• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 127
  • 14
  • Tagged with
  • 141
  • 141
  • 98
  • 39
  • 32
  • 29
  • 28
  • 28
  • 28
  • 26
  • 25
  • 24
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

[en] A PROXY FOR RISK AVERSION EVALUATED IN THE STOCK MARKET / [pt] UMA PROXY PARA AVERSÃO AO RISCO AVALIADA NO MERCADO DE AÇÕES

DANIEL LIVIO ALENCAR CORDEIRO 10 November 2017 (has links)
[pt] Eu calculo uma proxy da propensão à tomada de risco dos jogadores de cassino através dos dados de receita de cassinos. Usando regressões insample e out-of-sample, eu então analiso o quão bem essa proxy prevê o prêmio de risco do mercado de ações. / [en] I estimate a proxy for the risk taking behavior of Casino gamblers through a measure of total Casino gambling revenue. Using in-sample and out-of-sample regressions, I then analyze how suited this proxy is in predicting market risk premium.
92

[en] FORECASTING LARGE REALIZED COVARIANCE MATRICES: THE BENEFITS OF FACTOR MODELS AND SHRINKAGE / [pt] PREVISÃO DE MATRIZES DE COVARIÂNCIA REALIZADA DE ALTA DIMENSÃO: OS BENEFÍCIOS DE MODELOS DE FATORES E SHRINKAGE

DIEGO SIEBRA DE BRITO 19 September 2018 (has links)
[pt] Este trabalho propõe um modelo de previsão de matrizes de covariância realizada de altíssima dimensão, com aplicação para os componentes do índice S e P 500. Para lidar com o altíssimo número de parâmetros (maldição da dimensionalidade), propõe-se a decomposição da matriz de covariância de retornos por meio do uso de um modelo de fatores padrão (e.g. tamanho, valor, investimento) e uso de restrições setoriais na matriz de covariância residual. O modelo restrito é estimado usando uma especificação de vetores auto regressivos heterogêneos (VHAR) estimados com LASSO (Least Absolute Shrinkage and Selection Operator). O uso da metodologia proposta melhora a precisão de previsão em relação a benchmarks padrões e leva a melhores estimativas de portfólios de menor variância. / [en] We propose a model to forecast very large realized covariance matrices of returns, applying it to the constituents of the S and P 500 on a daily basis. To deal with the curse of dimensionality, we decompose the return covariance matrix using standard firm-level factors (e.g. size, value, profitability) and use sectoral restrictions in the residual covariance matrix. This restricted model is then estimated using Vector Heterogeneous Autoregressive (VHAR) models estimated with the Least Absolute Shrinkage and Selection Operator (LASSO). Our methodology improves forecasting precision relative to standard benchmarks and leads to better estimates of the minimum variance portfolios.
93

[en] STUDY OF DATA MINING METHODS APPLIED TO THE FINANCIAL MANAGEMENT OF MUNICIPALITIES / [pt] ESTUDO DE MÉTODOS DE MINERAÇÃO DE DADOS APLICADOS À GESTÃO FAZENDÁRIA DE MUNICÍPIOS

