101 |
[en] THE INFLUENCE OF CLIMATIC FACTORS, ECONOMIC AND TEMPORAL LOAD FORECASTING AND BILLING OF AN ELECTRIC UTILITIES / [pt] A INFLUÊNCIA DE FATORES CLIMÁTICOS, ECONÔMICOS E TEMPORAIS NA PREVISÃO DE CARGA E DE FATURAMENTO DE UMA CONCESSIONÁRIA DE ENERGIA ELÉTRICAJULIANA CARDOSO ARAUJO MATTOSO 17 September 2013 (has links)
[pt] Com a entrada do novo modelo do setor elétrico, a previsão do consumo
e de faturamento de energia elétrica passou a ter grande importância para as
distribuidoras de energia elétrica, pois melhorando sua acertividade as empresas
poderão elaborar seus programas de planejamento energético, manutenção e
expansão de seu sistema de distribuição e principalmente evitar gastos com
multas pelo não atendimento à totalidade de seu mercado consumidor. Para que
esta previsão seja feita é necessário que se obtenham, os dados históricos do
consumo de energia elétrica, da carga fornecida pela Distribuidora, porém como
esses dados são séries multivariadas, isto é, são séries temporais que
dependem de outras variáveis exógenas, levou-se em consideração também as
séries climáticas (sensação térmica), as econômicas (índices financeiros) e o
fator temporal (dias úteis, feriados, finais de semana.....). Este estudo, propõe
um método alternativo para previsão de consumo e faturamento de energia
elétrica, 15 passos a frente, através do desenvolvimento de um sistema
inteligente, chamado SIPEE, baseado em redes neurais MLP multistep e foi
desenvolvido para uma Distribuidora de Energia Elétrica que atende a boa parte
do mercado consumidor do Estado do Rio de Janeiro, a Light Serviços de
Eletricidade S.A.. / [en] When the new model of the electricity sector began to be used, the
forecast of consumption and billing of electricity began to have great importance
for the electricity distributors, improving their assertiveness as companies can
develop their programs for energy planning, maintenance and expansion of its
distribution system and particularly to avoid fines for not spending all of his
service to the consumer market. For this prediction is made it is necessary to
obtain historical data of energy consumption, the load supplied by the distributor,
but as these data sets are multivariate, ie, they are time series which depend on
other exogenous variables took into account also the series weather (wind chill),
economic (financial ratios) and the factor of time (days, holidays, weekends .....).
This study proposes an alternative method to forecast sales and consumption of
electricity, 15 steps forward, by developing an intelligent system, called SIPEE,
MLP neural networks based on multistep and was developed for an Electricity
Distributor serving much of the consumer market in the State of Rio de Janeiro,
Light Electrical Services SA.
|
102 |
[en] IMPACT OF DEMAND FORECASTING INACCURACY ON THE SUPPLY CHAIN: A CASE STUDY IN THE BEVERAGE INDUSTRY / [pt] IMPACTO DA IMPRECISÃO DA PREVISÃO DE DEMANDA NA CADEIA LOGÍSTICA: UM ESTUDO DE CASO NA INDÚSTRIA DE BEBIDASPAULO MENDES DE OLIVEIRA JUNIOR 19 January 2005 (has links)
[pt] Esta dissertação teve como objetivo desenvolver uma metodologia e
aplicá-la em uma indústria de bebidas, a fim de mensurar o impacto da
imprecisão da previsão de demanda nos processos logísticos de gestão de
estoque, distribuição física e vendas, demonstrando a importância que a
previsão possui no planejamento e na execução dos processos logísticos.
Para atingir os objetivos propostos acima, foi realizada uma breve revisão
conceitual dos principais métodos de previsão de demanda e de cada um dos
três processos logísticos em estudo. Em seguida, foram detalhadas as etapas da
metodologia e aplicadas aos dados de 3 depósitos da empresa analisada. Como
desdobramento da aplicação da metodologia, foram identificadas oportunidades
de melhoria e elaboradas propostas de mudanças para o processo de previsão
atual.
