• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 127
  • 14
  • Tagged with
  • 141
  • 141
  • 98
  • 39
  • 32
  • 29
  • 28
  • 28
  • 28
  • 26
  • 25
  • 24
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

[en] MODELLING AND FORECASTING VIA STRUCTURAL MODELS THE PRODUCTION OF POLIPROPILENO´S BAG IN SANTA CATARINA / [pt] MODELAGEM E PREVISÃO, VIA MODELOS ESTRUTURAIS DA PRODUÇÃO DE SACOS DE POLIPROPILENO EM SANTA CATARINA

SUZANA LEITAO RUSSO 19 July 2006 (has links)
[pt] Na presente dissertação, além de se expor a fundamentação teórica das Metodologias Estruturais clássica e bayesiana para previsão de séries temporais, analisou-se o comportamento de séries temporais, analizou-se o comportamento da série produção de sacos de polipropileno produzidos pela Indústria Têxtil Oeste Ltda. com observações cobrindo o período de janeiro de 1987 a junho de 1992. Na análise, através dos pacotes computacionais correspondentes: STAMP (clássico) e BATS (bayesiano), utilizou-se variáveis de intervenção e a variável exógena correspondente à produção de metros quadrados de polipropileno, cobrindo período idêntico, ou seja janeiro de 1987 a junho de 1992. Adotando como critério de decisão o erro médio quadráticas previsões no período de ajuste e da análise ex-ante feita com as seis últimas observações (janeiro a junho de 1992), para testar a capacidade extrapolativa dos modelos, escolheu-se um modelo representativo dentro de cada abordagem e em seguida foi feito um estudo comparativo de ambas. / [en] In the present dissertation, besides exposing the theoretical foundations of Structural Models (Classic and Bayesian approaches); we also analysed the series of production of propileno´s bag produced by Indústria Têxtil Oeste Ltda. with observation covering the period from January 1987 to June 1992. We used in the analysis the packages: STAMP (classical) and BATS (Bayesian), with intervention variables and the series of production of square meters of propileno as explanatory variable. As decision criterion we used the mean square error during the period of adjustment and the ex-ante analysis with the last six observation (January up to June of 1992), to test the predictive ability of the models.
62

[en] NEURAL NETWORKS IN LOAD FORECASTING IN ELECTRIC ENERGY SYSTEMS / [pt] PREVISÃO DE CARGA EM SISTEMAS ELÉTRICOS DE POTÊNCIA POR REDES NEURAIS

