• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 15
  • Tagged with
  • 62
  • 62
  • 62
  • 54
  • 17
  • 13
  • 12
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

[pt] MODELAGEM USANDO INTELIGÊNCIA ARTIFICIAL PARA ESTUDAR O PRÉ-TRATAMENTO DE BIOMASSA LIGNOCELULÓSICA / [en] MODELLING USING ARTIFICIAL INTELLIGENCE TO STUDY THE PRETREATMENT OF LIGNOCELLULOSIC BIOMASS

JULIANA LIMA GUERHARD FIDALGO 09 June 2020 (has links)
[pt] Os polissacarídeos constituintes da biomassa lignocelulósica podem ser beneficiados através de processos industriais. Entretanto, para manipulá-los é necessário que a biomassa seja submetida ao processo de pré-tratamento. Esta é uma das etapas mais caras e relevantes para a disposição e aplicação das frações lignocelulósicas. O presente estudo consiste em uma investigação detalhada do processo de pré-tratamento da biomassa lignocelulósica com H2O2, a qual foi realizada através de tecnologias inteligentes que viabilizaram a otimização deste processo. Ferramentas de inteligência artificial revelam-se vantajosas na solução dos gargalos associados aos avanços tecnológicos. Possibilitam a modelagem matemática de um processo com máxima eficiência, otimizando sua produtividade, transformando dados experimentais em informações úteis e demonstrando as infinitas possibilidades das relações das variáveis envolvidas. As variáveis independentes estudadas foram a temperatura (25 – 45 graus Celsius) e a concentração de peróxido de hidrogênio (1.5 – 7.5 porcento m/v). Técnicas analíticas qualitativas (Raman e FTIR) e quantitativa (Método de Klason) foram aplicadas para produzir um banco de dados referente a extração da lignina com H2O2, o qual foi utilizado no desenvolvimento de modelos neurais aplicando Redes Neurais Artificiais (ANN, do inglês Artificial Neural Networks) e Sistema de Inferência Adaptativa Neuro-Difusa (ANFIS, do inglês Adaptive neuro fuzzy inference system). E modelos polinomiais, os quais tiveram seus parâmetros estimados por Algoritmos Genéticos (GA, do inglês Genetic Algorithms). Os modelos desenvolvidos conseguiram predizer: o Teor de Lignina Extraída (porcento) por Espectroscopia Raman, o Teor de Lignina Oxidada (porcento) por FTIR, o Teor de Lignina Residual (porcento) pelo Método de Klason, e por último, dois modelos para a comparação da resposta analítica qualitativa com a resposta analítica quantitativa. Os modelos polinomiais, que tiveram seus parâmetros estimados por GA foram avaliados estatisticamente através da ANOVA e pelo coeficiente de correlação (R2). E os modelos neurais desenvolvidos foram avaliados pelo coeficiente de correlação (R2), número de parâmetros e índices de erro (SSE, MSE e RMSE). Para cada modelo polinomial e neural proposto, quando coerente, superfícies de resposta e curvas de contorno foram plotadas permitindo a identificação da região operacional mais indicada para a realização do pré-tratamento com H2O2. Dentre as estratégias inteligentes propostas, os modelos desenvolvidos com ANN mostraram-se mais eficientes para as predições relacionadas à extração da lignina. / [en] Industrial processes benefit the polysaccharides constituting the lignocellulosic biomass. However to manipulate them it is necessary that the biomass is submitted to the pre-treatment process. This is one of the most expensive and relevant steps for the arrangement and application of lignocellulosic fractions. The present study consists of a detailed investigation of the pretreatment process of lignocellulosic biomass with H2O2, applying intelligent technologies that enabled the optimization of this process. Artificial intelligence tools prove to be advantageous in solving the bottlenecks associated with technological advances. They enable the mathematical modeling of a process with maximum efficiency, optimizing its productivity, transforming experimental data into useful information and demonstrating the infinite possibilities of the relationships of the variables involved. The independent variables studied were the temperature (25-45 Celsius degrees) and the concentration of hydrogen peroxide (1.5 - 7.5 percent m / v). Qualitative analytical techniques (Raman and FTIR) and quantitative (Klason method) were applied to produce a database for the extraction of lignin with H2O2, which was used in the development of neural models applying Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS). And polynomial models, which had their parameters estimated by Genetic Algorithms (GA). The models developed were able to predict: the Extracted Lignin Content (percent) by Raman Spectroscopy, the Oxidized Lignin Content (percent) by FTIR, the Residual Lignin Content (percent) by the Klason Method, and lastly, two models for the comparison of the qualitative analytical response with the quantitative analytical response. The polynomial models, which had their parameters estimated by GA, were statistically evaluated using ANOVA and correlation coefficient (R2) evaluated the polynomial models developed by GA statistically. And the neural models developed were evaluated by the coefficient of correlation (R2), number of parameters and error indexes (SSE, MSE and RMSE). For each proposed polynomial and neural model, when coherent, response surfaces and contour curves were plotted allowing the identification of the most suitable operational region for the pretreatment with H2O2. Among the proposed intelligent strategies, the models developed with ANN proved to be more efficient for the predictions related to lignin extraction.
Read more
32

