61 |
[en] MODELLING AND FORECASTING VIA STRUCTURAL MODELS THE PRODUCTION OF POLIPROPILENO´S BAG IN SANTA CATARINA / [pt] MODELAGEM E PREVISÃO, VIA MODELOS ESTRUTURAIS DA PRODUÇÃO DE SACOS DE POLIPROPILENO EM SANTA CATARINASUZANA LEITAO RUSSO 19 July 2006 (has links)
[pt] Na presente dissertação, além de se expor a fundamentação
teórica das Metodologias Estruturais clássica e bayesiana
para previsão de séries temporais, analisou-se o
comportamento de séries temporais, analizou-se o
comportamento da série produção de sacos de polipropileno
produzidos pela Indústria Têxtil Oeste Ltda. com
observações cobrindo o período de janeiro de 1987 a junho
de 1992. Na análise, através dos pacotes computacionais
correspondentes: STAMP (clássico) e BATS (bayesiano),
utilizou-se variáveis de intervenção e a variável exógena
correspondente à produção de metros quadrados de
polipropileno, cobrindo período idêntico, ou seja janeiro
de 1987 a junho de 1992.
Adotando como critério de decisão o erro médio quadráticas
previsões no período de ajuste e da análise ex-ante feita
com as seis últimas observações (janeiro a junho de 1992),
para testar a capacidade extrapolativa dos modelos,
escolheu-se um modelo representativo dentro de cada
abordagem e em seguida foi feito um estudo comparativo de
ambas. / [en] In the present dissertation, besides exposing the
theoretical foundations of Structural Models (Classic and
Bayesian approaches); we also analysed the series of
production of propileno´s bag produced by Indústria Têxtil
Oeste Ltda. with observation covering the period from
January 1987 to June 1992. We used in the analysis the
packages: STAMP (classical) and BATS (Bayesian), with
intervention variables and the series of production of
square meters of propileno as explanatory variable.
As decision criterion we used the mean square error during
the period of adjustment and the ex-ante analysis with the
last six observation (January up to June of 1992), to test
the predictive ability of the models.
|
62 |
[en] NEURAL NETWORKS IN LOAD FORECASTING IN ELECTRIC ENERGY SYSTEMS / [pt] PREVISÃO DE CARGA EM SISTEMAS ELÉTRICOS DE POTÊNCIA POR REDES NEURAISRICARDO SALEM ZEBULUM 02 February 2007 (has links)
[pt] Esta dissertação investiga a utilização de Redes Neurais
Artificiais (RNAs) na área de previsão de carga elétrica.
Nesta investigação foram utilizados dados reais de energia
relativos ao sistema elétrico brasileiro. O trabalho
consiste de quatro partes principais: um estudo sobre o
problema de previsão de carga no contexto de sistemas
elétricos de potência; o estudo e a modelagem das RNAs
para previsão de carga; o desenvolvimento do ambiente de
simulação; e o estudo de casos.
O estudo sobre o problema de previsão de carga envolveu
uma investigação sobre a importância da previsão de
demanda de energia na área de sistemas elétricos de
potência. Enfatizou-se a classificação dos diversos tipos
de previsão de acordo com o seu horizonte, curto e longo
prazo, bem como a análise das variáveis mais relevantes
para a modelagem da carga elétrica. O estudo também
consistiu da análise de vários projetos na área de
previsão de carga, apresentando as metodologias mais
utilizadas.
O estudo e a modelagem de RNAs na previsão de carga
envolveu um extenso estudo bibliográfico de diversas
metodologias. Foram estudadas as arquiteturas e os
algoritmos de aprendizado mais empregados. Constatou-se
uma predominância da utilização do algoritmo de
retropropagação (Backpropagation) nas aplicações de
previsão de carga elétrica horária para curto prazo. A
partir desse estudo, e utilizando o algoritmo de
retropropagação, foram propostas diversas arquiteturas de
RNAs de acordo com o tipo de previsão desejada.