A aplicação da metodologia e a implementação das alterações propostas
permitiu à empresa aumentar o nível de precisão da previsão de demanda de
todos os principais SKUs e melhorar a comunicação entre todos os elos da
cadeia de valor. Com esta maior precisão da previsão de demanda será possível
melhorar a alocação dos recursos físicos e humanos, reduzir os custos
operacionais e atingir os requisitos de nível de serviço requeridos pelos clientes. / [en] This thesis has the objective of developing and applying a
methodology to
measure the impact of demand forecast inaccuracy in the
supply chain of a
beverage industry, specifically in the inventory
management, physical distribution
and sales processes. The purpose is to create an awareness
of the importance of
forecasting area in the logistics planning and execution
activities.
To achieve these goals, a conceptual review of the major
demand
forecasting methods and of the three logistics processes
under analysis has been
made. After that, a methodology was defined and applied to
three different
warehouse data sets of the company analyzed. As a result of
the methodology
application, some opportunities for process improvement
were identified and
some changes were proposed for the current demand
forecasting process.
The results of methodology application and proposed actions
implementation allowed the company to increase the demand
forecasting
accuracy for the major SKUs and to improve communication
among the different
links of the supply chain. Based on more accurate
forecasts, the company will be
able to better allocate physical and human resources,
reduce operational costs
and achieve the required customer service level.
|
103 |
[pt] MODELO STAR-TREE DE TRANSIÇÃO SUAVE ESTRUTURADO EM ÁRVORE PARA PREVISÃO DE ENERGIA EÓLICA / [en] TREE STRUCTURED SMOOTH TRANSITION MODEL STAR-TREE FOR WIND POWER FORECASTING05 November 2021 (has links)
[pt] O principal objetivo desta dissertação é estudar modelos de previsão da geração eólica utilizando os dados de cinco parques eólicos, mais precisamente comparar o desempenho dos modelos lineares e não lineares. Utilizando a metodologia do modelo não-linear STAR-TREE (Smooth Transition AutoRegression Tree) e comparando com o modelo linear Box e Jenkins através de medidas estatísticas. Basicamente, o modelo STAR-TREE é uma combinação dos modelos STAR (Smooth Transition AutoRegression) e CART (Classification
and Regression Tree), realizando assim uma modelagem em árvore onde a transição entre os regimes é feita de forma suave através da função logística e nos nós terminais são ajustados modelos preditivos. Neste estudo será ajustado nos nós terminais um modelo simples constante e também modelos autorregressivos. / [en] The main objective of this dissertation is to study wind generation forecasting models using data from five wind farms, more accurately compare the performance of linear and nonlinear models. Using the methodology of the nonlinear model STAR-TREE (Smooth Transition Autoregression Tree) and compare with the linear model BoxandJenkins through statistical measures. Basically the model STAR-TREE is a combination of models STAR (Smooth Transition Autoregression) and CART (Classification and Regression Tree), thus creating a modeling tree where the transition between regimes is done smoothly through the logistics function and in the terminal nodes are adjusted predictive models. In this study will fit in the terminal nodes, a simple model of constant and a autoregressive models.