WILFREDO MAMANI TICONA 09 October 2018 (has links)
[pt] Os impostos arrecadados pelas prefeituras são revertidos para o bem comum, para investimentos (tais como infraestrutura) e custeio de bens e serviços públicos, como saúde, segurança e educação. A previsão de valores futuros a serem arrecadados é uma das tarefas que as prefeituras têm como desafio. Essa é uma tarefa importante, pois as informações obtidas das previsões são valiosas para dar apoio à decisão com relação ao planejamento estratégico da prefeitura. Sendo assim, a investigação de modelos de previsão de impostos municipais, através de técnicas inteligentes, é de grande importância para a administração municipal. Deste modo, um dos objetivos desta dissertação foi desenvolver dois modelos para previsão de impostos utilizando redes neurais. Um modelo considerando variáveis endógenas e outro considerando variáveis endógenas e exógenas. Outro grande desafio para as prefeituras são as irregularidades no pagamento de tributos (erro ou fraude), que também prejudica o planejamento estratégico. A fiscalização mensal de todos os contribuintes é uma tarefa impossível de se realizar devido à desproporção entre o número de contribuintes e o reduzido número de agentes fiscais. Assim, a investigação de métodos baseados em técnicas inteligentes para indicar os possíveis suspeitos de irregularidade, é importante para o desempenho das atividades do agente fiscal. Deste modo, outro objetivo desta dissertação foi desenvolver um modelo visando identificar possíveis suspeitos de irregularidades no pagamento do ISSQN (Imposto Sobre Serviços de Qualquer Natureza). Os modelos de previsão foram avaliados, com três estudos de caso usando dados do município de Araruama. Para o modelo de previsão utilizando variáveis endógenas utilizou-se dois estudos de caso: o primeiro caso para a previsão de Receitas da Dívida Ativa e o segundo caso para a previsão de Receitas Tributárias, e um terceiro estudo caso para o modelo de previsão do ISSQN, utilizando variáveis endógenas e exógenas. Essas previsões obtiveram resultados, que se julgam promissores, a despeito dos dados utilizados nos estudos de caso. Com relação à irregularidade, apesar de não ter sido possível avaliar os resultados obtidos, entende-se que a ferramenta poderá ser utilizada como indicador para novas diligências. / [en] Taxes collected by city halls are reverted towards common welfare; investments (such as infrastructure), and funding of public goods, as services on health, safety and education. The prediction of tax revenues is one of the tasks that have as challenges the city hall. This is an important task; because the information obtained from these predictions are important to support the city halls with relation the strategic planning. Thus, the investigation of prediction models designed for tax revenues through intelligent techniques is of great importance for public administration. One of the goals of this dissertation was to develop two models to prediction tax revenue using neural networks. The first model was designed considering endogenous variables only. The latter, considered both endogenous and exogenous variables. Another major challenge for city hall are irregularities in the taxes payment (error or fraud), which also affect the strategic planning. A monthly of all taxpayers is an impossible task to accomplish, due to the disproportion between the number of taxpayers and the reduced number of tax agents. Thus, research of methods based on intelligent techniques that indicate possible irregularities, is of great importance for tax agents. This way, another objective of this dissertation was to develop a model to identify possible suspects irregularities in the payment of the ISSQN (tax services of any nature). Prediction models were evaluated with three case studies using data from the city hall of Araruama. For the prediction model using endogenous variable, two case studies we used: (i) active debt revenues prediction, (ii) tax revenues prediction and (iii) ISSQN prediction, the latter using both endogenous and exogenous variables. In spite of the data used in the case studies, the results obtained from modeling are promising. Regarding tax irregularities, even though is not possible to evaluate the obtained results, the developed tool may be used as an indicator for future applications.
94

[en] TEMPORAL NEURAL NETWORKS FOR TREATING TIME VARIANT SERIES / [pt] REDES NEURAIS TEMPORAIS PARA O TRATAMENTO DE SISTEMAS VARIANTES NO TEMPO