O desenvolvimento do ambiente de simulação foi
implementado em linguagem C em estações de trabalho SUN. O
pacote computacional engloba basicamente 3 módulos: um
módulo de pré-processamento da série de carga para
preparar os dados de entrada; um módulo de treinamento da
Rede Neural para o aprendizado do comportamento da série;
e um módulo de execução da Rede Neural para a previsão dos
valores futuros da série. A construção de uma interface
amigável para a execução do sistema de previsão, bem como
a obtenção de um sistema portátil foram as metas
principais para o desenvolvimento do simulador.
O estudo de casos consistiu de um conjunto de
implementações com o objetivo de testar o desempenho de um
sistema de previsão baseado em Redes Neurais para dois
horizontes distintos: previsão horária e previsão mensal.
No primeiro caso, foram utilizados dados de energia da
CEMIG (Estado de Minas Gerais) e LIGHT (Estado do Rio de
Janeiro). No segundo caso, foram utilizados dados de
energia de 32 companhias do setor elétrico brasileiro.
Destaca-se que a previsão mensal faz parte de um projeto
de interesse da ELETROBRÁS, contratado pelo CEPEL. Para
ambos os casos, investigou-se a influência do horizonte de
previsão e da época do ano no desempenho do sistema de
previsão. Além disso, foram estudadas as variações do
desempenho das Redes Neurais de acordo com a empresa de
energia elétrica utilizada. A avaliação do desempenho foi
feita através da análise das seguintes estatísticas de
erro: MAPE (Mean Absolute Percentage Error), RMSE (Root
Mean Square Error) e U de Theil. O desempenho das RNAs foi
comparado com o de outras técnicas de previsão, como os
métodos de Holt-Winters e Box & Jenkins, obtendo-se
resultados, em muitos casos, superiores. / [en] This dissertation investigates the application of
Artificial Neural Networks (ANNs) in load forecasting. In
this work we have used real load data from the Brazilian
electrical system. The dissertation is divided in four
main topics: a study of the importance of load forecasting
to electric power systems; the investigation of the ANN
modeling to this particular problem; the development of a
neuro-simulador; and the case studies.
It has been made an investigation of the objectives of
load forecasting to power systems. The different kinds of
load forecasting have been classified according to the
leading time of the prediction (short and long term). The
more important variables to model electric load were also
investigated. This study analyses many projects in the
area of load forecasting and presents the techniques that
have been traditionally used to treat the problem.
The ANNs modeling to load forecasting involved a deep
investigation of works that have been published. The ANNs
architectures and learning algorithms more commonly used
were studied. It has been verified that the
Backpropagation algorithm was the more commoly applied in
the problem (particularly, in the problem of short term
hourly load forecasting). Based on this investigation and
using the backpropagation algorithm, many Neural Networks
architetures were proposed according to the desired type
of forecasting.
The development of the neuro-simulator has been made in C
language, using SUN workstations. The software is divided
in 3 modules: a load series pre-processing module, to
prepare the input data; a training module to the load
series behavior learning; and an execution module, in
which the Neural Network will perform the predictions. The
development of a friendly interface to the forecasting
system execution and the portability of the system were
main goals during the simulator development.
The case studies involved testing the system performance
for 2 cases: hourly and monthly predictions. In the first
case, load data from CEMING (State of Minas Gerais) and
LIGHT (State of Rio de Janeiro) has been used. In the
second case load data from 32 companies of the Brazilian
electrical system has been used. Monthly load forecasting
is involved in a project of interest of two companies of
the electric sector in Brazil: CEPEL and ELETROBRÁS. In
both cases, influences of the forecasting horizon and of
the period of the year in the system´s performance has
been investigated. Besides, the changes in the forecasting
performance according to the particular electric company
were also studied. The performance evaluation has been
done through the analysis of the following error figures:
MAPE (Mean Absolute Percentage Error), RMSE (Root Mean
Square Error) and Theil´s U. The ANN performance was also
compared with the performance of other techniques, like
Holt-Winteres and Box-Jenkins, giving better results in
many cases.