RICARDO SALEM ZEBULUM 02 February 2007 (has links)
[pt] Esta dissertação investiga a utilização de Redes Neurais Artificiais (RNAs) na área de previsão de carga elétrica. Nesta investigação foram utilizados dados reais de energia relativos ao sistema elétrico brasileiro. O trabalho consiste de quatro partes principais: um estudo sobre o problema de previsão de carga no contexto de sistemas elétricos de potência; o estudo e a modelagem das RNAs para previsão de carga; o desenvolvimento do ambiente de simulação; e o estudo de casos. O estudo sobre o problema de previsão de carga envolveu uma investigação sobre a importância da previsão de demanda de energia na área de sistemas elétricos de potência. Enfatizou-se a classificação dos diversos tipos de previsão de acordo com o seu horizonte, curto e longo prazo, bem como a análise das variáveis mais relevantes para a modelagem da carga elétrica. O estudo também consistiu da análise de vários projetos na área de previsão de carga, apresentando as metodologias mais utilizadas. O estudo e a modelagem de RNAs na previsão de carga envolveu um extenso estudo bibliográfico de diversas metodologias. Foram estudadas as arquiteturas e os algoritmos de aprendizado mais empregados. Constatou-se uma predominância da utilização do algoritmo de retropropagação (Backpropagation) nas aplicações de previsão de carga elétrica horária para curto prazo. A partir desse estudo, e utilizando o algoritmo de retropropagação, foram propostas diversas arquiteturas de RNAs de acordo com o tipo de previsão desejada. O desenvolvimento do ambiente de simulação foi implementado em linguagem C em estações de trabalho SUN. O pacote computacional engloba basicamente 3 módulos: um módulo de pré-processamento da série de carga para preparar os dados de entrada; um módulo de treinamento da Rede Neural para o aprendizado do comportamento da série; e um módulo de execução da Rede Neural para a previsão dos valores futuros da série. A construção de uma interface amigável para a execução do sistema de previsão, bem como a obtenção de um sistema portátil foram as metas principais para o desenvolvimento do simulador. O estudo de casos consistiu de um conjunto de implementações com o objetivo de testar o desempenho de um sistema de previsão baseado em Redes Neurais para dois horizontes distintos: previsão horária e previsão mensal. No primeiro caso, foram utilizados dados de energia da CEMIG (Estado de Minas Gerais) e LIGHT (Estado do Rio de Janeiro). No segundo caso, foram utilizados dados de energia de 32 companhias do setor elétrico brasileiro. Destaca-se que a previsão mensal faz parte de um projeto de interesse da ELETROBRÁS, contratado pelo CEPEL. Para ambos os casos, investigou-se a influência do horizonte de previsão e da época do ano no desempenho do sistema de previsão. Além disso, foram estudadas as variações do desempenho das Redes Neurais de acordo com a empresa de energia elétrica utilizada. A avaliação do desempenho foi feita através da análise das seguintes estatísticas de erro: MAPE (Mean Absolute Percentage Error), RMSE (Root Mean Square Error) e U de Theil. O desempenho das RNAs foi comparado com o de outras técnicas de previsão, como os métodos de Holt-Winters e Box & Jenkins, obtendo-se resultados, em muitos casos, superiores. / [en] This dissertation investigates the application of Artificial Neural Networks (ANNs) in load forecasting. In this work we have used real load data from the Brazilian electrical system. The dissertation is divided in four main topics: a study of the importance of load forecasting to electric power systems; the investigation of the ANN modeling to this particular problem; the development of a neuro-simulador; and the case studies. It has been made an investigation of the objectives of load forecasting to power systems. The different kinds of load forecasting have been classified according to the leading time of the prediction (short and long term). The more important variables to model electric load were also investigated. This study analyses many projects in the area of load forecasting and presents the techniques that have been traditionally used to treat the problem. The ANNs modeling to load forecasting involved a deep investigation of works that have been published. The ANNs architectures and learning algorithms more commonly used were studied. It has been verified that the Backpropagation algorithm was the more commoly applied in the problem (particularly, in the problem of short term hourly load forecasting). Based on this investigation and using the backpropagation algorithm, many Neural Networks architetures were proposed according to the desired type of forecasting. The development of the neuro-simulator has been made in C language, using SUN workstations. The software is divided in 3 modules: a load series pre-processing module, to prepare the input data; a training module to the load series behavior learning; and an execution module, in which the Neural Network will perform the predictions. The development of a friendly interface to the forecasting system execution and the portability of the system were main goals during the simulator development. The case studies involved testing the system performance for 2 cases: hourly and monthly predictions. In the first case, load data from CEMING (State of Minas Gerais) and LIGHT (State of Rio de Janeiro) has been used. In the second case load data from 32 companies of the Brazilian electrical system has been used. Monthly load forecasting is involved in a project of interest of two companies of the electric sector in Brazil: CEPEL and ELETROBRÁS. In both cases, influences of the forecasting horizon and of the period of the year in the system´s performance has been investigated. Besides, the changes in the forecasting performance according to the particular electric company were also studied. The performance evaluation has been done through the analysis of the following error figures: MAPE (Mean Absolute Percentage Error), RMSE (Root Mean Square Error) and Theil´s U. The ANN performance was also compared with the performance of other techniques, like Holt-Winteres and Box-Jenkins, giving better results in many cases.
63