CLAVER PARI SOTO 07 November 2005 (has links)
[pt] As RNA Temporais, em função de sua estrutura, consideram o tempo na sua operação, incorporando memória de curto prazo distribuída na rede em todos os neurônios escondidos e em alguns dos casos nos neurônios de saída. Esta classe de redes é utilizada para representar melhor a natureza temporal dos sistemas dinâmicos. Em contraste, a RNA estática tem uma estrutura apropriada para tarefas de reconhecimento de padrões, classificação e outras de natureza estática ou estacionária tendo sido utilizada com sucesso em diversas aplicações. O objetivo desta tese, portanto foi estudar a teoria e avaliar o desempenho das Redes Neurais Temporais em comparação com as Redes Neurais Estáticas, em aplicações de sistemas dinâmicos. O desenvolvimento desta pesquisa envolveu 3 etapas principais: pesquisa bibliográfica das metodologias desenvolvidas para RNA Temporais; seleção e implementação de modelos para a avaliação destas redes; e estudo de casos. A pesquisa bibliográfica permitiu compila e classificar os principais trabalhos sobre RNA Temporais. Tipicamente, estas redes podem ser classificadas em dois grupos: Redes com Atraso no Tempo e Redes Recorrentes. Para a análise de desempenho, selecionou-se uma redee de cada grupo para implementação. Do primeiro grupo foi selecionada a Rede FIR, onde as sinapses são filtros FIR (Finite-duration Impulse Response) que representam a natureza temporal do problema. A rede FIR foi selecionada por englobar praticamente, todos os outros métodos de sua classe e apresentar um modelo matemático mais formal. Do segundo grupo, considerou-se a rede recorrente de Elman que apresenta realimentação global de cada um dos neurônios escondidos para todos eles. No estudo de casos testou-se o desempenho das redes selecionadas em duas linhas de aplicação: previsão de séries temporais e processamento digital de sinais. No caso de previsão de séries temporais, foram utilizadas séries de consumo de energia elétrica, comparando-se os resultados com os encontrados na literatura a partir de métodos de Holt-Winters, Box & Jenkins e RNA estáticas. No caso da aplicação das RNA em processamento digital de sinais, utilizou-se a filtragem de ruído em sinais de voz onde foram feitas comparações com os resultados apresentados pelo filtro neural convencional, que é uma rede feed-forward multicamada com o algoritmo de retropropagação para o aprendizado. Este trabalho demonstrou na prática que as RNA temporais conseguem capturar as características dos processos temporais de forma mais eficiente que as RNA Estatísticas e outros métodos tradicionais, podendo aprender diretamente o comportamento não estacionário das séries temporais. Os resultados demonstraram que a rede neural FIR e a rede Elman aprendem melhor a complexidade dos sinais de voz. / [en] This dissertation investigates the development of Artificial Neural Network (ANN) in the solution of problems where the patterns presented to the network have a temporary relationship to each other, such as time series forecast and voice processing. Temporary ANN considers the time in its operation, incorporating memory of short period distributed in the network in all the hidden neurons and in the output neurons in some cases. This class of network in better used to represent the temporary nature of the dynamic systems. In contrast, Static ANN has a structure adapted for tasks of pattern recognition, classification and another static or stationary problems, achieving great success in several applications. Considered an universal approximator, Static ANN has also been used in applications of dynamic systems, through some artifices in the input of the network and through statistical data pre- processings. The objective of this work is, therefore to study the theory and evaluate the performance of Temporal ANN, in comparison with Static ANN, in applications of dynamics systems. The development of this research involved 3 main stages: bibliographical research of the methodologies developed for Temporal ANN; selection and implementation of the models for the evaluation of these networks; and case studies. The bibliographical research allowed to compile and to classify the main on Temporal ANN, Typically, these network was selected, where the synapses are filters FIR (Finite-duration Impulse Response) that represent the temporary nature of the problem. The FIR network has been selected since it includes practically all other methods of its class, presenting a more formal mathematical model. On the second group, the Elman recurrent network was considered, that presents global feedback of each neuron in the hidden layer to all other neurons in this layer. In the case studies the network selected have been tested in two application: forecast of time series and digital signal processing. In the case of forecast, result of electric energy consumption time series prediction were compared with the result found in the literature such as Holt-Winters, Box & Jenkins and Static ANN methods. In the case of the application of processing where the comparisons were made with the results presented by the standard neural filter, made of a multilayer feed-forward network with the back propagation learning algorithm. This work showed in practice that Temporal ANN captures the characteristics of the temporary processes in a more efficient way that Static ANN and other methods, being able to learn the non stationary behavior of the temporary series directly. The results showed that the FIR neural network and de Elman network learned better the complexity of the voice signals.
95

[en] GPFIS: A GENERIC GENETIC-FUZZY SYSTEM BASED ON GENETIC PROGRAMMING / [pt] GPFIS: UM SISTEMA FUZZY-GENÉTICO GENÉRICO BASEADO EM PROGRAMAÇÃO GENÉTICA