[pt] ARQUITETURA PROFUNDA PARA EXTRAÇÃO DE CITAÇÕES / [en] DEEP ARCHITECTURE FOR QUOTATION EXTRACTION

LUIS FELIPE MULLER DE OLIVEIRA HENRIQUES 28 July 2017 (has links)
[pt] A Extração e Atribuição de Citações é a tarefa de identificar citações de um texto e associá-las a seus autores. Neste trabalho, apresentamos um sistema de Extração e Atribuição de Citações para a língua portuguesa. A tarefa de Extração e Atribuição de Citações foi abordada anteriormente utilizando diversas técnicas e para uma variedade de linguagens e datasets. Os modelos tradicionais para a tarefa consistem em extrair manualmente um rico conjunto de atributos e usá-los para alimentar um classificador raso. Neste trabalho, ao contrário da abordagem tradicional, evitamos usar atributos projetados à mão, usando técnicas de aprendizagem não supervisionadas e redes neurais profundas para automaticamente aprender atributos relevantes para resolver a tarefa. Ao evitar a criação manual de atributos, nosso modelo de aprendizagem de máquina tornou-se facilmente adaptável a outros domínios e linguagens. Nosso modelo foi treinado e avaliado no corpus GloboQuotes e sua métrica de desempenho F1 é igual a 89.43 por cento. / [en] Quotation Extraction and Attribution is the task of identifying quotations from a given text and associating them to their authors. In this work, we present a Quotation Extraction and Attribution system for the Portuguese language. The Quotation Extraction and Attribution task has been previously approached using various techniques and for a variety of languages and datasets. Traditional models to this task consist of extracting a rich set of hand-designed features and using them to feed a shallow classifier. In this work, unlike the traditional approach, we avoid using hand-designed features using unsupervised learning techniques and deep neural networks to automatically learn relevant features to solve the task. By avoiding design features by hand, our machine learning model became easily adaptable to other languages and domains. Our model is trained and evaluated at the GloboQuotes corpus, and its F1 performance metric is equal to 89.43 percent.
Read more
33

[en] A STUDY ON NEURAL NETWORKS FOR POKER PLAYING AGENTS / [pt] UM ESTUDO EM REDES NEURAIS PARA AGENTES JOGADORES DE PÔQUER