|
104 |
[pt] MODELAGEM HÍBRIDA WAVELET INTEGRADA COM BOOTSTRAP NA PROJEÇÃO DE SÉRIES TEMPORAIS / [en] MODELING HYBRID WAVELET INTEGRATED WITH BOOTSTRAP IN PROJECTION TEMPORAL SERIESRICARDO VELA DE BRITTO PEREIRA 31 March 2016 (has links)
[pt] Na previsão de séries temporais, alguns autores supõem que um método de previsão individual (por exemplo, um modelo ARIMA) produz resíduos (ou erros de previsão) semelhantes a um processo de ruído branco (imprevisível). No entanto, principalmente devido às estruturas de autodependência não mapeadas por um método preditivo individual, tal suposição pode ser facilmente violada na prática. Esta tese propõe um Previsor Híbrido Wavelet (PHW) que integra as seguintes técnicas: decomposição wavelet; modelos ARIMA; redes neurais artificiais (RNAs); combinação de previsões; programação matemática não linear e amostrador Bootstrap. Em termos gerais, o PHW proposto aqui é capaz de capturar, ao mesmo tempo, estruturas com autodependência linear por meio de uma combinação linear wavelet (CLW) de modelos ARIMA, (cujo ajuste numérico ótimo ocorre por programação matemática não linear) e não linear (usando uma RNA wavelet automática) exibidas pela série de tempo a ser predita. Diferentemente de outras abordagens híbridas existentes na literatura, as previsões híbridas produzidas pela PHW proposto levam em conta implicitamente, através da abordagem de decomposição wavelet, as informações oriundas da frequência espectral presentes na série temporal subjacente. Os resultados estatísticos mostram que a metodologia híbrida supracitada alcançou ganhos de precisão relevantes no processo preditivo de quatro séries de tempo diferentes bem conhecidas, quando se compara com outras meteorologistas competitivas. / [en] In time series analysis some authors presume that a single model (an ARIMA for instance) may yield white noise errors. However that assumption can be easily violated, especially in scenarios where unmapped auto dependency structures are present inside the series. With that being said, this thesis proposes a new approach called Hybrid Wavelet Predictor (HWP) which integrates the following techniques: Wavelet Decomposition, ARIMA models, Neural Networks (NN), Combined Prediction, Non-linear mathematical programming and Bootstrap Sampling. In a broad sense, the proposed HWP is able to capture not only the linear auto-dependent structures from ARIMA using linear wavelet combination (where its optimal numerical adjustment is made through non-linear mathematical programming), but also the non-linear structures by using Neural Network. Differently from others hybrid approaches known to date, the hybrid predictions given by HWP model take into account. Statistical tests show that the hybrid approach stated above increased the prediction s effectiveness by a significant amount when compared with four well known processes.
|
105 |
[en] AUTOMFIS: A FUZZY SYSTEM FOR MULTIVARIATE TIME SERIES FORECAST / [pt] AUTOMFIS: UM SISTEMA FUZZY PARA PREVISÃO DE SÉRIES TEMPORAIS MULTIVARIADASJULIO RIBEIRO COUTINHO 08 April 2016 (has links)
[pt] A série temporal é a representação mais comum para a evoluçãao no
tempo de uma variável qualquer. Em um problema de previsão de séries
temporais, procura-se ajustar um modelo para obter valores futuros da
série, supondo que as informações necessárias para tal se encontram no
próprio histórico da série. Como os fenômenos representados pelas séries
temporais nem sempre existem de maneira isolada, pode-se enriquecer o
modelo com os valores históricos de outras séries temporais relacionadas.
A estrutura formada por diversas séries de mesmo intervalo e dimensão
ocorrendo paralelamente é denominada série temporal multivariada. Esta
dissertação propõe uma metodologia de geração de um Sistema de Inferência
Fuzzy (SIF) para previsão de séries temporais multivariadas a partir de
dados históricos, com o objetivo de obter bom desempenho tanto em termos
de acurácia de previsão como no quesito interpretabilidade da base de regras
– com o intuito de extrair conhecimento sobre o relacionamento entre as
séries. Para tal, são abordados diversos aspectos relativos ao funcionamento
e à construção de um SIF, levando em conta a sua complexidade e claridade
semântica. O modelo é avaliado por meio de sua aplicação em séries
temporais multivariadas da base completa da competição M3, comparandose
a sua acurácia com as dos métodos participantes. Além disso, através
de dois estudos de caso com dados reais públicos, suas possibilidades
de extração de conhecimento são exploradas por meio de dois estudos
de caso construídos a partir de dados reais. Os resultados confirmam
a capacidade do AutoMFIS de modelar de maneira satisfatória séries
temporais multivariadas e de extrair conhecimento da base de dados. / [en] A time series is the most commonly used representation for the
evolution of a given variable over time. In a time series forecasting problem,
a model aims at predicting the series future values, assuming that all
information needed to do so is contained in the series past behavior.
Since the phenomena described by the time series does not always exist
in isolation, it is possible to enhance the model with historical data from
other related time series. The structure formed by several different time
series occurring in parallel, each featuring the same interval and dimension,
is called a multivariate time series. This dissertation proposes a methodology
for the generation of a Fuzzy Inference System (FIS) for multivariate
time series forecasting from historical data, aiming at good performance
in both forecasting accuracy and rule base interpretability – in order to
extract knowledge about the relationship between the modeled time series.
