• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 19
  • Tagged with
  • 87
  • 87
  • 73
  • 12
  • 12
  • 12
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

[pt] CABEM TODOS NA ESCOLA PARA TODOS?: ANÁLISE DA INCLUSÃO ESCOLAR E DA LEGISLAÇÃO PARA PESSOAS COM DEFICIÊNCIA / [en] IS SCHOOL FOR EVERYONE FOR EVERYONE?: ANALYSIS OF INCLUSIVE EDUCATION AND LEGISLATION FOR PEOPLE WITH DISABILITIES

FABIANA RIBEIRO BRITO TRINDADE 26 October 2022 (has links)
[pt] Nos últimos anos, o Brasil vivenciou um avanço expressivo nos indicadores da educação inclusiva, com a presença, em 2021, de 1,35 milhão de alunos com deficiência — 2,78% do total de alunos — nas escolas públicas e privadas. Políticas públicas, leis, novas demandas da sociedade e reivindicações dos movimentos sociais ajudam a compreender a evolução das estatísticas da educação inclusiva, mas não nos deixa esquecer que quase 20% das crianças e adolescentes com deficiência, entre 4 a 17 anos, estão fora da escola. Afora as barreiras arquitetônicas ou estruturais, são as barreiras atitudinais as que mais pesam na escolarização de estudantes com alguma deficiência, trazendo, muitas vezes, violências simbólicas de forma cotidiana a esse grupo de alunos. O objetivo deste trabalho é trazer uma reflexão sobre os efeitos nas relações sociais dentro da comunidade escolar e papel da escola, após a promulgação da Lei Brasileira de Inclusão da Pessoa com Deficiência (LBI), em 2015. A escolarização dos alunos com deficiência ainda é marcada por preconceitos e demais barreiras visíveis e invisíveis que, muitas vezes, afetam a autoimagem do indivíduo, ferindo seu status de pessoa, estigmatizando estudantes, trazendo sentimentos como vergonha e privação de direitos. Ao convocar a deficiência como chave de uma análise sociológica, questiona-se o ideário de uma cidadania incondicional que tem no mundo da escola um campo de observação bastante privilegiado. / [en] In recent years, Brazil has experienced significant progress in the indicators of inclusive education, with the participation, in 2021, of 1.35 million students with disabilities - 2.78% of the total number of students - in public and private schools. Public policies, laws, new demands from society, and the claims of social movements help to understand the evolution of inclusive education statistics, but they can not hide that almost 20% of children and adolescents with disabilities, between 4 and 17 years old, are out of school. In addition to architectural and structural barriers, attitudinal barriers are the ones that interfere the most in the schooling of disabled students, often bringing symbolic violence to this group of students. The objective of this work is to reflect on the effects of social relations within the school community and the role of the school, after the Brazilian Law for the Inclusion of Persons with Disabilities (LBI) in 2015. The schooling of students with disabilities is still marked by prejudices and other visible and invisible barriers that often affect the individual s self-image, their status as a person, stigmatizing students, and bringing feelings such as shame and deprivation of rights. Taking disability to sociological analysis, the ideal of unconditional citizenship is questioned from a very privileged point of observation: in the school world.
Read more
82

[en] USING BODY SENSOR NETWORKS AND HUMAN ACTIVITY RECOGNITION CLASSIFIERS TO ENHANCE THE ASSESSMENT OF FORM AND EXECUTION QUALITY IN FUNCTIONAL TRAINING / [pt] UTILIZANDO REDES DE SENSORES CORPORAIS E CLASSIFICADORES DE RECONHECIMENTO DE ATIVIDADE HUMANA PARA APRIMORAR A AVALIAÇÃO DE QUALIDADE DE FORMA E EXECUÇÃO EM TREINAMENTOS FUNCIONAIS