ADRIANO SOARES KOSHIYAMA 08 June 2016 (has links)
[pt] Sistemas Fuzzy-Genéticos compreendem uma área que une Sistemas de Inferência Fuzzy e Meta-Heurísticas prevalentes nos conceitos de seleção natural e recombinação genética. Esta é de grande interesse para a comunidade científica, pois propicia a descoberta de conhecimento em áreas onde a compreensão do fenômeno em estudo é exíguo, além de servir de apoio à decisão para gestores público-privados. O objetivo desta dissertação é desenvolver um novo Sistema Fuzzy-Genético Genérico, denominado Genetic Programming Fuzzy Inference System (GPFIS). O principal aspecto do modelo GPFIS são as componentes do seu processo de Inferência Fuzzy. Esta estrutura é composta em sua base pela Programação Genética Multigênica e pretende: (i ) possibilitar o uso de operadores de agregação, negação e modificadores linguísticos de forma simplificada; (ii ) empregar heurísticas de definição do consequente mais apropriado para uma parte antecedente; e (iii ) usar um procedimento de defuzzificação, que induzido pela forma de fuzzificação e sobre determinadas condições, pode proporcionar uma estimativa mais acurada. Todas estas são contribuições que podem ser estendidas a outros Sistemas Fuzzy-Genéticos. Para demonstrar o aspecto genérico, o desempenho e a importância de cada componente para o modelo proposto, são formuladas uma série de investigações empíricas. Cada investigação compreende um tipo de problema: Classificação, Previsão, Regressão e Controle. Para cada problema, a melhor configuração obtida durante as investigações é usada no modelo GPFIS e os resultados são comparados com os de outros Sistemas Fuzzy-Genéticos e modelos presentes na literatura. Por fim, para cada problema é apresentada uma aplicação detalhada do modelo GPFIS em um caso real. / [en] Genetic Fuzzy Systems constitute an area that brings together Fuzzy Inference Systems and Meta-Heuristics that are often related to natural selection and genetic recombination. This area attracts great interest from the scientific community, due to the knowledge discovery capability in situations where the comprehension of the phenomenon under analysis is lacking. It can also provides support to decision makers. This dissertation aims at developing a new Generic Genetic Fuzzy System, called Genetic Programming Fuzzy Inference System (GPFIS). The main aspects of GPFIS model are the components which are part of its Fuzzy Inference procedure. This structure is basically composed of Multi-Gene Genetic Programming and intends to: (i ) apply aggregation operators, negation and linguistic hedges in a simple manner; (ii ) make use of heuristics to define the consequent term most appropriate to the antecedent part; (iii ) employ a defuzzification procedure that, driven by the fuzzification step and under some assumptions, can provide a most accurate estimate. All these features are contributions that can be extended to other Genetic Fuzzy Systems. In order to demonstrate the general aspect of GPFIS, its performance and the relevance of each of its components, several investigations have been performed. They deal with Classification, Forecasting, Regression and Control problems. By using the best configuration obtained for each of the four problems, results are compared to other Genetic Fuzzy Systems and models in the literature. Finally, applications of GPFIS actual cases in each category is reported.
96

[en] FORECASTING IN HIGH-DIMENSION: INFLATION AND OTHER ECONOMIC VARIABLES / [pt] PREVISÃO EM ALTA DIMENSÃO: INFLAÇÃO E OUTRAS VARIÁVEIS ECONÔMICAS

GABRIEL FILIPE RODRIGUES VASCONCELOS 26 September 2018 (has links)
[pt] Esta tese é composta de quatro artigos e um pacote de R. Todos os artigos têm como foco previsão de variáveis econômicas em alta dimensão. O primeiro artigo mostra que modelos LASSO são muito precisos para prever a inflação brasileira em horizontes curtos de previsão. O segundo artigo utiliza vários métodos de Machine Learning para prever um grupo de variáveis macroeconomicas americanas. Os resultados mostram que uma adaptação no LASSO melhora as previsões com um alto custo computacional. O terceiro artigo também trata da previsão da inflação brasileira, mas em tempo real. Os principais resultados mostram que uma combinação de modelos de Machine Learning é mais precisa do que a previsão do especialista (FOCUS). Finalmente, o último artigo trata da previsão da inflação americana utilizando um grande conjunto de modelos. O modelo vencedor é o Random Forest, que levanta a questão da não-linearidade na inflação americana. Os resultados mostram que tanto a não-linearidade quanto a seleção de variáveis são importantes para os bons resultados do Random Forest. / [en] This thesis is made of four articles and an R package. The articles are all focused on forecasting economic variables on high-dimension. The first article shows that LASSO models are very accurate to forecast the Brazilian inflation in small horizons. The second article uses several Machine Learning models to forecast a set o US macroeconomic variables. The results show that a small adaptation in the LASSO improves the forecasts but with high computational costs. The third article is also on forecasting the Brazilian inflation, but in real-time. The main results show that a combination of Machine Learning models is more accurate than the FOCUS specialist forecasts. Finally, the last article is about forecasting the US inflation using a very large set of models. The winning model is the Random Forest, which opens the discussion of nonlinearity in the US inflation. The results show that both nonlinearity and variable selection are important features for the Random Forest performance.
97