Several aspects related to the operation and construction of such a FIS
are investigated regarding complexity and semantic clarity. The model is
evaluated by applying it to multivariate time series obtained from the
complete M3 competition database and by comparing it to other methods
in terms of accuracy. In addition knowledge extraction possibilities are
explored through two case studies built from actual data. Results confirm
that AutoMFIS is indeed capable of modeling time series behaviors in a
satisfactory way and of extractig meaningful knowldege from the databases.
|
106 |
[en] BANKRUPTCY PREDICTION FOR AMERICAN INDUSTRY: CALIBRATING THE ALTMAN S Z-SCORE / [pt] PREVISÃO DE FALÊNCIA PARA INDUSTRIA AÉREA AMERICANA: CALIBRANDO O Z-SCORE DE ALTMAN23 September 2020 (has links)
[pt] Os estudos de modelos de previsão de falência tiveram seu início há quase 90 anos, sempre com o intuito de ser uma ferramenta de gestão útil para analistas e gestores das empresas. Embora as primeiras pesquisas sejam antigas, o assunto continua atual. Diversos setores da economia passaram, ou passam, por crises ao longo do tempo e não foi diferente para a indústria de aviação. Nesse contexto, o presente trabalho usou dados históricos de indicadores financeiros das empresas aéreas americanas de um período de três décadas para elaborar quatro modelos de previsão de falência e comparar suas performances preditivas com o Modelo Z-Score. Todas as elaborações foram calibragens do Modelo Z-Score, usando técnicas de simulação e estatística. Duas usaram Análise Discriminante Múltipla (MDA) e duas utilizaram Bootstrap junto com MDA. Um par de cada método utilizou as variáveis originais do Modelo Z-Score e o outro par apresentou sugestão de novo conjunto de variáveis. Os resultados mostraram que o modelo de previsão mais preciso, com 75,0 porcento de acerto na amostra In-Sample e 79,2 porcento na Out-of-Sample, utilizou o conjunto original de variáveis e as técnicas Bootstrap e MDA. / [en] Studies of bankruptcy prediction models started almost 90 years ago, with the intention of being a useful management tool for analysts and managers. Although the first researches are ancient, the subject remains current. Several sectors of the economy have experienced, or are experiencing, crises over time and the aviation industry is no exception. In this context, the present work used historical data of financial indicators of American airlines over a period of three decades to develop four models of bankruptcy forecast and compared their predictive performances with the Z-Score Model. All proposed models were calibrations of the Z-Score model, using simulation and statistical techniques. Two models were generated using Discriminant Analyzes Multiple (MDA) and two using Bootstrap along with MDA. A pair of each method used the original variables of the model s Z-Score and the other pair presented a novel set of variables. Results showed that the most accurate forecasting model, with 75.0 percent accuracy in-sample and 79.2 percent out-of-sample, used the original variables of the model s Z-Score and the Bootstrap e MDA techniques.