ALEXANDRE MARANGONI COSTA 12 May 2020 (has links)
[pt] A ciência de dados precisa de uma grande quantidade de dados para testar e melhorar soluções. Jogos são largamente usados para abstrair situações da vida real. Rodadas de pôquer são um bom exemplo pois, por não saber as cartas dos oponentes, o jogador analisa um cenário de informação incompleta numa competição de agentes que envolve conhecimento probabilístico, análise de risco e brefe. Isso o diferencia de xadrez, damas e jogos de conhecimento perfeito e algoritmos de busca em forca bruta sobre o espaço de soluções. Usar o pôquer como um caso de teste possibilita a análise de diferentes abordagens usadas na vida real, porém num cenário mais controlado. Esta dissertação propõe um arcabouço de funcionalidades para criar e testar diferentes algorítimos de Deep Learning, que podem jogar pôquer entre sí, aprender com o histórico e maximizar suas recompensas. / [en] Data science research needs real examples to test and improve solutions. Games are widely used to mimic those real-world examples. Poker rounds are a good example of imperfect information state with competing agents dealing with probabilistic knowledge, risk assessment, and possible deception, unlike chess, checkers and perfect information brute-force search style of games. By using poker as a test-bed we can analyze different approaches used in real-world examples, in a more controlled environment, which should give great insights on how to tackle those real-world scenarios. We propose a framework to build and test different neural networks that can play against each other, learn from a supervised experience and maximize its rewards.
Read more
34

[en] IDENTIFICATION OF PROTEIN SUBCELLULAR LOCALIZATION BY DEEP LEARNING TECHNIQUES / [pt] IDENTIFICAÇÃO DA LOCALIZAÇÃO SUBCELULAR DE PROTEÍNAS POR MEIO DE TÉCNICAS DE DEEP LEARNING

ROBERTO BANDEIRA DE MELLO MORAIS DA SILVA 21 May 2020 (has links)
[pt] As proteínas são macromoléculas biológicas compostas por cadeias de aminoácidos, presentes em praticamente todos os processos celulares, sendo essenciais para o correto funcionamento do organismo humano. Existem diversos estudos em torno do proteoma humano a fim de se identificar quais são as funções de cada proteína nas diferentes células, tecidos e órgãos do corpo humano. A classificação destas proteínas em diferentes formas, como por exemplo a localização subcelular, é importante para diversas aplicações da biomedicina. Com o avanço das tecnologias para obtenção de imagens das proteínas, tem-se que hoje estas são geradas em grande volume e mais rapidamente do que é possível classificá-las manualmente, o que torna importante o desenvolvimento de um classificador automático capaz de realizar esta classificação de maneira eficaz. Dessa forma, esta dissertação buscou desenvolver algoritmos capazes de realizar a classificação automática de padrões mistos de localização subcelular de proteínas, por meio do uso de técnicas de Deep Learning. Inicialmente, fez-se uma revisão da literatura em torno de redes neurais, Deep Learning e SVMs, e utilizou-se o banco de dados, publicamente disponíve, de imagens de células do Human Protein Atlas, para treinamento dos algoritmos de aprendizagem supervisionada. Diversos modelos foram desenvolvidos e avaliados, visando identificar aquele com melhor desempenho na tarefa de classificação. Ao longo do trabalho foram desenvolvidas redes neurais artificiais convolucionais de topologia LeNet, ResNet e um modelo híbrido ResNet-SVM, tendo sido treinadas ao todo 81 redes neurais diferentes, a fim de se identificar o melhor conjunto de hiper-parâmetros. As análises efetuadas permitiram concluir que a rede de melhor desempenho foi uma variante da topologia ResNet, que obteve em suas métricas de desempenho uma acurácia de 0,94 e uma pontuação F1 de 0,44 ao se avaliar o comportamento da rede frente ao conjunto de teste. Os resultados obtidos pela diferentes topologias analisadas foram detalhadamente avaliados e, com base nos resultados alcançados, foram sugeridos trabalhos futuros baseados em possíveis melhorias para as redes de melhor desempenho. / [en] Proteins are biological macromolecules composed of aminoacid chains, part of practically all cellular processes, being essential for the correct functioning of the human organism. There are many studies around the human protein aiming to identify the proteins’ functions in different cells, tissues and organs in the human body. The protein classification in many forms, such as the subcellular localization, is important for many biomedical applications. With the advance of protein image obtention technology, today these images are generated in large scale and faster than it is possible to manually classify them, which makes crucial the development of a system capable of classifying these images automatically and accurately. In that matter, this dissertation aimed to develop algorithms capable of automatically classifying proteins in mixed patterns of subcellular localization with the use of Deep Learning techniques. Initially, a literature review on neural networks, Deep Learning and SVMs, and a publicly available image database from the Human Protein Atlas was used to train the supervised learning algorithms. Many models were developed seeking the best performance in the classification task. Throughout this work, convolutional artificial neural networks of topologies LeNet, ResNet and a hybrid ResNet-SVM model were developed, with a total of 81 different neural networks trained, aiming to identify the best hyper-parameters. The analysis allowed the conclusion that the network with best performance was a ResNet variation, which obtained in its performance metrics an accuracy of 0.94 and an F1 score of 0.44 when evaluated against the test data. The obtained results of these topologies were detailedly evaluated and, based on the measured results, future studies were suggested based on possible improvements for the neural networks that had the best performances.
Read more
35