[en] SHORT-TERM HOURLY LOAD FORECASTING MODEL. A NEW APPROACH: HIBRID MODEL / [pt] UM NOVO MODELO HÍBRIDO PARA PREVISÃO HORÁRIA DE CARGAS ELÉTRICAS NO CURTO PRAZO

TOMAS HOSHIBA KAWABATA 25 July 2002 (has links)
[pt] Quando ocorre algum tipo de falta em uma Linha de Transmissão (LT), sua localização exata é essencial para uma rápida recomposição do Sistema Elétrico. Métodos que utilizam tensão e corrente de apenas um terminal contêm simplificações que podem acarretar erros. Esta dissertação investiga a aplicação de Redes Neurais Artificiais (RNA) na obtenção de uma nova forma de identificar o tipo do curto- circuito e determinar a sua localização, utilizando dados obtidos em somente um terminal. O trabalho consiste de 4 partes principais: estudo bibliográfico da área de Redes Neurais; simulações de faltas para a obtenção de padrões; definição e implementação dos modelos de Redes Neurais para identificação e localização da falta; e estudos de casos. Na fase do estudo bibliográfico sobre RNA, foi verificado que as topologias de redes mais usuais são as Feed Forward, que podem ter uma ou mais camadas de Elementos Processadores (EP), sendo as redes com múltiplas camadas (Multi-Layer) a configuração mais completa. Para treinamento da rede, o algoritmo de aprendizado mais utilizado é o Back Propagation. Como fruto deste estudo bibliográfico é apresentado neste trabalho um resumo sobre RNA. Nas simulações de faltas para obtenção dos padrões de treinamento e teste, foi utilizado um sistema automático que, através da combinação de vários parâmetros do sistema elétrico, gera situações diferentes de falta. Este sistema utiliza como base o programa Alternative Transient Program -ATP. Neste trabalho o sistema elétrico está representado por uma LT de 345 KV, com fontes equivalentes representando um sistema real de Furnas Centrais Elétricas. Todos o sinais de tensão e corrente utilizados são representados por fasores de 60 Hz, obtidos através da Transformada Discreta de Fourier (TDF). Os modelos de RNAs para identificação e localização de falta foram implementados com sub-rotinas de redes neurais do programa MATLAB ver. 6.0, representados por Redes Perceptron Multicamadas (Multi Layer Perceptron), treinadas com algoritmo Back Propagation com taxa de aprendizado adaptativa e o termo momentum fixo. Um modelo único de RNA identifica quais as fases (A, B, C e T) envolvidas, classificando o tipo de falta, que pode ser: Monofásica; Bifásica; Bifásica-Terra ou Trifásica. Para a localização da falta, foram definidas 4 arquiteturas de RNA, uma para cada tipo de falta. A ativação de cada topologia de RNA para localização é definida em função do tipo de falta classificada no modelo de identificação com RNA. Na etapa de estudo de casos testou-se o desempenho de cada modelo de RNA utilizando casos de testes em outras situações de falta, diferentes dos conjuntos de treinamento. A RNA de identificação de falta foi avaliada para situações de faltas envolvendo outras LTs, com diferentes níveis de tensão. Os resultados das 4 RNAs de localização da falta foram comparados com os resultados obtidos utilizando o método tradicional, tanto para os casos simulados quanto para algumas situações reais de falta. A utilização de RNAs para a identificação e a localização de falta mostrouse bastante eficiente para os casos analisados, comprovando a aplicabilidade das redes neurais nesse problema. / [en] When a kind of fault occurs in a Transmission Line, its exact location is essential for a fast reclosing of the Electric System. Methods that use voltages and currents from only one terminal contain simplifications that can to cause mistakes. This paper presents an investigation about application of Artificial Neural Network (ANN) obtaining a new way of identification for the type of the short circuit and its location, using data obtained only in one terminal. The work consists on the following 4 main parts: bibliographical study of Neural Network`s area; simulations of faults in order to obtain of patterns; definition and implementation of Neural Network`s models for identification and location of the fault; and studies of cases. In the bibliographical study step on ANN, it was verified that the topologies for the more usual nets are Feed-
64