|
107 |
[en] NEURO-FUZZY BSP HIERARCHICAL SYSTEM FOR TIME FORECASTING AND FUZZY RULE EXTRACTION DOR DATA MINING APPLICATONS / [pt] SISTEMA NEURO-FUZZY HIERÁRQUICO BSP PARA PREVISÃO E EXTRAÇÃO DE REGRAS FUZZY EM APLICAÇÕES DE DATA MININGALBERTO IRIARTE LANAS 11 October 2005 (has links)
[pt] Esta dissertação investiga a utilização de um sistema
Neuro-Fuzzy Hierárquico para previsão de séries e a
extração de regras fuzzy em aplicações de Mineração de
Dados. O objetivo do trabalho foi estender o modelo Neuro-
Fuzzy Hierárquico BSP para a classificação de registros e
a previsão de séries temporais. O processo de
classificação de registros no contexto de Mineração de
Dados consiste na extração de regras de associação que
melhor caracterizem, através de sua acurácia e
abrangência, um determinado grupo de registros de um banco
de dados (BD). A previsão de séries temporais, outra
tarefa comum em Mineração de Dados tem como objetivo
prever o comportamento de uma série temporal no instante
t+k (k ? 1).O trabalho consistiu de 5 etapas principais:
elaborar um survey dos principais sistemas e modelos
mais utilizados nas aplicações de Mineração de Dados;
avaliar o desempenho do sistema NFHB original em
aplicações de Mineração de Dados; desenvolver uma extensão
do modelo NFHB dedicado à classificação de registros em
uma BD; desenvolver um novo modelo híbrido Neuro-Fuzzy
Genético para o ajuste automático dos parâmetros do
sistema dedicado a previsão de séries temporais; e o
estudo dos casos. O estudo da área resultou num survey
sobre os principais modelos para Mineração de Dados. São
apresentados os modelos mais utilizados em tarefas de
classificação e extração de regras tais como: redes
neurais, árvores de decisão crisp e fuzzy, algoritmos
genéticos, estatística e sistemas neuro-fuzzy. Na etapa de
avaliação do modelo NFHB original, foi verificado que além
do tradicional aprendizado dos parâmetros, comuns às redes
neurais e aos sistemas neuro-fuzzy, o modelo possui as
seguintes aracterísticas: aprendizado da estrutura, a
partir do uso de particionamentos recursivos; número maior
de entradas que o habitualmente encontrado nos sistemas
neuro-fuzzy; e regras com hierarquia, características
adequadas para as aplicações de Mineração de Dados.
Entretanto, o processo de extração de regras e a seleção
de atributos não são adequados para este tipo de
aplicação, assim como a excessiva complexidade da
parametrização do modelo para aplicações de previsão de
séries temporais. Uma extensão ao modelo NFHB original foi
então proposta para aplicações de classificação de
registros no contexto da Mineração de Dados onde se têm
como objetivo principal a extração de informação em forma
de regras interpretáveis. Foi necessário modificar a
seleção de atributos e o processo original de extração de
regras. O sistema fuzzy do tipo Takagi-Sugeno do modelo
NFHB original fornece regras inadequadas do ponto de vista
da Mineração de Dados. O novo modelo NFHB, dotado das
modificações necessárias, mostrou um ótimo desempenho na
extração de regras fuzzy válidas que descrevem a
informação contida no banco de dados. As medidas de
avaliação normalmente usadas para analisar regras crisp
(Se x1 é <14.3 e...), como abrangência e acurácia, foram
modificadas para poderem ser aplicadas ao caso de
avaliação das regras fuzzy (Se x1 é Baixo e..) extraídas
pelo sistema NFHB após da fase de aprendizado. A
quantidade e a qualidade das regras extraídas é um ponto
fundamental dos sistemas voltados para aplicações de
Mineração de Dados, que buscam sempre obter o menor número
de regras e da maior qualidade possível. Nesse sentido, o
processo de seleção das características de entrada foi
alterado para evitar particionamentos excessivos, ou seja
regras desnecessárias. Foram implementadas duas
estratégias de seleção (Fixa e Adaptativa) em função de
diferentes medidas de avaliação como a Entropia e o método
de Jang. Um novo modelo híbrido neuro-fuzzy genético para
previsão de séries temporais foi criado para resolver o
problema da excessiva complexidade de parametrização do
sistema, o qual conta com mais de 15 parâmetros.Foi
proposto um novo modelo híbrido neuro-fuzzy genético capaz
de evoluir e obter um conjunto de parâmetros adequado par / [en] This dissertation investigates the use of a Neuro-Fuzzy
Hierarchical system for time series forecasting and fuzzy
rule extraction for Data Mining applications. The
objective of this work was to extend the Neuro-Fuzzy BSP
Hierarchical model for the classification of registers and
time series forecasting. The process of classification of
registers in the Data Mining context consists of
extracting association rules that best characterise,
through its accuracy and coverage measures, a certain
group of registers of database (DB). The time series
forecasting other common task in Data Mining, has a main
objective to foresee the behavior of a time series in the
instant t+k (k>=1).