RAFAEL DE PINHO ANDRE 14 December 2020 (has links)
[pt] Dores no pé e joelho estão relacionadas com patologias ortopédicas e lesões nos membros inferiores. Desde a corrida de rua até o treinamento funcional CrossFit, estas dores e lesões estão correlacionadas com a distribuição iregular da pressão plantar e o posicionamento inadequado do joelho durante a prática física de longo prazo, e podem levar a lesões ortopédicas graves se o padrão de movimento não for corrigido. Portanto, o monitoramento da distribuição da pressão plantar do pé e das características espaciais e temporais das irregularidades no posicionamento dos pés e joelhos são de extrema importância para a prevenção de lesões. Este trabalho propõe uma plataforma, composta de uma rede de sensores vestíveis e um classificador de Reconhecimento de Atividade Humana (HAR), para fornecer feedback em tempo real de exercícios funcionais, visando auxiliar educadores físicos a reduzir a probabilidade de lesões durante o treinamento. Realizamos um experimento com 12 voluntários diversos para construir um classificador HAR com aproximadamente de 87 porcento de precisão geral na classificação, e um segundo experimento para validar nosso modelo de avaliação física. Por fim, realizamos uma entrevista semi estruturada para avaliar questões de usabilidade e experiência do usuário da plataforma proposta.Visando uma pesquisa replicável, fornecemos informações completas sobre o hardware e o código fonte do sistema, e disponibilizamos o conjunto de dados do experimento. / [en] Foot and knee pain fave been associated with numerous orthopedic pathologies and injuries of the lower limbs. From street running to CrossFitTM functional training, these common pains and injuries correlate highly with unevenly distributed plantar pressure and knee positioning during long-term physical practice and can lead to severe orthopedic injuries if the movement pattern is not amended. Therefore, the monitoring of foot plantar pressure distribution and the spatial and temporal characteristics of foot and knee positioning abnomalities is of utmost importance for injury prevention. This work proposes a platform, composed af an lot wearable body sensor network and a Human Activity Recognition (HAR), to provide realtime feedback of functional exercises, aiming to enhace physical educators capability to mitigate the probability of injuries during training. We conducted an experiment with 12 diverse volunteers to build a HAR classifier that achieved about 87 percent overall classification accuracy, and a second experiment to validate our physical evaluation model. Finally, we performed a semi-structured interview to evaluate usability and user experience issues regarding the proposed platform. Aiming at a replicable research, we provide full hardware information, system source code and a public domain dataset.
Read more
83

[pt] MODELO SUBSTITUTO PARA FLUXO NÃO SATURADO VIA REGRESSÃO POLINOMIAL EVOLUCIONÁRIA: CALIBRAÇÃO COM O ENSAIO DE INFILTRAÇÃO MONITORADA / [en] SURROGATE MODEL FOR UNSATURATED FLOW THROUGH EVOLUTIONARY POLYNOMIAL REGRESSION: CALIBRATION WITH THE MONITORED INFILTRATION TEST