[en] ESTIMATING FREIGHT VEHICLES O-D MATRICES FROM TRAFFIC COUNTS IN THE METROPOLITAN REGION OF RIO DE JANEIRO / [pt] ESTIMAÇÃO DE MATRIZES ORIGEM DESTINO (O-D) A PARTIR DA CONTAGEM DE TRÁFEGO PARA VEÍCULOS DE TRANSPORTE DE CARGA NA REGIÃO METROPOLITANA DO RIO DE JANEIRO - RMRJ

ANGELICA JUDITH SILVA RICAURTE 20 December 2017 (has links)
[pt] Com o crescimento das indústrias e a competitividade entre os mercados o transporte de cargas urbano tem-se considerado fundamental para a economia, mas a importância de sua relação direta com a vida das pessoas nas cidades tem ocasionado que exista maior congestionamento nas regiões centrais. É, por isso, que é importante ter o conhecimento sobre o deslocamento das cargas urbanas dentro da Região Metropolitana do Rio de Janeiro – RMRJ. Este trabalho trata de estimar matrizes origem destino (O-D) a partir de contagens de fluxos observadas na rede. Estas contagens foram realizadas para dois tipos de horários considerados importantes por motivo de restrições de circulação, sendo estes o pico da manhã (7:00 às 8:00) e pico da tarde (17:30 às 18:30). Após fazer uma revisão bibliográfica sobre o assunto, o trabalho define entre os métodos conhecidos o que foi considerado mais adequado para a estimativa da matriz OD. Decidiu-se pelo método desenvolvido por Nielsen (1998) denominado como Método de Caminho Único - SPME. O Método foi aplicado na rede viária do plano diretor de transportes urbanos da Região Metropolitana do Rio de Janeiro (PDTU-RMRJ), usando o software TransCAD. / [en] With the growth of industries and competitiveness between markets, the urban freight transport has been considered fundamental for the economy, but the importance of their direct relationship to the lives of people in cities has resulted in more congestion in the central regions. It is therefore important to have knowledge about the movement of urban freight inside the Metropolitan Area of Rio de Janeiro - MARJ. This work try to estimate origin destination matrices (O-D) from flows observed on the network. These counts were done for two types of times considered important for reasons of traffic restrictions, which are the peak of the morning (7:00 - 8:00) and late peak (17:30 - 18:30). After doing a literature review on the issue, the work defines between the known methods the one that was considered most appropriate for the estimation of O-D matrix. Decided for the method developed by Nielsen (1998) termed as Single Path Matrix Estimation - SPME. The method was applied to the road network of the master plan of the urban transport in the Metropolitan Area of Rio de Janeiro (PDTU-RMRJ), using software TransCAD.
65

[en] USE OF MULTI-FATORIAL MODEL OF BARRA TO FORECAST STOCK RETURNS / [pt] UTILIZAÇÃO DO MODELO MULTI-FATORIAL DA CONSULTORIA BARRA NA PREVISÃO DE RETORNO DE AÇÕES

FREDERICO FERREIRA SARMENTO 25 July 2002 (has links)
[pt] Esta pesquisa tem como objetivo principal estimar e analisar previsões dos retornos das ações utilizandoo modelo multi-fatorial desenvolvido pela empresa de consultoria BARRA.Para tanto, foram empregadas três metodologias no cálculo das projeções dos retornos dos fatores contra mudanças inesperadas em variáveis macroeonômicas.Tais projeções foram, então, traduzidas em previsões dos retornos das ações. A análise dos resultados obtidos indica que as previsões geradas contém informações úteis na identificação dos movimentos relativos nos preços das ações. / [en] The main objective of this work is to estimate stocks return forecasts using the BARRA multiple factor model developed for the brazilian market. Three methodologies were applied to estimate the projection of the factors return. The first on is based on a moving average approach and the other two are based on regressions of the factors return against unexpected changes in some macroeconomic variables. These projections were then translated into forecasts for stocks return. Theresults show that the obtained forecasts have useful information to identify relative movement on stock prices.
66