[en] CONSERVATIVE MANAGED ENTERPRISES: DEMAND FORECAST AND COMPUTER SIMULATION POTENTIAL / [pt] EMPRESAS DE GESTÃO CONSERVADORA: POTENCIAL DA PREVISÃO DE DEMANDA E SIMULAÇÃO COMPUTACIONAL

ALEXANDRE MAGNO CASTANON GUIMARAES 14 June 2017 (has links)
[pt] Esta dissertação tem como objetivo mostrar o potencial da aplicação das ferramentas Previsão de Demanda e Simulação Computacional em uma unidade produtiva com administração de característica familiar, que não adota as modernas técnicas propostas por especialistas para a gestão da cadeia de suprimento. Para isso, foram abordados os conceitos e os aspectos fundamentais, bem como as principais etapas, os benefícios, as limitações e as dificuldades da utilização dessas ferramentas. Além disso, foi proposta uma metodologia que aumentou a precisão da Previsão de Demanda. Com os dados obtidos foi possível analisar o desempenho dos fluxos dos processos simulados, o que permite auxiliar na gestão dos recursos, levando-se em conta principalmente a variabilidade da demanda e as incertezas dos mercados. Nessas análises foram utilizados os softwares Statgraphics Centurion e Arena a fim de elaborar, respectivamente, os modelos de previsão de demanda e de simulação computacional para o estudo de caso proposto. / [en] This thesis aims to show the potential of the Demand Forecast and Computer Simulation techniques carried out in a manufacturing plant with family administration feature that does not use the modern techniques proposed by Supply Chain management experts. In order to study the subject; concepts, fundamental principles, important steps, advantages, limitations as well as the difficulties of using those tools were investigated. In addition, a new method was proposed which resulted in the improvement of the demand forecast accuracy. With the forecasted data, it was possible to analyze the performance of the simulated manufacture flows. Such procedures improved the management of resources while the demand variability and the uncertainties of markets were considered. The Statgraphics Centurion and Arena softwares were used in order to developed, respectively, models for Demand Forecast and Computer Simulation for the study proposed.
98

[en] ESSAYS ON THE RISK ASSOCIATED TO FORECASTING ELECTRICITY PRICES AND ON MODELING THE DEMAND OF ENERGY FROM AN ELECTRICITY DISTRIBUTOR / [pt] ENSAIOS SOBRE O RISCO DE PREVISÃO DE PREÇOS DE ENERGIA ELÉTRICA E MODELAGEM DE CARGA DEMANDADA A UMA DISTRIBUIDORA DE ELETRICIDADE