The work consisted of 5 main stages: to elaborate a survey
of the main systems and the most common models in Data
Mining applications; to evaluate the performance of the
original NFHB system in Data Mining applicatons; to
develop an extension of the NFHB model dedicated to the
classification of registers in a DB; to develop a new
Neuro-Fuzzy Genetic hybrid model for the automatic
adjustment of the parameters of the system for time series
forecasting applicatons; and the case estudies.
The study of the area resulted in a survey of the main
Data Mining models. The most common methods used in Data
Mining application are presented such as: neural nets,
crisp and fuzzy decision trees, genetic algorithms,
statistics and neuro-fuzzy systems.
In the stage of evaluation of the original NFHB model, it
verified that besides the traditional learning of the
parameters, common to the neural nets and the neuro-fuzzy
systems, the model possesses the following
characteristics: learning of the structure; recursive
partitioning; larger number of inputs than usually found
on the neuro-fuzzy systems; rule with hierarchy; which are
characteristics adapted for Data Mining applications.
However the rule extraction process and attributes
selection are not appropriate for this type of
applications, as well as the excessive complexity of the
tuning of the model for time series forecasting
applicatons.
An extension of the original NFHB model was then proposed
for applicatons of classification of registers in the Data
Mining context, where the main objective in the extraction
of information in form of interpratable rules. It was
necessary to modify the attributes selection and the
original rule extraction process. The Takagi-Sugeno fuzzy
system of the original NFHB model supplies inadequate
rules, from the Data Mining point of view. The new NFHB
models, endowed with necessary modifications, showed good
performance in extracting valid fuzzy rules that describe
the information contained in the database. The evaluation
metrics, usually used to analyse crips rules (If x1 is
<14.3 and), as coverage and accuracy, were modified to be
applied to the evaluation of the fuzzy rules (If x1 is Low
and) extracted from the NFHB system after the learning
process. The amount and quality of the extracted rules are
important points of the systems dedicated for Data Mining
applicatons, where the target is to obtain the smallest
number of rules and of the best quality. In that sense,
the input selection strategies were implemented (Static
and Adaptive), using different evaluation measures as
Entropy and the jang algorithm.
A new genetic neuro-fuzzy hybrid model for time series
forecasting was created to solve the problem of the
excessive complexity of the model tuning, which comprises
more than 15 parameters. A new model wes proposed, a
genetic neuro-fuzzy hybrid, model capable to develop and
to obtain an appropriate set of parameters for the
forecasting of time series. The new hybrid, model capable
to develop and to obtain an appropriate set of parameters
for the forecasting of time series. The new hybrid model
presented good results with different types of series.
A tool based on the NFHB model was developed for
classification and forecasting applications. Th
|
108 |
[en] MODELING TECHNIQUES APPLIED FOR PORE PRESSURE PREDICTION IN GEOLOGICALLY COMPLEX ENVIRONMENTS / [pt] TÉCNICAS DE MODELAGEM APLICADAS À PREVISÃO DE PRESSÃO DE POROS EM AMBIENTES GEOLOGICAMENTE COMPLEXOSVIVIAN RODRIGUES MARCHESI 11 February 2016 (has links)
[pt] O tempo não produtivo (NPT) durante a perfuração de poços de petróleo pode
ser responsável pela perda de milhões de dólares em atividades offshore. A má
previsão da pressão de poros pode ser uma das responsáveis pelo NPT de um poço
ou mesmo sua perda definitiva em campos geologicamente complexos, como em
bacias evaporíticas. Nesses campos complexos, os métodos de previsão de pressão
de poros convencionais nem sempre são capazes de prever bem a distribuição de
pressão de poros, mesmo após a perfuração de número considerável de poços. Este
trabalho estuda técnicas alternativas que atendam ao problema de previsão de
pressão para esses casos. Para fundamentar os estudos, é apresentada uma revisão
sobre os riscos associados à perfuração em bacias evaporíticas e sobre os métodos