[en] NEURAL NETWORK AND DYNAMIC REGRESSION: A HYBRID MODEL TO FORECAST THE SHORT TERM DEMAND OF PETROL IN BRAZIL / [pt] REDES NEURAIS E REGRESSÃO DINÂMICA: UM MODELO HÍBRIDO PARA PREVISÃO DE CURTO PRAZO DA DEMANDA DE GASOLINA AUTOMOTIVA NO BRASIL

ALEXANDRE ZANINI 08 November 2005 (has links)
[pt] Nesta dissertação é desenvolvido um modelo para previsão de curto prazo da demanda mensal de gasolina automotiva no Brasil. A metodologia usada consiste em, a partir de uma análise exploratória dos dados, procurar construir um modelo usando uma estratégia bottom-up, ou seja, parte-se de um modelo simples e processa-se seu refinamento até encontrar um modelo apropriado que mais se adequa à realidade. Partiu-se então de um modelo autoprojetivo indo até uma formulação de Redes Neurais passando por um modelo de regressão dinâmica. Os modelos são então comparados segundo alguns critérios, basicamente no que tange à sua eficiência preditiva. Conclui-se ao final sobre a eficiência de se conjugar modelos estatísticos clássicos (como Box & Jenkins e Regressão Dinâmica) com as chamadas Redes Neurais que, por sua vez, propiciaram resultados muito bons em relação à otimização das previsões. Isto é altamente desejável na modelagem de séries temporais e, em particular, neste trabalho, na previsão de curto prazo de gasolina automotiva. / [en] In this dissertation a short term model to forecast automotive gasoline demand in Brazil is proposed. From the methodology point of view, data is analyzed and a model using a bottom-up strategy is developed. In other words, a simple model is improved step by step until a proper model that sits well the reality is found. Departuring from a univariate model it ends up in a neural network formulation, passing through dynamic regression models. The models obtained in this scheme are compared according to some criterion, mainly forecast accuracy. We conclude, that the efficiency of putting together classical statistics models (such as Box & Jenkins and dynamic regression) and neural networks improve the forecasting results. This results is highly desirable in modeling time series and, particularly, to the short term forecast of automotive gasoline, object of this dissertation.
67

[en] FORECASTING DEMAND FOR OFFSHORE AIR PASSENGERS USING HIERARCHICAL TIME SERIES TECHNIQUES / [pt] PREVISÃO DE DEMANDA DE PASSAGEIROS AÉREOS OFFSHORE UTILIZANDO TÉCNICAS DE SÉRIES TEMPORAIS HIERÁRQUICAS