RUAN GONCALVES DE SOUZA GOMES 26 February 2021 (has links)
[pt] A análise de fluxo de água sob condição transiente não saturada requer o conhecimento das propriedades hidráulicas do solo. Essas relações constitutivas, denominadas curva característica e função de condutividade hidráulica, são descritas através de modelos empíricos que geralmente possuem vários parâmetros que devem ser calibrados com relação a dados coletados. Muitos dos parâmetros nos modelos constitutivos não podem ser medidos diretamente em campo ou laboratório, mas somente podem ser inferidos de forma significativa a partir de dados coletados e da modelagem inversa. Para obter os parâmetros do solo com a análise inversa, um algoritmo de otimização de busca local ou global pode ser aplicado. As otimizações globais são mais capazes de encontrar parâmetros ótimos, no entanto, a solução direta, por meio da modelagem numérica é computacionalmente custosa. Portanto, soluções analíticas (modelo substituto) podem superar essa falha acelerando o processo de otimização. Nesta dissertação, apresentamos a Regressão Polinomial Evolucionária (EPR) como uma ferramenta para desenvolver modelos substitutos do fluxo não saturado. Um rico conjunto de dados de parâmetros hidráulicos do solo é usado para calibrar o nosso modelo, e dados do mundo real são utilizados para validar nossa metodologia. Nossos resultados demonstram que o modelo da EPR prevê com precisão os dados de carga de pressão. As simulações do modelo se mostram concordantes com as simulações do programa Hydrus. / [en] Water flow analyses under transient soil hydraulic conditions require knowledge of the soil hydraulic properties. These constitutive relationships, named soil-water characteristic curve (SWCC) and hydraulic conductivity function (HCF) are described through empirical models which generally have several parameters that must be calibrated against collected data. Many of the parameters in SWCC and HCF models cannot be directly measured in field or laboratory but can only be meaningfully inferred from collected data and inverse modeling. In order to obtain the soil parameters with the inverse process, a local or global optimization algorithm may be applied. Global optimizations are more capable of fiding optimum parameters, however the direct solution through numerical modeling are time consuming. Therefore, analytical solutions (surrogate models) may overcome this shortcomming by accelerating the optimization process. In this work we introduce Evolutionary Polynomial Regression (EPR) as a tool to develop surrogate models of the physically-based unsaturated flow. A rich dataset of soil hydraulic parameters is used to calibrate our surrogate model, and real-world data are then utilized to validate our methodology. Our results demonstrate that the EPR model predicts accurately the observed pressure head data. The model simulations are shown to be in good agreement with the Hydrus software package.
Read more
84

[pt] SINTETIZAÇÃO DE IMAGENS ÓTICAS MULTIESPECTRAIS A PARTIR DE DADOS SAR/ÓTICOS USANDO REDES GENERATIVAS ADVERSARIAS CONDICIONAIS / [en] SYNTHESIS OF MULTISPECTRAL OPTICAL IMAGES FROM SAR/OPTICAL MULTITEMPORAL DATA USING CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS

JOSE DAVID BERMUDEZ CASTRO 08 April 2021 (has links)
[pt] Imagens óticas são frequentemente afetadas pela presença de nuvens. Com o objetivo de reduzir esses efeitos, diferentes técnicas de reconstrução foram propostas nos últimos anos. Uma alternativa comum é explorar dados de sensores ativos, como Radar de Abertura Sintética (SAR), dado que são pouco dependentes das condições atmosféricas e da iluminação solar. Por outro lado, as imagens SAR são mais difíceis de interpretar do que as imagens óticas, exigindo um tratamento específico. Recentemente, as Redes Adversárias Generativas Condicionais (cGANs - Conditional Generative Adversarial Networks) têm sido amplamente utilizadas para aprender funções de mapeamento que relaciona dados de diferentes domínios. Este trabalho, propõe um método baseado em cGANSs para sintetizar dados óticos a partir de dados de outras fontes, incluindo dados de múltiplos sensores, dados multitemporais e dados em múltiplas resoluções. A hipótese desse trabalho é que a qualidade das imagens geradas se beneficia do número de dados utilizados como variáveis condicionantes para a cGAN. A solução proposta foi avaliada em duas bases de dados. Foram utilizadas como variáveis condicionantes dados corregistrados SAR, de uma ou duas datas produzidos pelo sensor Sentinel 1, e dados óticos de sensores da série Sentinel 2 e LANDSAT, respectivamente. Os resultados coletados dos experimentos demonstraram que a solução proposta é capaz de sintetizar dados óticos realistas. A qualidade das imagens sintetizadas foi medida de duas formas: primeiramente, com base na acurácia da classificação das imagens geradas e, em segundo lugar, medindo-se a similaridade espectral das imagens sintetizadas com imagens de referência. Os experimentos confirmaram a hipótese de que o método proposto tende a produzir melhores resultados à medida que se exploram mais variáveis condicionantes para a cGAN. / [en] Optical images from Earth Observation are often affected by the presence of clouds. In order to reduce these effects, different reconstruction techniques have been proposed in recent years. A common alternative is to explore data from active sensors, such as Synthetic Aperture Radar (SAR), as they are nearly independent on atmospheric conditions and solar lighting. On the other hand, SAR images are more difficult to interpret than optical images, requiring specific treatment. Recently, conditional Generative Adversarial Networks (cGANs) have been widely used to learn mapping functions that relate data of different domains. This work proposes a method based on cGANs to synthesize optical data from data of other sources: data of multiple sensors, multitemporal data and data at multiple resolutions. The working hypothesis is that the quality of the generated images benefits from the number of data used as conditioning variables for cGAN. The proposed solution was evaluated in two databases. As conditioning data we used co-registered data from SAR at one or two dates produced by the Sentinel 1 sensor, and optical images produced by the Sentinel 2 and LANDSAT satellite series, respectively. The experimental results demonstrated that the proposed solution is able to synthesize realistic optical data. The quality of the synthesized images was measured in two ways: firstly, based on the classification accuracy of the generated images and, secondly, on the spectral similarity of the synthesized images with reference images. The experiments confirmed the hypothesis that the proposed method tends to produce better results as we explore more conditioning data for the cGANs.
Read more
85

