective and generalizable learning of the individualized treatment effect (ITE) to address the multifaceted nature of treatment responses to mental disorders. This model jointly evaluates multi-domain treatment outcomes and can ensure generalizability across a potentially infinite class of diverse yet clinically relevant outcomes by leveraging a distributionally robust framework and the generalized latent factor models.
375

Wireless body area networks for intra-spacesuit communications: modeling, measurements and wearable antennas

Taj-Eldin, Mohammed January 1900 (has links)
Doctor of Philosophy / Department of Electrical and Computer Engineering / William B. Kuhn / Balasubramaniam Natarajan / Wireless body area networks (WBANs) are an important part of the developing internet of things (IOT). NASA currently uses space suits with wired sensors to collect limited biomedical data. Continuous monitoring and collecting more extensive body vital signs is important to assess astronaut health. This dissertation investigates wireless biomedical sensor systems that can be easily incorporated into future space suits to enable real time astronaut health monitoring. The focus of the work is on the radio-wave channel and associated antennas. We show that the space suit forms a unique propagation environment where the outer layers of the suit’s thermal micrometeoroid garment are largely radio opaque. This environment can be modeled as a coaxial one in which the body itself plays the role of the coax center conductor while the space suit shielding materials play the role of the outer shield. This model is then validated through simulations and experiments. Selecting the best frequency of operation is a complex mixture of requirements, including frequency allocations, attenuation in propagation, and antenna size. We investigate the propagation characteristics for various frequency bands from 315 MHz to 5.2 GHz. Signal attenuation is analyzed as a function of frequency for various communication pathways through 3D simulations and laboratory experiments. Small-scale radio channel results indicate that using lower frequency results in minimal path loss. On the other hand, measurements conducted on a full-scale model suggest that 433 MHz and 2400 MHz yield acceptable path loss values. Propagation between the left wrist and left ankle yielded the worst overall path loss, but signals were still above –100 dBm in raw measurements for a 0dBm transmission indicating that the intra-suit environment is conducive to wireless propagation. Our findings suggest that the UHF bands are best candidate bands since there is interplay between the body conductivity favoring lower frequencies, and the difficulty of coupling RF energy into and out of the channel using suitably sized antennas favoring higher frequencies. Finally, a new self-shielded folded bow-tie antenna is proposed that can be a promising choice for the general area of WBAN technologies as well as potential new space suit environments.
376

Emotions, fear, and empathy: a design approach to human experiences

Polinedrio, Veronica January 2014 (has links)
Fear is an intrinsic human emotion, which produces with variable intensity a bodily reaction as a response to a stimuli. It is considered one of the basic human emotions, and it is universal of all animal species. Despite its subjective quality, fear has gained a rather negativistic stereotype that this research intends to debate and readdress, proposing that “negative fear” is part of an evolutionary transition cultivated by social and cultural constructs. This thesis will analyze the context in which fear operates, employing experience design methodologies and design research to reevaluate the role of fear in the contemporary settings of our societies to prove its connection to imagination, transhumanism and the production of empathy. After a brief historical perspective to situate this thesis in the contemporary framework of experience design, this research will investigate fear as prolific tool for the production of imagination, derived from its aesthetic connection to wonder and pleasure. This particular connection between fear to wonder was investigated among others by Charles Darwin, who also promoted the functionality of fear as the key to animal survival. The complex mechanism in which fear engages us will lead to the production of design prototypes that look at the animal kingdom and several other species’ talents in the detection and implementation of fear as a tool to survive. Here, the potential of our species to further evolve through the use of design will open a discussion on transhumanism and the future of humanity. The last section speculates a counterfactual conditional statement of how our humanity would operate, if emotional identities were reevaluated. In particular, the emotion of fear will be reevaluated for its unpleasant characteristics, from the bodily sensations to the mental postliminary conditions, to understand why certain human behaviors are still exercised, when the physiological effects are universally acknowledged as distasteful. By interpreting the physiological impact of fear, this research will continue its argument towards empathy, questioning what it truly means to ‘stand in someone’s else shoes’, specifically when fear is practiced. Empathy, as a pilaster in the mission statement of many contemporary disciplines, has surfaced in this research as viral phenomenon, which little has to do with truly ‘empathizing’. Here, it investigates how empathy can be experienced when fear is in play: if sharing fear as the bodily experience of someone else can lead to the production of authentic empathy, then humans have a chance to reevaluate its application in the contemporary global topics of war and diplomacy, domestic and public violence, or bullying to name a few. This research ultimately establishes a new perspective on the role of emotions in our societies, and creates a connection between design and the experience of intangibles, producing a view of the intrinsic systems of our being as ones deemed of value in the ambitious evolution of our species. / <p>The full thesis contains copyrighted material which has been removed in the published version.</p>
377