[en] INTTELIGENT SYSTEM TO SUPPORT BASKETBALL COACHES / [pt] SISTEMA INTELIGENTE DE APOIO A TÉCNICOS DE BASQUETE

EDUARDO VERAS ARGENTO 12 September 2024 (has links)
[pt] Em meio ao avanço expressivo da tecnologia e às evoluções contínuas observadas no ramo de inteligência artificial, esta última se mostrou ter potencial para ser aplicada a diferentes setores da sociedade. No contexto de extrema competitividade e relevância crescente nos esportes mais famosos ao redor do mundo, o basquete se apresenta como um esporte interessante para a aplicação de mecanismos de apoio à decisão capazes de aumentar a eficácia e consistência de vitórias dos times nos campeonatos. Diante desse contexto, este estudo propõe o desenvolvimento de sistemas de apoio à decisão baseados em modelos de redes neurais e k-Nearest Neighbors (kNNs). O objetivo é avaliar, para cada substituição durante um jogo de basquete, qual grupo de jogadores em quadra, conhecido por quinteto, apresenta mais chances de ter uma maior vantagem sobre o adversário. Para tal, foram treinados modelos para classificar, ao final de uma sequência de posses de bola, a equipe que conseguiria vantagem, e prever a magnitude dessa vantagem. A base de dados foi obtida de partidas do Novo Basquete Brasil (NBB), envolvendo estatísticas de jogadores, detalhes de jogo e contextos diversos. O modelo apresentou uma acurácia de 76,99 por cento das posses de bola nas projeções de vantagem entre duas equipes em quadra, demonstrando o potencial da utilização de métodos de inteligência computacional na tomada de decisões em esportes profissionais. Por fim, o trabalho ressalta a importância do uso de tais ferramentas em complemento à experiência humana, instigando pesquisas futuras para o desenvolvimento de modelos ainda mais sofisticados e eficazes na tomada de decisões no âmbito esportivo. / [en] In light of the recent significant growth in technological capabilities andthe observed advancements in the field of computational intelligence, the latterhas demonstrated potential for application in various sectors of society. Inthe context of extreme competitiveness and increasing relevance in the mostfamous sports around the world, basketball presents itself as an interestingsport for the application of decision-support mechanisms capable of enhancingthe efficacy and consistency of team victories in championships. In this context,this study proposes the development of decision-support systems, such asneural networks and k-Nearest Neighbors (kNNs). The goal is to evaluate, foreach substitution during a match, which group of players in the field, knownas lineup, presents the most probability to be superior to their opponent. Forthis, models were trained to predict, during a sequence of possessions, theteam that would have advantage and the magnitude of this advantage. Thedatabase was obtained from Novo Basquete Brasil (NBB) matches, involvingplayers statistics, match details and different contexts.. The model achieved anaccuracy of 76,99 percent in projections of superiority between the playing lineups,demonstrating the potential of using computational intelligence methods indecision-making applied to professional sports. Finally, the study highlightsthe importance of using such tools in conjunction with human experience,encouraging future research for the development of even more sophisticatedand effective models for decision-making in the sports field.
Read more
36