[pt] EXTRAÇÃO DE INFORMAÇÕES DE SENTENÇAS JUDICIAIS EM PORTUGUÊS / [en] INFORMATION EXTRACTION FROM LEGAL OPINIONS IN BRAZILIAN PORTUGUESE

GUSTAVO MARTINS CAMPOS COELHO 03 October 2022 (has links)
[pt] A Extração de Informação é uma tarefa importante no domínio jurídico. Embora a presença de dados estruturados seja escassa, dados não estruturados na forma de documentos jurídicos, como sentenças, estão amplamente disponíveis. Se processados adequadamente, tais documentos podem fornecer informações valiosas sobre processos judiciais anteriores, permitindo uma melhor avaliação por profissionais do direito e apoiando aplicativos baseados em dados. Este estudo aborda a Extração de Informação no domínio jurídico, extraindo valor de sentenças relacionados a reclamações de consumidores. Mais especificamente, a extração de cláusulas categóricas é abordada através de classificação, onde seis modelos baseados em diferentes estruturas são analisados. Complementarmente, a extração de valores monetários relacionados a indenizações por danos morais é abordada por um modelo de Reconhecimento de Entidade Nomeada. Para avaliação, um conjunto de dados foi criado, contendo 964 sentenças anotados manualmente (escritas em português) emitidas por juízes de primeira instância. Os resultados mostram uma média de aproximadamente 97 por cento de acurácia na extração de cláusulas categóricas, e 98,9 por cento na aplicação de NER para a extração de indenizações por danos morais. / [en] Information Extraction is an important task in the legal domain. While the presence of structured and machine-processable data is scarce, unstructured data in the form of legal documents, such as legal opinions, is largely available. If properly processed, such documents can provide valuable information with regards to past lawsuits, allowing better assessment by legal professionals and supporting data-driven applications. This study addresses Information Extraction in the legal domain by extracting value from legal opinions related to consumer complaints. More specifically, the extraction of categorical provisions is addressed by classification, where six models based on different frameworks are analyzed. Moreover, the extraction of monetary values related to moral damage compensations is addressed by a Named Entity Recognition (NER) model. For evaluation, a dataset was constructed, containing 964 manually annotated legal opinions (written in Brazilian Portuguese) enacted by lower court judges. The results show an average of approximately 97 percent of accuracy when extracting categorical provisions, and 98.9 percent when applying NER for the extraction of moral damage compensations.
Read more
86

[en] CONTINUOUS SPEECH RECOGNITION BY COMBINING MFCC AND PNCC ATTRIBUTES WITH SS, WD, MAP AND FRN METHODS OF ROBUSTNESS / [pt] RECONHECIMENTO DE VOZ CONTINUA COMBINANDO OS ATRIBUTOS MFCC E PNCC COM METODOS DE ROBUSTEZ SS, WD, MAP E FRN