de previsão de pressão existentes (métodos convencionais, sísmicos, modelagem
geológica geomecânica 3D, modelagem pelo método dos elementos finitos e
modelagem de bacias). Avaliando os problemas de perfuração nestes campos e as
dificuldades de previsão dos métodos convencionais, nota-se que a complexidade
imposta pelas consequências da presença do sal pode ser reduzida pelo uso de
métodos que considerem a geologia local de forma mais abrangente em seu fluxo
de trabalho. Concluiu-se que a modelagem de bacias e a modelagem geológica
geomecânica 3D têm forte potencial de aplicação para estes casos. As técnicas,
contudo, não tem a previsão de pressão de poros por objetivo principal, mas podem
ser aplicadas ou adaptadas para tal fim. Este estudo apresenta adaptações de
metodologia e/ou aplicações direcionadas de ambas para fins de previsão de pressão
de poros. Para validar as propostas apresentadas, estudos de caso foram
desenvolvidos e apresentaram resultados considerados bastante satisfatórios. / [en] The non-productive time (NPT) while drilling oil and gas wells may be
responsible for losing millions of dollars, especially in offshore activities. Bad pore
pressure predictions may be responsible for large NPT or even the definitive loss
of well in geologically complex fields, such as evaporate basins. On these complex
fields, the conventional pore pressure prediction methods sometimes are not
capable of providing good predictions, even if a considerable number of wells has
been already drilled. This thesis studies alternative techniques which may attend for
pore pressure prediction in these cases. In order to develop a consistent knowledge
about the case, a literature review has been conducted in two ways: to understand
what are the risks associated to drilling in evaporate basins; to review what are the
available methods for pore pressure prediction (conventional methods, seismic
methods, 3D geological and geomechanical modeling, finite element methods and
basin modeling). During analyzing geomechanical drilling risks in these sites, and
the difficulties found by conventional methods to predict it, it was noted that the
complexity imposed by the presence of salt bodies can be reduced by using methods
that make a strong use of geological knowledge on their workflow. It has been
concluded that basin modeling and 3D geological and geomechanical modeling
have a good potential to be applied for this goal. The techniques, nevertheless, do
not have pore pressure prediction as their main goal, but can be applied to or adapted
for such finality. This work presents some methodology adaptations and/or
applications of both of techniques directed to pore pressure prediction goals. In
order to validate the presented proposals, case studies has been developed, and their
results were considered satisfactory.
|
109 |
[en] THE APPLICATION OF MACHINE LEARNING FRAMEWORK TO IDENTIFY STUDENTS AT RISK OF DEFAULT IN A HIGHER EDUCATION INSTITUTION / [pt] USO DE TÉCNICAS DE MACHINE LEARNING NA PREVISÃO DO RISCO DE INADIMPLÊNCIA DE ALUNOS EM UMA INSTITUIÇÃO DE ENSINO SUPERIOR PRIVADAGIOVANNA NISKIER SAADIA 26 May 2020 (has links)
[pt] Tão expressiva quanto a curva de crescimento do número de matrículas nas
instituições de ensino superior (IES) privadas nos últimos anos é a respectiva curva
da inadimplência, cujo aumento pode ser explicado, principalmente, pelo
aprofundamento da crise econômica no país e pela redução do número de vagas
ofertadas pelo FIES. A inadimplência apresenta-se como um desafio à gestão
financeira das instituições de ensino, uma vez que impacta os seus custos
operacionais e acaba sendo repassada aos alunos sob forma de aumento de
mensalidade. Além disso, a evasão estudantil é também uma das principais
consequências da inadimplência, à medida que alunos com dificuldades financeiras
acabam por abandonar seus cursos, representando para as instituições de ensino não
só uma perda econômica, como também acadêmica e social. As IES, em sua maioria,
não utilizam qualquer tipo de técnica de credit scoring para prever o risco de seus
alunos se tornarem inadimplentes. Nesse sentido, este trabalho apresenta uma
metodologia quantitativa para previsão de risco de inadimplência de alunos ativos.