|
63 |
[en] SHORT-TERM HOURLY LOAD FORECASTING MODEL. A NEW APPROACH: HIBRID MODEL / [pt] UM NOVO MODELO HÍBRIDO PARA PREVISÃO HORÁRIA DE CARGAS ELÉTRICAS NO CURTO PRAZOTOMAS HOSHIBA KAWABATA 25 July 2002 (has links)
[pt] Quando ocorre algum tipo de falta em uma Linha de
Transmissão (LT), sua localização exata é essencial para
uma rápida recomposição do Sistema Elétrico. Métodos que
utilizam tensão e corrente de apenas um terminal contêm
simplificações que podem acarretar erros. Esta dissertação
investiga a aplicação de Redes Neurais Artificiais (RNA) na
obtenção de uma nova forma de identificar o tipo do curto-
circuito e determinar a sua localização, utilizando dados
obtidos em somente um terminal. O trabalho consiste de 4
partes principais: estudo bibliográfico da área de Redes
Neurais; simulações de faltas para a obtenção de padrões;
definição e implementação dos modelos de Redes Neurais para
identificação e localização da falta; e estudos de casos.
Na fase do estudo bibliográfico sobre RNA, foi verificado
que as topologias de redes mais usuais são as Feed
Forward, que podem ter uma ou mais camadas de Elementos
Processadores (EP), sendo as redes com múltiplas camadas
(Multi-Layer) a configuração mais completa. Para
treinamento da rede, o algoritmo de aprendizado mais
utilizado é o Back Propagation. Como fruto deste estudo
bibliográfico é apresentado neste trabalho um resumo sobre
RNA.
Nas simulações de faltas para obtenção dos padrões de
treinamento e teste, foi utilizado um sistema automático
que, através da combinação de vários parâmetros do sistema
elétrico, gera situações diferentes de falta. Este sistema
utiliza como base o programa Alternative Transient
Program -ATP. Neste trabalho o sistema elétrico está
representado por uma LT de 345 KV, com fontes equivalentes
representando um sistema real de Furnas Centrais Elétricas.
Todos o sinais de tensão e corrente utilizados são
representados por fasores de 60 Hz, obtidos através da
Transformada Discreta de Fourier (TDF).
Os modelos de RNAs para identificação e localização de
falta foram implementados com sub-rotinas de redes neurais
do programa MATLAB ver. 6.0, representados por Redes
Perceptron Multicamadas (Multi Layer Perceptron), treinadas
com algoritmo Back Propagation com taxa de aprendizado
adaptativa e o termo momentum fixo. Um modelo único de RNA
identifica quais as fases (A, B, C e T) envolvidas,
classificando o tipo de falta, que pode ser: Monofásica;
Bifásica; Bifásica-Terra ou Trifásica. Para a localização
da falta, foram definidas 4 arquiteturas de RNA, uma para
cada tipo de falta. A ativação de cada topologia de RNA
para localização é definida em função do tipo de falta
classificada no modelo de identificação com RNA.
Na etapa de estudo de casos testou-se o desempenho de cada
modelo de RNA utilizando casos de testes em outras
situações de falta, diferentes dos conjuntos de
treinamento. A RNA de identificação de falta foi avaliada
para situações de faltas envolvendo outras LTs, com
diferentes níveis de tensão. Os resultados das 4 RNAs de
localização da falta foram comparados com os resultados
obtidos utilizando o método tradicional, tanto para os
casos simulados quanto para algumas situações reais de
falta.
A utilização de RNAs para a identificação e a localização
de falta mostrouse bastante eficiente para os casos
analisados, comprovando a aplicabilidade das
redes neurais nesse problema. / [en] When a kind of fault occurs in a Transmission Line, its
exact location is essential for a fast reclosing of the
Electric System. Methods that use voltages and currents
from only one terminal contain simplifications that can to
cause mistakes. This paper presents an investigation about
application of Artificial Neural Network (ANN) obtaining a
new way of identification for the type of the short circuit
and its location, using data obtained only in one terminal.