Wearables im industriellen Einsatz

Ziegler, Jens 18 May 2016 (has links) (PDF)
Die industrielle Instandhaltung ist ein erheblicher Kostenfaktor während der Betriebsphase einer verfahrenstechnischen Produktionsanlage. Insbesondere der Mangel an technischen Möglichkeiten zum Informationsaustausch des Instandhaltungspersonals mit der digitalen Anlage während der Arbeiten im Feld erzeugt hohe Kosten. Durch die entstehenden Medienbrüche sinkt die Qualität der Informationen in der Digitalen Anlage erheblich. Mobile Informationssysteme können diese Medienbrüche beseitigen und die Informationsqualität in der Digitalen Anlage entscheidend verbessern. Das Konzept der Distributed Wearable User Interfaces (DWUI) stellt einen integrierten Ansatz zur flexiblen Zusammenstellung gebrauchstauglicher Benutzungsschnittstellen für komplexe Arbeitsabläufe in widrigen Arbeitssituationen bereit. Diese setzen sich aus Interaktionsgeräten zusammen, die in einem kabellosen körpernahen Funknetzwerk miteinander verbunden sind und in ihrer Kombination die Benutzungsschnittstelle zu einem mobilen System bilden. Die Geräte sind ergonomisch und funktional optimal am Körper des Nutzers verteilt, wobei jedes Gerät eigenständig nutzbar und für eine bestimmte Aufgabe oder einen bestimmten Nutzungskontext optimiert ist. Die Ein- und Ausgaberäume der Geräte werden in einem integrierten Interaktionsraum harmonisiert. Im Rahmen dieser Arbeit wird zunächst der Nutzungskontext der mobilen IT-gestützten Instandhaltung verfahrenstechnischer Produktionsanlagen im Hinblick auf Nutzungsszenarien und Anwendungsfälle für mobile Informationssysteme festgelegt. Darauf aufbauend werden Anforderungen an derartige Systeme spezifiziert und Gestaltungsgrundlagen und Empfehlungen speziell für DWUI-basierte mobile Informationssysteme erarbeitet. Anschließend wird eine Reihe spezieller Interaktionsgeräte vorgestellt, die verschiedene Interaktionsprinzipien, Techniken und Modalitäten umsetzen. Um diese Geräte in einem kollaborativen DWUI organisieren zu können, wird ein spezielles Kommunikationsprotokoll entworfen und prototypisch umgesetzt. Eine mobile Anwendung zur Instandhaltungsunterstützung wird vorgestellt, welche das DWUI-Kommunikationsprotokoll unterstützt und mit verschiedenen DWUI-Konfigurationen vollständig bedienbar ist. Diese Anwendung wird integriert in ein komplexes Unternehmensnetzwerk, über das sie Zugriff auf industrietypische computergestützte Planungswerkzeuge erhält. Anhand des resultierenden Gesamtsystems werden die prinzipielle Tauglichkeit und die Vorteile des DWUI-Konzepts demonstriert.
378