CHRISTIAN DAYAN ARCOS GORDILLO 09 June 2014 (has links)
[pt] O crescente interesse por imitar o modelo que rege o processo cotidiano de comunicação humana através de maquinas tem se convertido em uma das áreas do conhecimento mais pesquisadas e de grande importância nas ultimas décadas. Esta área da tecnologia, conhecida como reconhecimento de voz, em como principal desafio desenvolver sistemas robustos que diminuam o ruído aditivo dos ambientes de onde o sinal de voz é adquirido, antes de que se esse sinal alimente os reconhecedores de voz. Por esta razão, este trabalho apresenta quatro formas diferentes de melhorar o desempenho do reconhecimento de voz contınua na presença de ruído aditivo, a saber: Wavelet Denoising e Subtração Espectral, para realce de fala e Mapeamento de Histogramas e Filtro com Redes Neurais, para compensação de atributos. Esses métodos são aplicados isoladamente e simultaneamente, afim de minimizar os desajustes causados pela inserção de ruído no sinal de voz. Alem dos métodos de robustez propostos, e devido ao fato de que os e conhecedores de voz dependem basicamente dos atributos de voz utilizados, examinam-se dois algoritmos de extração de atributos, MFCC e PNCC, através dos quais se representa o sinal de voz como uma sequência de vetores que contêm informação espectral de curtos períodos de tempo. Os métodos considerados são avaliados através de experimentos usando os software HTK e Matlab, e as bases de dados TIMIT (de vozes) e NOISEX-92 (de ruído). Finalmente, para obter os resultados experimentais, realizam-se dois tipos de testes. No primeiro caso, é avaliado um sistema de referência baseado unicamente em atributos MFCC e PNCC, mostrando como o sinal é fortemente degradado quando as razões sinal-ruıdo são menores. No segundo caso, o sistema de referência é combinado com os métodos de robustez aqui propostos, analisando-se comparativamente os resultados dos métodos quando agem isolada e simultaneamente. Constata-se que a mistura simultânea dos métodos nem sempre é mais atraente. Porem, em geral o melhor resultado é obtido combinando-se MAP com atributos PNCC. / [en] The increasing interest in imitating the model that controls the daily process of human communication trough machines has become one of the most researched areas of knowledge and of great importance in recent decades. This technological area known as voice recognition has as a main challenge to develop robust systems that reduce the noisy additive environment where the signal voice was acquired. For this reason, this work presents four different ways to improve the performance of continuous speech recognition in presence of additive noise, known as Wavelet Denoising and Spectral Subtraction for enhancement of voice, and Mapping of Histograms and Filter with Neural Networks to compensate for attributes. These methods are applied separately and simultaneously two by two, in order to minimize the imbalances caused by the inclusion of noise in voice signal. In addition to the proposed methods of robustness and due to the fact that voice recognizers depend mainly on the attributes voice used, two algorithms are examined for extracting attributes, MFCC, and PNCC, through which represents the voice signal as a sequence of vectors that contain spectral information for short periods of time. The considered methods are evaluated by experiments using the HTK and Matlab software, and databases of TIMIT (voice) and Noisex-92 (noise). Finally, for the experimental results, two types of tests were carried out. In the first case a reference system was assessed based on MFCC and PNCC attributes, only showing how the signal degrades strongly when signal-noise ratios are higher. In the second case, the reference system is combined with robustness methods proposed here, comparatively analyzing the results of the methods when they act alone and simultaneously. It is noted that simultaneous mix of methods is not always more attractive. However, in general, the best result is achieved by the combination of MAP with PNCC attributes.
Read more
87

[pt] DESENVOLVIMENTO DE MODELOS PARA PREVISÃO DE QUALIDADE DE SISTEMAS DE RECONHECIMENTO DE VOZ / [en] DEVELOPMENT OF PREDICTION MODELS FOR THE QUALITY OF SPOKEN DIALOGUE SYSTEMS