The work consists on the following 4 main parts:
bibliographical study of Neural Network`s area;
simulations of faults in order to obtain of patterns;
definition and implementation of Neural Network`s models
for identification and location of the fault; and studies
of cases.
In the bibliographical study step on ANN, it was verified
that the topologies for the more usual nets are Feed-
|
64 |
[en] ESTIMATING FREIGHT VEHICLES O-D MATRICES FROM TRAFFIC COUNTS IN THE METROPOLITAN REGION OF RIO DE JANEIRO / [pt] ESTIMAÇÃO DE MATRIZES ORIGEM DESTINO (O-D) A PARTIR DA CONTAGEM DE TRÁFEGO PARA VEÍCULOS DE TRANSPORTE DE CARGA NA REGIÃO METROPOLITANA DO RIO DE JANEIRO - RMRJANGELICA JUDITH SILVA RICAURTE 20 December 2017 (has links)
[pt] Com o crescimento das indústrias e a competitividade entre os mercados o transporte de cargas urbano tem-se considerado fundamental para a economia, mas a importância de sua relação direta com a vida das pessoas nas cidades tem ocasionado que exista maior congestionamento nas regiões centrais. É, por isso, que é importante ter o conhecimento sobre o deslocamento das cargas urbanas dentro da Região Metropolitana do Rio de Janeiro – RMRJ. Este trabalho trata de estimar matrizes origem destino (O-D) a partir de contagens de fluxos observadas na rede. Estas contagens foram realizadas para dois tipos de horários considerados importantes por motivo de restrições de circulação, sendo estes o pico da manhã (7:00 às 8:00) e pico da tarde (17:30 às 18:30). Após fazer uma revisão bibliográfica sobre o assunto, o trabalho define entre os métodos conhecidos o que foi considerado mais adequado para a estimativa da matriz OD. Decidiu-se pelo método desenvolvido por Nielsen (1998) denominado como Método de Caminho Único - SPME. O Método foi aplicado na rede viária do plano diretor de transportes urbanos da Região Metropolitana do Rio de Janeiro (PDTU-RMRJ), usando o software TransCAD. / [en] With the growth of industries and competitiveness between markets, the urban freight transport has been considered fundamental for the economy, but the importance of their direct relationship to the lives of people in cities has resulted in more congestion in the central regions. It is therefore important to have knowledge about the movement of urban freight inside the Metropolitan Area of Rio de Janeiro - MARJ. This work try to estimate origin destination matrices (O-D) from flows observed on the network. These counts were done for two types of times considered important for reasons of traffic restrictions, which are the peak of the morning (7:00 - 8:00) and late peak (17:30 - 18:30). After doing a literature review on the issue, the work defines between the known methods the one that was considered most appropriate for the estimation of O-D matrix. Decided for the method developed by Nielsen (1998) termed as Single Path Matrix Estimation - SPME. The method was applied to the road network of the master plan of the urban transport in the Metropolitan Area of Rio de Janeiro (PDTU-RMRJ), using software TransCAD.
|
65 |
[en] USE OF MULTI-FATORIAL MODEL OF BARRA TO FORECAST STOCK RETURNS / [pt] UTILIZAÇÃO DO MODELO MULTI-FATORIAL DA CONSULTORIA BARRA NA PREVISÃO DE RETORNO DE AÇÕESFREDERICO FERREIRA SARMENTO 25 July 2002 (has links)
[pt] Esta pesquisa tem como objetivo principal estimar e
analisar previsões dos retornos das ações utilizandoo
modelo multi-fatorial desenvolvido pela empresa de
consultoria BARRA.Para tanto, foram empregadas três
metodologias no cálculo das projeções dos retornos dos
fatores contra mudanças inesperadas em variáveis
macroeonômicas.Tais projeções foram, então, traduzidas
em previsões dos retornos das ações. A análise dos
resultados obtidos indica que as previsões geradas contém
informações úteis na identificação dos movimentos
relativos nos preços das ações. / [en] The main objective of this work is to estimate stocks
return forecasts using the BARRA multiple factor model
developed for the brazilian market. Three methodologies
were applied to estimate the projection of the factors
return. The first on is based on a moving average approach
and the other two are based on regressions of the factors
return against unexpected changes in some macroeconomic
variables. These projections were then translated into
forecasts for stocks return. Theresults show that the
obtained forecasts have useful information to identify
relative movement on stock prices.