Baseado em dados históricos de alunos que estavam inadimplentes ou adimplentes,
modelos gerados por algoritmos de machine learning foram estimados e
comparados. Por fim, os resultados obtidos evidenciaram a relação entre a
inadimplência e a variação do valor pago ao longo dos semestres analisados,
quantidade média de disciplinas cursadas, natureza empregatícia ao aluno e
existência de débitos em semestres anteriores. Com a aplicação dos modelos
propostos, as IES seriam capazes de identificar alunos com maior risco de
inadimplência e planejar ações preventivas específicas para este grupo. / [en] As impressive as the growth rate in the number of enrollments in private
higher education institutions in recent years is the increase in the related default
rate, driven by the deepening economic crisis in Brazil and by the reduction of the
number of vacancies offered by the FIES. Default presents itself as a challenge to
the financial management of educational institutions, since it impacts their
operational costs and ends up being passed on to students in the form of an increase
in tuition. In addition, student dropout is also one of the main consequences of
default, since students with economic difficulties end up abandoning their courses.
Most higher education institutions do not use any type of credit scoring analysis to
predict the risk of their students becoming defaulters, failing to understand which
factors cause it, and, therefore, refraining from planning preventive actions.
Therefore, this study presents a quantitative methodology to predict the default risk
of active students. Models generated by machine learning algorithms were analyzed
based on a historical database of students who were in or not in default. The results
showed a relationship between default and economic, academic and social
characteristics of students. Thus, by employing models such as the ones proposed,
higher education institutions should be able to identify those students who are at
higher risk of defaulting and take specific preventive actions to prevent such an
outcome.
|
110 |
[pt] PREVISÃO DE VELOCIDADE DO VENTO UTILIZANDO SINGULAR SPECTRUM ANALYSIS / [en] WIND SPEED PREDICTION USING SINGULAR SPECTRUM ANALYSISLARISSA MORAES DANTAS CAMPOS 14 September 2020 (has links)
[pt] Uma mudança de paradigma no mundo todo foi ocasionada pelo aumento da preocupação quanto ao uso de combustíveis fósseis usados como principal fonte de geração elétrica, a correspondente mudança climática e os danos ambientais crescentes. Nos últimos anos, a energia eólica apresentou um crescimento incessante como alternativa sustentável para a produção de eletricidade, o que pode ser observado a partir do crescimento de sua capacidade instalada mundialmente. O Brasil está entre os dez países que tem as maiores capacidades instaladas, e apresentou 9,42 por cento de geração de energia elétrica advinda da fonte eólica em 2019. No entanto, a aleatoriedade e a intermitência do vento são os maiores desafios na integração dessa fonte no sistema de energia. Diante deste contexto, esta pesquisa propõe a aplicação da técnica Singular Spectrum Analysis (SSA) como método de previsão para uma série de velocidade eólica no Brasil, fazendo uma análise comparativa de modelos SSA considerando diferentes horizontes de previsão e conjunto de treinamento para diferentes dias de previsão, com diferentes tamanhos de série temporal. Deste modo, é comparada a série temporal do ano todo com somente o último mês desta série para prever os últimos sete dias do mês de dezembro. Os resultados dessa aplicação mostram que para a maioria dos dias a utilização do ano todo como conjunto de treinamento obteve melhor desempenho, indicando que o uso da técnica SSA pode ser uma alternativa para séries temporais com uma grande quantidade de dados. / [en] A paradigm shift around the world was caused by increased concern about the use of fossil fuels used as the main source of electricity generation, the corresponding climate change and increasing environmental damage. In recent years, wind energy has shown steady growth as a sustainable alternative for electricity production, which can be seen from the growth of its installed capacity worldwide. Brazil is among the ten countries that have the largest installed capacities, and presented 9.42 percent of electricity generation from the wind source in the last year. However, wind randomness and intermittency are the biggest challenges in integrating this source into the energy system. In this context, this research proposes the application of the Singular Spectrum Analysis (SSA) technique as a forecast method for a series of wind speed in Brazil, making a comparative analysis of SSA models considering different forecast horizons and training set for different days forecast, with different time series sizes. In this way, the time series of the whole year is compared with only the last month of this series to forecast the last seven days of the month of December. The results of this application show that for most days the use of the whole year as a training set obtained better performance, indicating that the use of the SSA technique can be an alternative for time series with a large amount of data.
|
Page generated in 0.0293 seconds