Design advances of embroidered fabric antennas

Zhang, Shiyu January 2014 (has links)
Wearable technology has attracted global attention in the last decade and the market is experiencing an unprecedented growth. Wearable devices are designed to be low-profile, light-weight and integrated seamlessly into daily life. Comfort is one of the most important requirements for wearable devices. Fabric based antennas are soft, flexible and can be integrated into clothing. State of the art textile manufacturing techniques such as embroidery, combined with advanced conductive textile materials can be used to fabricate flexible fabric based on-body antennas. In this thesis, the feasibility of using computerised embroidery in the fabrication of wearable, flexible yet functional fabric based antennas have been examined. The fabric based antennas are embroidered using conductive threads. The most suitable materials for fabricating embroidered antennas have been identified. The embroidered fabric based antenna systems including transmission lines and low-profile detachable connectors have been fabricated and their RF performances have been tested. The optimal manufacturing parameters related to embroidery such as stitch direction, spacing and length have been examined. The repeatability of embroidered antennas, cost estimation, and complexity of manufacturing process have been clearly presented. The results can be used to inform and provide guidelines for the development of representative products that can be mass manufactured. A new simulation approach has been introduced to analyse the anisotropic properties of embroidered conductive threads. Simulations and measurements indicate that the performances of embroidered antennas are affected by the anisotropic surface current due to the embroidered stitches. Exploiting the current direction, a novel non-uniform meshed patch antenna has been designed. Representative results show that the non-uniform meshed structure can significantly reduce more than 75% of the usage of conductive materials for the microstrip antennas with negligible effect on the antenna performance.
379

Multi-functional PAN based composite fibers

Chien, An-Ting 07 January 2016 (has links)
Various nano-fillers can introduce specific functions into polymer and expand their application areas. Myriad properties, such as mechanical, electrical, thermal, or magnetic properties can be combined with original polymer characteristics, including flexible, light weight, and ease of use. These composites can be used to produce multi-functional fibers as the next generation textile or fabrics. In this research, Polyacrylonitrile (PAN) is adopted as the main polymer with different nano-fillers, such as carbon nanotube (CNT), iron oxide nanoparticle, and graphene oxide nanoribbon (GONR). Using gel-spinning technology, PAN-based composite fibers are fabricated in single- or bi-component fibers. Fibers are also characterized for their structure, morphology, mechanical properties, as well as for their electrical, thermal, or magnetic properties. For example, bi-component fibers with polymer sheath and polymer-CNT core as well as polymer-CNT sheath and polymer core are processed. With electrical and thermal conductivity introduced by CNT, such bi-components fibers can be applied for wearable electronics or for thermal management. Joule-heating effect owing to applied electrical current on single component PAN/CNT fibers is also investigated. With controllable electrical conductivity and fiber temperature, this active functional fiber can be applied for temperature regulation fibers or new carbon fiber manufacturing process. Another example is magnetic fiber with superparamagnetic iron oxide nano-particles. These novel magnetic fibers with high strength can be used for actuator, inductors, EMI shielding, or microwave absorption. GONR is also discussed and used to reinforce PAN-based fibers. Several theoretical models are considered to analyze the observed results.
380

Deployed virtual consulting: the fusion of wearable computing, collaborative technology, augmented reality and intelligent agents to support fleet aviation maintenance

Nasman, James M. 03 1900 (has links)
Approved for public release, distribution is unlimited / This thesis addresses the need of Naval Aviation Maintenance to streamline and more effectively manage the process of technical consultation aboard deployed aircraft carriers. The current process involves the physical transportation of an appropriate technician to the carrier to perform required maintenance and/or repairs. In light of the technology currently available this process becomes obviously obsolete, overly costly and needlessly time consuming. By implementing wireless technology in combination with advanced software allowing the virtual collaboration of parties widely separated by geographical distance the Navy can establish a "virtual technical presence" onboard aircraft carriers wherever they may be in the world. This thesis will describe how the fusion of wearable computing, augmented reality, intelligent agents coupled with CoABS, and a modern collaborative software application can revolutionize Naval aviation maintenance as we know it. The technology is there - it only remains for the Navy to leverage it and take advantage of the significant returns that it will provide. The implementation of this technology will allow maintainers onboard deployed aircraft carriers to consult in an augmented virtual environment with technical assets on the shore. These shore-based assets will then be able to "walk" deployed personnel through complicated repair procedures in a matter of minutes or hours as opposed to the previous need to wait for days for the technician to arrive. This is a bold and innovative new concept that will allow commands at sea to increase their levels of combat readiness and allow them the ability to respond to ever changing mission needs. Turn around times for the repair of critical parts and assemblies will be reduced and readiness levels elevated. The ultimate goal of any command is mission accomplishment. This system will aid commands in achieving that all important goal. / Lieutenant, United States Navy

Page generated in 0.0411 seconds