|
66 |
[en] NEURAL NETWORK AND DYNAMIC REGRESSION: A HYBRID MODEL TO FORECAST THE SHORT TERM DEMAND OF PETROL IN BRAZIL / [pt] REDES NEURAIS E REGRESSÃO DINÂMICA: UM MODELO HÍBRIDO PARA PREVISÃO DE CURTO PRAZO DA DEMANDA DE GASOLINA AUTOMOTIVA NO BRASILALEXANDRE ZANINI 08 November 2005 (has links)
[pt] Nesta dissertação é desenvolvido um modelo para previsão
de curto prazo da demanda mensal de gasolina automotiva
no
Brasil. A metodologia usada consiste em, a partir de uma
análise exploratória dos dados, procurar construir um
modelo usando uma estratégia bottom-up, ou seja, parte-se
de um modelo simples e processa-se seu refinamento até
encontrar um modelo apropriado que mais se adequa à
realidade. Partiu-se então de um modelo autoprojetivo
indo
até uma formulação de Redes Neurais passando por um
modelo
de regressão dinâmica. Os modelos são então comparados
segundo alguns critérios, basicamente no que tange à sua
eficiência preditiva. Conclui-se ao final sobre a
eficiência de se conjugar modelos estatísticos clássicos
(como Box & Jenkins e Regressão Dinâmica) com as chamadas
Redes Neurais que, por sua vez, propiciaram resultados
muito bons em relação à otimização das previsões. Isto é
altamente desejável na modelagem de séries temporais e,
em
particular, neste trabalho, na previsão de curto prazo de
gasolina automotiva. / [en] In this dissertation a short term model to forecast
automotive gasoline demand in Brazil is proposed. From the
methodology point of view, data is analyzed and a model
using a bottom-up strategy is developed. In other words, a
simple model is improved step by step until a proper model
that sits well the reality is found. Departuring from a
univariate model it ends up in a neural network
formulation, passing through dynamic regression models.
The models obtained in this scheme are compared
according to some criterion, mainly forecast accuracy. We
conclude, that the efficiency of putting together
classical
statistics models (such as Box & Jenkins and dynamic
regression) and neural networks improve the forecasting
results. This results is highly desirable in modeling time
series and, particularly, to the short term forecast of
automotive gasoline, object of this dissertation.
|
67 |
[en] FORECASTING DEMAND FOR OFFSHORE AIR PASSENGERS USING HIERARCHICAL TIME SERIES TECHNIQUES / [pt] PREVISÃO DE DEMANDA DE PASSAGEIROS AÉREOS OFFSHORE UTILIZANDO TÉCNICAS DE SÉRIES TEMPORAIS HIERÁRQUICASTIAGO FARIA ROCHA 21 September 2020 (has links)
[pt] Um bom gerenciamento logístico otimiza as atividades de transporte aéreo offshore, tornando-as mais eficientes e diminuindo custos para o contratante. Uma série de decisões estratégicas, por exemplo a contratação de helicópteros e os investimentos em infraestrutura aeroportuária, são dependentes da previsão de demanda de passageiros. O presente trabalho analisou a demanda de transporte aéreo offshore da Petrobras para o Estado do Rio de janeiro, à luz das principais teorias de séries temporais hierárquicas, com o objetivo de identificar qual destas é mais adequada para um horizonte de previsão de doze meses à frente. Foram analisadas as estratégias de single-level approach (bottom-up e top-down), de reconciliação ótima (ordinary least squares e weighted least squares) e de minimização de traço (covariância da própria amostra e valendo-se do shrink estimator), todas utilizando como método de previsão base o amortecimento exponencial. Foram utilizados dados dos anos de 2014 até 2019 de todos os aeródromos usados pela Petrobras no Estado do Rio de Janeiro: Farol de São Tomé, Campos dos Goytacazes, Macaé, Cabo Frio e Jacarepaguá. Os resultados foram