TIAGO FARIA ROCHA 21 September 2020 (has links)
[pt] Um bom gerenciamento logístico otimiza as atividades de transporte aéreo offshore, tornando-as mais eficientes e diminuindo custos para o contratante. Uma série de decisões estratégicas, por exemplo a contratação de helicópteros e os investimentos em infraestrutura aeroportuária, são dependentes da previsão de demanda de passageiros. O presente trabalho analisou a demanda de transporte aéreo offshore da Petrobras para o Estado do Rio de janeiro, à luz das principais teorias de séries temporais hierárquicas, com o objetivo de identificar qual destas é mais adequada para um horizonte de previsão de doze meses à frente. Foram analisadas as estratégias de single-level approach (bottom-up e top-down), de reconciliação ótima (ordinary least squares e weighted least squares) e de minimização de traço (covariância da própria amostra e valendo-se do shrink estimator), todas utilizando como método de previsão base o amortecimento exponencial. Foram utilizados dados dos anos de 2014 até 2019 de todos os aeródromos usados pela Petrobras no Estado do Rio de Janeiro: Farol de São Tomé, Campos dos Goytacazes, Macaé, Cabo Frio e Jacarepaguá. Os resultados foram avaliados em três métricas distintas de acurácia: RMSE (Root Mean Square Error), MAPE (Mean Absolute Percentage Error) e MASE (Mean Absolute Scaled Error), sendo aplicados para os dois níveis existentes de agregação. Os resultados foram ranqueados para cada técnica, nas três métricas citadas anteriormente, sendo, então, consolidados através de uma média aritmética simples. Ao cabo, concluiu-se que o método de minimização de traço sample covariance é o mais preciso em termos globais. / [en] Good logistical management optimizes offshore air transport activities, making them more efficient and reducing costs for the contractor.A series of strategic decisions, such as hiring helicopters and investments in airport infrastructure are dependent on forecasting passenger demand. The present work consisted of analyzing the demand for Petrobras offshore air transport to the State of Rio de Janeiro, based on the main theories of hierarchical time series, with the objective of identifying which of these is more suitable for a twelve-month steps ahead forecast. The strategies of single-level approach (bottom-up and top-down), optimal reconciliation (ordinary least squares and weighted least squares) and trace minimization (sample covariance and shrink estimator) were analyzed, all using exponential smoothing as the basic forecasting method. Data from 2014 to 2019 were gathered for all aerodromes used by Petrobras in the State of Rio de Janeiro: Farol de São Tomé, Campos dos Goytacazes, Macaé, Cabo Frio and Jacarepaguá. The results were evaluated with three different metrics of accuracy: RMSE (Root Mean Square Error), MAPE (Mean Absolute Percentage Error) and MASE (Mean Absolute Scaled Error), applied to the two existing levels of aggregation. The results were ranked for each technique, in the three metrics mentioned above, and then consolidated using a simple arithmetic mean. The overall results indicated that sample covariance trace minimization method provided the most accurate results.
68

[pt] APRENDIZADO EM DOIS ESTÁGIOS PARA MÉTODOS DE COMITÉ DE ÁRVORES DE DECISÃO / [en] TWO-STAGE LEARNING FOR TREE ENSEMBLE METHODS

ALEXANDRE WERNECK ANDREZA 23 November 2020 (has links)
[pt] Tree ensemble methods são reconhecidamente métodos de sucesso em problemas de aprendizado supervisionado, bem como são comumente descritos como métodos resistentes ao overfitting. A proposta deste trabalho é investigar essa característica a partir de modelos que extrapolem essa resistência. Ao prever uma instância de exemplo, os métodos de conjuntos são capazes de identificar a folha onde essa instância ocorre em cada uma das árvores. Nosso método então procura identificar uma nova função sobre todas as folhas deste conjunto, minimizando uma função de perda no conjunto de treino. Uma das maneiras de definir conceitualmente essa proposta é interpretar nosso modelo como um gerador automático de features ou um otimizador de predição. / [en] In supervised learning, tree ensemble methods have been recognized for their high level performance in a wide range of applications. Moreover, several references report such methods to present a resistance of to overfitting. This work investigates this observed resistance by proposing a method that explores it. When predicting an instance, tree ensemble methods determines the leaf of each tree where the instance falls. The prediction is then obtained by a function of these leaves, minimizing a loss function or an error estimator for the training set, overfitting in the learning phase in some sense. This method can be interpreted either as an Automated Feature Engineering or a Predictor Optimization.
69

[en] MACHINE LEARNING STRATEGIES TO PREDICT OIL FIELD PERFORMANCE AS TIME-SERIES FORECASTING / [pt] PREDIÇÃO DA PERFORMANCE DE RESERVATÓRIOS DE PETRÓLEO UTILIZANDO ESTRATÉGIAS DE APRENDIZADO DE MÁQUINA PARA SÉRIES TEMPORAIS