MARIO DOMINGUES DE PAULA SIMOES 31 July 2018 (has links)
[pt] A presente tese trata da avaliação do risco associado à incerteza presente na previsão dos preços de energia elétrica, bem como os aspectos de incerteza associados à previsão de demanda da carga de energia elétrica exigida de uma distribuidora de eletricidade. O primeiro trabalho trata do risco associado à previsão dos preços da energia elétrica, partindo do conhecido fato de que os vários modelos de previsão destes preços são sabidamente imprecisos; assim sendo, qual deve ser o risco incorrido ao se utilizar determinada técnica de modelagem, considerando-se que provavelmente estaremos fazendo uma previsão errônea. A abordagem utilizada é a modelagem dos erros de previsão com a Teoria de Valores Extremos, que se mostra bastante segura para modelagens dos quantis extremos da distribuição dos resíduos, desde 98 porcento até acima de 99,5 porcento, para diferentes frequências de amostragem dos dados. No capítulo seguinte, é feita uma avaliação da carga elétrica demandada a uma distribuidora, primeiramente considerando a abordagem utilizando modelos do tipo ARMA e ARMAX, buscando avaliar sua eficiência preditiva. Estes modelos são sabidamente apropriados para previsões no curto prazo, e mostramos através de simulações de Monte Carlo, que sua extensão para previsões de longo prazo torna inócua a busca de sofisticação através do trabalho de incorporação de variáveis exógenas. O motivo é que dado que o erro incorrido em quaisquer destas previsões mais longas com tais modelos é tão grande, ainda que sejam modelos mais ou menos sofisticados, com variáveis exógenas ou não, um modelo simples produzirá o mesmo efeito do que aquele de maior sofisticação, em termos de confiança na previsão média obtida. Finalmente, o último trabalho aborda o tema de possíveis não linearidades no processo de geração de dados da carga elétrica demandada de uma distribuidora, admitindo não ser este um processo apenas linear. Para tal são usados modelos não lineares auto-regressivos de mudança de regimes, que se mostram vantajosos por serem inerentemente resistentes a possíveis quebras estruturais na série de carga utilizada, além de serem particularmente apropriados para modelar assimetrias no processo gerador de dados. Mostramos que mesmo modelos do tipo TAR simples, com apenas dois regimes e auto excitados, isto é, não incorporando quaisquer variáveis exógenas, podem ser mais apropriados do que modelos lineares auto-regressivos, demonstrando melhor capacidade de previsão fora-da-amostra. Ao mesmo tempo tais modelos tem relativa facilidade de cálculo, não exigindo sofisticados recursos computacionais. / [en] This present thesis discusses the risk associated to the uncertainty that is present in the process of forecasting electricity prices, as well as the aspects of uncertainty in the forecast of electrical energy loads required from an electricity distributor. The first essay deals with the risk inherent to the forecast of electricity prices, bearing in mind that the various existing models are notoriously imprecise. Therefore, we attempt to determine what the forecast risk is, given that a certain forecasting technique is used and that it will probably inaccurate. The approach used is through the modeling of forecast residues with the Extreme Value Theory, which proves itself to be satisfactorily accurate for the modeling of the distribution of residues at such extreme quantiles as from 98 per cent up to over 99,5 per cent, for different data sampling frequencies. The following next chapter shows the evaluation of the electricity load required from a distributor, first by using such models as ARMA and ARMAX, trying to evaluate their predictive efficiency. These models are known to be appropriate for short term predictions, and we show by means of Monte Carlo simulations that their extended use for long term forecasts will render useless any attempt to sophisticate such models by means of incorporating exogenous variables. This is due to the fact that since the error from such longer forecasts will be so large one way or the other, with exogenous variables or not, a simpler model will be as useful as any in terms of the error in the mean prediction. Finally, the last work discusses the possibility of nonlinear effects being present in the data generating process of electrical load demanded from an energy distributor, admitting this process being just linear. To accomplish this task, we use nonlinear auto-regressive regime switching models, which are shown to be inherently resistant to possible structural breaks in the load series data used, at the same time that they are particularly appropriated to modeling asymmetries in the data generating process. We show that even relatively simple self-excited TAR models with only two regimes, that is, not resorting to any exogenous variables, can be more appropriate than linear auto-regressive models, sporting better out-of-sample forecast results. At the same time, such models are relatively simple to calculate, not requiring any sophisticated computational means.
99

[en] VERY SHORT TERM LOAD FORECASTING IN THE NEW BRAZILIAN ELECTRICAL SCENARIO / [es] PREVISIÓN DE CARGA A CORTÍSIMO PLAZO EN EL NUEVO ESCENARIO ELÉCTRICO BRASILERO / [pt] PREVISÃO DE CARGA DE CURTÍSSIMO PRAZO NO NOVO CENÁRIO ELÉTRICO BRASILEIRO