avaliados em três métricas distintas de acurácia: RMSE (Root Mean Square Error), MAPE (Mean Absolute Percentage Error) e MASE (Mean Absolute Scaled Error), sendo aplicados para os dois níveis existentes de agregação. Os resultados foram ranqueados para cada técnica, nas três métricas citadas anteriormente, sendo, então, consolidados através de uma média aritmética simples. Ao cabo, concluiu-se que o método de minimização de traço sample covariance é o mais preciso em termos globais. / [en] Good logistical management optimizes offshore air transport activities, making them more efficient and reducing costs for the contractor.A series of strategic decisions, such as hiring helicopters and investments in airport infrastructure are dependent on forecasting passenger demand. The present work consisted of analyzing the demand for Petrobras offshore air transport to the State of Rio de Janeiro, based on the main theories of hierarchical time series, with the objective of identifying which of these is more suitable for a twelve-month steps ahead forecast. The strategies of single-level approach (bottom-up and top-down), optimal reconciliation (ordinary least squares and weighted least squares) and trace minimization (sample covariance and shrink estimator) were analyzed, all using exponential smoothing as the basic forecasting method. Data from 2014 to 2019 were gathered for all aerodromes used by Petrobras in the State of Rio de Janeiro: Farol de São Tomé, Campos dos Goytacazes, Macaé, Cabo Frio and Jacarepaguá. The results were evaluated with three different metrics of accuracy: RMSE (Root Mean Square Error), MAPE (Mean Absolute Percentage Error) and MASE (Mean Absolute Scaled Error), applied to the two existing levels of aggregation. The results were ranked for each technique, in the three metrics mentioned above, and then consolidated using a simple arithmetic mean. The overall results indicated that sample covariance trace minimization method provided the most accurate results.
|
68 |
[pt] APRENDIZADO EM DOIS ESTÁGIOS PARA MÉTODOS DE COMITÉ DE ÁRVORES DE DECISÃO / [en] TWO-STAGE LEARNING FOR TREE ENSEMBLE METHODSALEXANDRE WERNECK ANDREZA 23 November 2020 (has links)
[pt] Tree ensemble methods são reconhecidamente métodos de sucesso em problemas de aprendizado supervisionado, bem como são comumente descritos como métodos resistentes ao overfitting. A proposta deste trabalho é investigar essa característica a partir de modelos que extrapolem essa resistência. Ao prever uma instância de exemplo, os métodos de conjuntos são capazes de identificar a folha onde essa instância ocorre em cada uma das árvores. Nosso método então procura identificar uma nova função sobre todas as folhas deste conjunto, minimizando uma função de perda no conjunto de treino. Uma das maneiras de definir conceitualmente essa proposta é interpretar nosso modelo como um gerador automático de features ou um otimizador de predição. / [en] In supervised learning, tree ensemble methods have been recognized for their high level performance in a wide range of applications. Moreover, several references report such methods to present a resistance of to overfitting. This work investigates this observed resistance by proposing a method that explores it. When predicting an instance, tree ensemble methods determines the leaf of each tree where the instance falls. The prediction is then obtained by a function of these leaves, minimizing a loss function or an error estimator for the training set, overfitting in the learning phase in some sense. This method can be interpreted either as an Automated Feature Engineering or a Predictor Optimization.