ISABEL FIGUEIRA DE ABREU GONCALVES 19 June 2023 (has links)
[pt] Prever precisamente a produção de óleo é essencial para o planejamento e administração de um reservatório. Entretanto, prever a produção de óleo é um problema complexo e não linear, devido a todas as propriedades geofísicas que com pequenas variações podem resultar em differentes cenários. Além disso, todas as decisões tomadas durante a exploração do projeto devem considerar diferentes algoritmos para simular dados, fornecer cenários e conduzir a boas deduções. Para reduzir as incertezas nas simulações, estudos recentes propuseram o uso de algoritmos de aprendizado de maquina para solução de problemas da engenharia de reservatórios, devido a capacidade desses modelos de extrair o maxiomo de informações de um conjunto de dados. Essa tese propôe o uso ed duas tecnicas de machine learning para prever a produção diaria de óleo de um reservatório. Inicialmente, a produção diária de óleo é considerada uma série temporal, é pré-processada e reestruturada como um problema de aprendizado supervisionado. O modelo Random Forest, uma extensão das arvores de decisão muito utilizado em problemas de regressão e classificação, é utilizado para predizer um passo de tempo a frente. Entretanto, as restrições dessa abordagem nos conduziram a um modelo mais robusto, as redes neurais recorrentes LSTM, que são utilizadas em varios estudos como uma ferramenta dee aprendizado profundo adequada para modelagem de séries temporais. Várias configurações de redes LSTM foram construidas para implementar a previsão de um passo de tempo e de multiplos passos de tempo, a pressão do fundo de poço foi incorporada aos dados de entrada. Para testar a eficacia dos modelos propostos, foram usados quatro conjunto de dados diferentes, três gerados sintéticamente e um conjunto de dados reais do campo de produção VOlve, como casos de estudo para conduzir os experimentos. Os resultados indicam que o Random Forest é suficiente para previsões de um passo de tempo da produção de óleo e o LSTM é capaz de lidar com mais dados de entrada e estimar multiplos passos de tempo da produção de óleo. / [en] Precisely forecasting oil field performance is essential in oil reservoir planning and management. Nevertheless, forecasting oil production is a complex nonlinear problem due to all geophysical and petrophysical properties that may result in different effects with a bit of change. Thus, all decisions to be made during an exploitation project must consider different efficient algorithms to simulate data, providing robust scenarios to lead to the best deductions. To reduce the uncertainty in the simulation process, recent studies have efficiently introduced machine learning algorithms for solving reservoir engineering problems since they can extract the maximum information from the dataset. This thesis proposes using two machine learning techniques to predict the daily oil production of an offshore reservoir. Initially, the oil rate production is considered a time series and is pre-processed and restructured to fit a supervised learning problem. The Random Forest model is used to forecast a one-time step, which is an extension of decision tree learning, widely used in regression and classification problems for supervised machine learning. Regardless, the restrictions of this approach lead us to a more robust model, the LSTM RNN s, which are proposed by several studies as a suitable deep learning technique for time series modeling. Various configurations of LSTM RNN s were constructed to implement single-step and multi-step oil rate forecasting and down-hole pressure was incorporated to the inputs. For testing the robustness of the proposed models, we use four different datasets, three of them synthetically generated and one from a public real dataset, the Volve oil field, as a case study to conduct the experiments. The results indicate that the Random Forest model could sufficiently estimate the one-time step of the oil field production, and LSTM could handle more inputs and adequately estimate multiple-time steps of oil production.
70

[pt] ANÁLISE COMPARATIVA DE MÉTODOS DE ESTIMATIVA DE PRESSÃO DE POROS CONVENCIONAIS E A PARTIR DE PARÂMETROS DE PERFURAÇÃO / [en] COMPARATIVE ANALYSIS OF PORE PRESSURE ESTIMATION METHODS FROM PETROPHYSICAL PROFILES AND DRILLING PARAMETERS