GUILHERME MARTINS RIZZO 19 July 2001 (has links)
[pt] Nesta dissertação é proposto um modelo híbrido para previsão de carga de curtíssimo prazo, combinando amortecimento exponencial simples e redes neurais artificiais do topo feed-forward. O modelo fornece previsões pontuais e limites superiores e inferiores para um horizonte de quinze dias. Estes limites formam um intervalo ao qual pode ser associado um nível de confiança empírico, estimado através de um teste fora da amostra. O desempenho do modelo é avaliado ao longo de uma simulação realizada com dados reais de duas concessionárias de energia elétrica brasileiras. / [en] This thesis presents an hibrid short term load forecasting model that mixes simple exponential smoothing with feed- forward neural networks. The model gives point predictions with upper and lower limits for 15-day-ahead horizon. These limits yields an interval with associated empirical confidence level, estimated by an out of sample test. The model's performance is evaluated through a simulation with real data obtained from two Brazilian utilities. / [es] En esta disertación se propone un modelo híbrido para previsión de carga de cortísimo plazo, combinando amortecimiento exponencial simple y redes neurales artificiales tipo feed-forward. EL modelo nos da las previsiones puntuales y los límites superiores e inferiores para un horizonte de quince días. Estos límites forman un intervalo al cual se le puede asociar un nível de confianza empírico, estimado a través de un test out of sample. EL desempeño del modelo se evalúa utilizando datos reales de dos concesionarias de energía eléctrica brasileras.
100

[en] THE INFLUENCE OF CLIMATIC FACTORS, ECONOMIC AND TEMPORAL LOAD FORECASTING AND BILLING OF AN ELECTRIC UTILITIES / [pt] A INFLUÊNCIA DE FATORES CLIMÁTICOS, ECONÔMICOS E TEMPORAIS NA PREVISÃO DE CARGA E DE FATURAMENTO DE UMA CONCESSIONÁRIA DE ENERGIA ELÉTRICA

JULIANA CARDOSO ARAUJO MATTOSO 17 September 2013 (has links)
[pt] Com a entrada do novo modelo do setor elétrico, a previsão do consumo e de faturamento de energia elétrica passou a ter grande importância para as distribuidoras de energia elétrica, pois melhorando sua acertividade as empresas poderão elaborar seus programas de planejamento energético, manutenção e expansão de seu sistema de distribuição e principalmente evitar gastos com multas pelo não atendimento à totalidade de seu mercado consumidor. Para que esta previsão seja feita é necessário que se obtenham, os dados históricos do consumo de energia elétrica, da carga fornecida pela Distribuidora, porém como esses dados são séries multivariadas, isto é, são séries temporais que dependem de outras variáveis exógenas, levou-se em consideração também as séries climáticas (sensação térmica), as econômicas (índices financeiros) e o fator temporal (dias úteis, feriados, finais de semana.....). Este estudo, propõe um método alternativo para previsão de consumo e faturamento de energia elétrica, 15 passos a frente, através do desenvolvimento de um sistema inteligente, chamado SIPEE, baseado em redes neurais MLP multistep e foi desenvolvido para uma Distribuidora de Energia Elétrica que atende a boa parte do mercado consumidor do Estado do Rio de Janeiro, a Light Serviços de Eletricidade S.A.. / [en] When the new model of the electricity sector began to be used, the forecast of consumption and billing of electricity began to have great importance for the electricity distributors, improving their assertiveness as companies can develop their programs for energy planning, maintenance and expansion of its distribution system and particularly to avoid fines for not spending all of his service to the consumer market. For this prediction is made it is necessary to obtain historical data of energy consumption, the load supplied by the distributor, but as these data sets are multivariate, ie, they are time series which depend on other exogenous variables took into account also the series weather (wind chill), economic (financial ratios) and the factor of time (days, holidays, weekends .....). This study proposes an alternative method to forecast sales and consumption of electricity, 15 steps forward, by developing an intelligent system, called SIPEE, MLP neural networks based on multistep and was developed for an Electricity Distributor serving much of the consumer market in the State of Rio de Janeiro, Light Electrical Services SA.

Page generated in 0.1248 seconds