|
69 |
[en] MACHINE LEARNING STRATEGIES TO PREDICT OIL FIELD PERFORMANCE AS TIME-SERIES FORECASTING / [pt] PREDIÇÃO DA PERFORMANCE DE RESERVATÓRIOS DE PETRÓLEO UTILIZANDO ESTRATÉGIAS DE APRENDIZADO DE MÁQUINA PARA SÉRIES TEMPORAISISABEL FIGUEIRA DE ABREU GONCALVES 19 June 2023 (has links)
[pt] Prever precisamente a produção de óleo é essencial para o planejamento e
administração de um reservatório. Entretanto, prever a produção de óleo é um
problema complexo e não linear, devido a todas as propriedades geofísicas que
com pequenas variações podem resultar em differentes cenários. Além disso,
todas as decisões tomadas durante a exploração do projeto devem considerar
diferentes algoritmos para simular dados, fornecer cenários e conduzir a boas
deduções. Para reduzir as incertezas nas simulações, estudos recentes propuseram o uso de algoritmos de aprendizado de maquina para solução de problemas
da engenharia de reservatórios, devido a capacidade desses modelos de extrair
o maxiomo de informações de um conjunto de dados. Essa tese propôe o uso
ed duas tecnicas de machine learning para prever a produção diaria de óleo
de um reservatório. Inicialmente, a produção diária de óleo é considerada uma
série temporal, é pré-processada e reestruturada como um problema de aprendizado supervisionado. O modelo Random Forest, uma extensão das arvores
de decisão muito utilizado em problemas de regressão e classificação, é utilizado para predizer um passo de tempo a frente. Entretanto, as restrições dessa
abordagem nos conduziram a um modelo mais robusto, as redes neurais recorrentes LSTM, que são utilizadas em varios estudos como uma ferramenta dee
aprendizado profundo adequada para modelagem de séries temporais. Várias
configurações de redes LSTM foram construidas para implementar a previsão
de um passo de tempo e de multiplos passos de tempo, a pressão do fundo de
poço foi incorporada aos dados de entrada. Para testar a eficacia dos modelos propostos, foram usados quatro conjunto de dados diferentes, três gerados
sintéticamente e um conjunto de dados reais do campo de produção VOlve,
como casos de estudo para conduzir os experimentos. Os resultados indicam
que o Random Forest é suficiente para previsões de um passo de tempo da
produção de óleo e o LSTM é capaz de lidar com mais dados de entrada e
estimar multiplos passos de tempo da produção de óleo. / [en] Precisely forecasting oil field performance is essential in oil reservoir planning and management. Nevertheless, forecasting oil production is a complex
nonlinear problem due to all geophysical and petrophysical properties that may
result in different effects with a bit of change. Thus, all decisions to be made
during an exploitation project must consider different efficient algorithms to
simulate data, providing robust scenarios to lead to the best deductions. To
reduce the uncertainty in the simulation process, recent studies have efficiently
introduced machine learning algorithms for solving reservoir engineering problems since they can extract the maximum information from the dataset. This
thesis proposes using two machine learning techniques to predict the daily oil
production of an offshore reservoir. Initially, the oil rate production is considered a time series and is pre-processed and restructured to fit a supervised
learning problem. The Random Forest model is used to forecast a one-time
step, which is an extension of decision tree learning, widely used in regression and classification problems for supervised machine learning. Regardless,
the restrictions of this approach lead us to a more robust model, the LSTM
RNN s, which are proposed by several studies as a suitable deep learning technique for time series modeling. Various configurations of LSTM RNN s were
constructed to implement single-step and multi-step oil rate forecasting and
down-hole pressure was incorporated to the inputs. For testing the robustness
of the proposed models, we use four different datasets, three of them synthetically generated and one from a public real dataset, the Volve oil field, as a case
study to conduct the experiments. The results indicate that the Random Forest
model could sufficiently estimate the one-time step of the oil field production,
and LSTM could handle more inputs and adequately estimate multiple-time
steps of oil production.