RENATA MATTOS SAMPAIO DE ARAUJO 03 June 2022 (has links)
[pt] Os mecanismos geradores de pressão de poros em subsuperfície têm sido alvo de diversas pesquisas ao longo dos anos. A identificação prévia de zonas de pressão anômalas auxilia na redução do tempo não produtivo (NPT), evitando paralisações, bem como na prevenção de acidentes durante a etapa de perfuração do poço de petróleo. Nesse contexto, este trabalho estuda métodos de previsão de pressão de poros a partir de perfis petrofísicos e de parâmetros de perfuração. Com este objetivo, é apresentada uma revisão bibliográfica abordando tanto os conceitos fundamentais quanto os métodos de previsão de pressão de poros existentes. De modo geral, as estimativas de pressão de poros podem ser divididas em três etapas: (1) antes da perfuração, onde são utilizados perfis petrofísicos de poços de correlação para estimar a pressão de poros; (2) durante a etapa de execução do poço, na qual geralmente são usados os parâmetros de perfuração, além dos eventos de perfuração identificados, e quando disponíveis, as ferramentas de perfilagem em tempo real e dados de pressão; e (3) finalmente na etapa pós-perfuração, onde são utilizados os perfis a cabo, os possíveis perfis de Logging While Drilling (LWD), os eventos de perfuração e os dados de tomadas de pressão na retroanálise. Esses dados são usados para calibrar a pressão de poros estimada previamente para o poço e alimentar a base de dados de poços de petróleo perfurados em uma certa região. Neste trabalho foram realizados estudos de caso, com a realização de estimativas de curvas de pressão de poros, que foram comparadas aos valores de testes de pressão de poços, quando disponíveis. Além dos testes de pressão, também podem ser utilizados eventos indicadores de pressão de poros elevada na calibração, por exemplo o torque, arraste, cavings estilhados ao longo de formações argilosas, influxos em trechos permeáveis, entre outros indicativos. Foi constatado que os gradientes de pressão estimados pelo Método de Bowers apresentam resultados com maior oscilação dos valores quando comparados aos estimados pelo Método de Eaton. A boa aplicabilidade do Método de Eaton é devido ao fato de que na bacia em questão, o mecanismo de subcompactação mostrou-se predominante. Notou-se também que na comparação entre os métodos do expoente d e DEMSE, o resultado do gradiente de pressão de poros obtido através do expoente d está sujeito a menos interferências nas estimativas com relação ao método DEMSE. / [en] The mechanisms that generate pore pressure in subsurface have been the subject of several research over the years. The prior identification of anomalous pressure zones helps to reduce non-productive time (NPT), avoiding stoppages, as well as preventing accidents during the drilling stage of the oil well. In this context, this work studies pore pressure prediction methods from petrophysical profiles and drilling parameters. With this objective, a literature review is presented covering both the fundamental concepts and the existing pore pressure prediction methods. Generally speaking, pore pressure estimates can be divided into three steps: (1) before drilling, where petrophysical profiles from correlation wells are used to estimate pore pressure; (2) during the well execution stage, in which drilling parameters are generally used, in addition to identified drilling events, and when available, real-time logging tools and pressure data; and (3) finally in the post-drilling stage, where the cable profiles, the possible Logging While Drilling (LWD) profiles, the drilling events and the pressure tapping data in the back analysis are used. This data is used to calibrate the previously estimated pore pressure for the well and feed the database of oil wells drilled in a certain region. In this work, case studies were carried out, with estimates of pore pressure curves, which were compared to the values of well pressure tests, when available. In addition to pressure tests, events that indicate high pore pressure can also be used in calibration, for example torque, drag, chipped cavings along clayey formations, inflows in permeable stretches, among other indicators. It was found that the pressure gradients estimated by the Bowers Method shows greater oscillation of the values when compared to those estimated by the Eaton Method. The good applicability of the Eaton Method is related to the subcompaction mechanism predominant in the studied basin. It was also noticed that in the comparison between the Exponent d and DEMSE methods, the result of the pore pressure gradient obtained through the Exponent d is subject to less interference in the estimates in relation to the DEMSE method.

Page generated in 0.0397 seconds