BERNARDO LINS DE ALBUQUERQUE COMPAGNONI 12 November 2021 (has links)
[pt] Spoken Dialogue Systems (SDS s) são sistemas baseados em computadores desenvolvidos para fornecerem informações e realizar tarefas utilizando o diálogo como forma de interação. Eles são capazes de reconhecimento de voz, interpretação, gerenciamento de diálogo e são capazes de ter uma voz como saída de dados, tentando reproduzir uma interação natural falada entre um usuário humano e um sistema. SDS s provém diferentes serviços, todos através de linguagem falada com um sistema. Mesmo com todo o desenvolvimento nesta área, há escassez de informações sobre como avaliar a qualidade de tais sistemas com o propósito de otimização do mesmo. Com dois destes sistemas, BoRIS e INSPIRE, usados para reservas de restaurantes e gerenciamento de casas inteligentes, diversos experimentos foram conduzidos no passado, onde tais sistemas foram utilizados para resolver tarefas específicas. Os participantes avaliaram a qualidade do sistema em uma série de questões. Além disso, todas as interações foram gravadas e anotadas por um especialista.O desenvolvimento de métodos para avaliação de performance é um tópico aberto de pesquisa na área de SDS s. Seguindo a idéia do modelo PARADISE (PARAdigm for DIalogue System Evaluation – desenvolvido pro Walker e colaboradores na AT&T em 1998), diversos experimentos foram conduzidos para desenvolver modelos de previsão de performance de sistemas de reconhecimento de voz e linguagem falada. O objetivo desta dissertação de mestrado é desenvolver modelos que permitam a previsão de dimensões de qualidade percebidas por um usuário humano, baseado em parâmetros instrumentalmente mensuráveis utilizando dados coletados nos experimentos realizados com os sistemas BoRIS e INSPIRE , dois sistemas de reconhecimento de voz (o primeiro para busca de restaurantes e o segundo para Smart Homes). Diferentes algoritmos serão utilizados para análise (Regressão linear, Árvores de Regressão, Árvores de Classificação e Redes Neurais) e para cada um dos algoritmos, uma ferramenta diferente será programada em MATLAB, para poder servir de base para análise de experimentos futuros, sendo facilmente modificado para sistemas e parâmetros novos em estudos subsequentes.A idéia principal é desenvolver ferramentas que possam ajudar na otimização de um SDS sem o envolvimento direto de um usuário humano ou servir de ferramenta para estudos futuros na área. / [en] Spoken Dialogue Systems (SDS s) are computer-based systems developed to provide information and carry out tasks using speech as the interaction mode. They are capable of speech recognition, interpretation, management of dialogue and have speech output capabilities, trying to reproduce a more or less natural spoken interaction between a human user and the system. SDS s provide several different services, all through spoken language. Even with all this development, there is scarcity of information on ways to assess and evaluate the quality of such systems with the purpose of optimization. With two of these SDS s ,BoRIS and INSPIRE, (used for Restaurant Booking Services and Smart Home Systems), extensive experiments were conducted in the past, where the systems were used to resolve specific tasks. The evaluators rated the quality of the system on a multitude of scales. In addition to that, the interactions were recorded and annotated by an expert. The development of methods for performance evaluation is an open research issue in this area of SDS s. Following the idea of the PARADISE model (PARAdigm for DIalogue System Evaluation model, the most well-known model for this purpose (developed by Walker and co-workers at AT&T in 1998), several experiments were conducted to develop predictive models of spoken dialogue performance. The objective of this dissertation is to develop and assess models which allow the prediction of quality dimensions as perceived by the human user, based on instrumentally measurable variables using all the collected data from the BoRIS and INSPIRE systems. Different types of algorithms will be compared to their prediction performance and to how generic they are. Four different approaches will be used for these analyses: Linear regression, Regression Trees, Classification Trees and Neural Networks. For each of these methods, a different tool will be programmed using MATLAB, that can carry out all experiments from this work and be easily modified for new experiments with data from new systems or new variables on future studies. All the used MATLAB programs will be made available on the attached CD with an operation manual for future users as well as a guide to modify the existing programs to work on new data. The main idea is to develop tools that would help on the optimization of a spoken dialogue system without a direct involvement of the human user or serve as tools for future studies in this area.
Read more

Page generated in 0.0608 seconds