|
70 |
[pt] ANÁLISE COMPARATIVA DE MÉTODOS DE ESTIMATIVA DE PRESSÃO DE POROS CONVENCIONAIS E A PARTIR DE PARÂMETROS DE PERFURAÇÃO / [en] COMPARATIVE ANALYSIS OF PORE PRESSURE ESTIMATION METHODS FROM PETROPHYSICAL PROFILES AND DRILLING PARAMETERSRENATA MATTOS SAMPAIO DE ARAUJO 03 June 2022 (has links)
[pt] Os mecanismos geradores de pressão de poros em subsuperfície têm sido alvo de diversas pesquisas ao longo dos anos. A identificação prévia de zonas de pressão anômalas auxilia na redução do tempo não
produtivo (NPT), evitando paralisações, bem como na prevenção de acidentes durante a etapa de perfuração do poço de petróleo. Nesse contexto, este trabalho estuda métodos de previsão de pressão de poros a partir de perfis petrofísicos e de parâmetros de perfuração. Com este objetivo, é apresentada uma revisão bibliográfica abordando tanto os conceitos fundamentais quanto os métodos de previsão de pressão de poros existentes. De modo geral, as estimativas de pressão de poros podem ser divididas em três etapas: (1) antes da perfuração, onde são utilizados perfis petrofísicos de poços de correlação para estimar a pressão de poros; (2) durante a etapa de execução do poço, na qual geralmente são usados os parâmetros de perfuração, além dos eventos de perfuração identificados, e quando disponíveis, as ferramentas de perfilagem em tempo real e dados de pressão; e (3) finalmente na etapa pós-perfuração, onde são utilizados os perfis a cabo, os possíveis perfis de Logging While Drilling (LWD), os eventos de perfuração e os dados de tomadas de pressão na retroanálise. Esses dados são usados para calibrar a pressão de poros estimada previamente para o poço e alimentar a base de dados de poços de petróleo perfurados em uma certa região. Neste trabalho foram realizados estudos de caso, com a realização de estimativas de curvas de pressão de poros, que foram comparadas aos valores de testes de pressão
de poços, quando disponíveis. Além dos testes de pressão, também podem ser utilizados eventos indicadores de pressão de poros elevada na calibração, por exemplo o torque, arraste, cavings estilhados ao longo de formações argilosas, influxos em trechos permeáveis, entre outros indicativos. Foi constatado que os gradientes de pressão estimados pelo Método de Bowers apresentam resultados com maior oscilação dos valores quando comparados aos estimados pelo Método de Eaton. A boa
aplicabilidade do Método de Eaton é devido ao fato de que na bacia em questão, o mecanismo de subcompactação mostrou-se predominante. Notou-se também que na comparação entre os métodos do expoente d e DEMSE, o resultado do gradiente de pressão de poros obtido através do expoente d está sujeito a menos interferências nas estimativas com relação ao método DEMSE. / [en] The mechanisms that generate pore pressure in subsurface have been the subject of several research over the years. The prior identification of anomalous pressure zones helps to reduce non-productive time (NPT), avoiding stoppages, as well as preventing accidents during the drilling stage of the oil well. In this context, this work studies pore pressure prediction methods from petrophysical profiles and drilling parameters. With this objective, a literature review is presented covering both the fundamental concepts and the existing pore pressure prediction methods. Generally speaking, pore pressure estimates can be divided into three steps: (1) before drilling, where petrophysical profiles from correlation wells are used to estimate pore pressure; (2) during the well execution stage, in which drilling parameters are generally used, in addition to identified drilling events, and when available, real-time logging tools and pressure data; and (3) finally in the post-drilling stage, where the cable profiles, the possible Logging While Drilling (LWD) profiles, the drilling events and the pressure tapping data in the back analysis are used. This data is used to calibrate the previously estimated pore pressure for the well and feed the database of oil wells drilled in a certain region. In this work, case studies were carried out, with estimates of pore pressure curves, which were compared to the values of well pressure tests, when available. In addition to pressure tests, events that indicate high pore pressure can also be used in calibration, for example torque, drag, chipped cavings along clayey formations, inflows in permeable stretches, among other indicators. It was found that the pressure gradients estimated by the Bowers Method shows greater oscillation of the values when compared to those estimated by the Eaton Method. The good applicability of the Eaton Method is related to the subcompaction mechanism predominant in the studied basin. It was also noticed that in the comparison between the Exponent d and DEMSE methods, the result of the pore pressure gradient obtained through the Exponent d is subject to less interference in the estimates in relation to the DEMSE method.
|
Page generated in 0.0397 seconds