[en] DESIGN OF ORGANIC LIGHT-EMITTING DIODES SUPPORTED BY COMPUTACIONAL INTELLIGENCE TECHNIQUES / [pt] PROJETO DE DIODOS ORGÂNICOS EMISSORES DE LUZ COM O AUXÍLIO DE TÉCNICAS DA INTELIGÊNCIA COMPUTACIONAL

CARLOS AUGUSTO FEDERICO DE FARIA ROCHA COSTA 10 September 2018 (has links)
[pt] Esta dissertação trata da investigação, simulação e otimização da estrutura de Diodos Orgânicos Emissores de Luz Multicamadas (ML-OLEDs) através da utilização de técnicas da Inteligência Computacional. Além disso, um desses métodos, chamado Otimização por Colônia de Formigas (ACO), foi implementado com base em um modelo proposto na literatura e aplicado pela primeira vez na otimização de diodos orgânicos. OLEDs são dispositivos optoeletrônicos nanométricos fabricados a partir de materiais semicondutores orgânicos. Ao contrário das tecnologias tradicionais, eles conjugam elevada luminescência e baixo consumo energético. Na fabricação de um OLED, o número configurações possíveis é quase ilimitado, em função da quantidade de parâmetros que se pode variar. Isso faz com que determinação da arquitetura ótima torne-se uma tarefa não trivial. Para simular os OLEDs foram empregados dois modelos distintos de simulação. Assim, as Redes Neurais Artificiais (RNA) foram empregadas com o objetivo de emular um dos simuladores e acelerar o cálculo da densidade de corrente. Os Algoritmos Genéticos (AG) foram aplicados na determinação dos valores ótimos de espessura das camadas, mobilidades dos portadores de carga e concentração dos materiais orgânicos em OLEDs com duas camadas, enquanto o ACO foi aplicado para encontrar os valores de concentração em OLEDs com duas e cinco camadas, constituindo assim três estudos de caso. Os resultados encontrados foram promissores, sobretudo no caso das espessuras, onde houve uma confirmação experimental do dispositivo com duas camadas. / [en] This dissertation deals with the research, simulation and optimization of the structure of Multilayer Organic Light Emitting Diodes (ML-OLEDs) by using Computational Intelligence techniques. In addition, one of these methods, called Ant Colony Optimization (ACO), was implemented based on a model proposed in the literature and applied for the first time in the optimization of organic diodes. OLEDs are nanometric optoelectronic devices fabricated from organic semiconducting materials. Unlike traditional technologies, they combine high luminance and low power consumption. In the manufacturing of an OLED, the number of possible configurations is almost unlimited due to the number of parameters that can modified. Because of this the determination of the optimal architecture becomes a non-trivial task. Two different simulation models were used to simulate the OLEDs. Thus, the Artificial Neural Networks (ANN) were employed in order to work as the proxy of the commercial simulator and to accelerate the calculation of the current density. The Genetic Algorithms (GA) were applied to determine the optimal values of thickness of the layers, the charge carrier mobility and the concentration of the organic materials in OLEDs with two layers, while the ACO was applied to find the values of concentration in OLEDs with two and five layers, thus establishing three case studies. The employed strategy has proved to be promising, since it has show good results for two case studies, especially for the optimization of the thickness, where there was an experimental confirmation of the bilayer device.
Read more
37

[en] MULTILAYER PERCEPTRON FOR CLASSIFYING POLYMERS FROM TENSILE TEST DATA / [pt] PERCEPTRON DE MÚLTIPLAS CAMADAS PARA A CLASSIFICAÇÃO DE POLÍMEROS A PARTIR DE DADOS DE ENSAIOS DE TRAÇÃO

HENRIQUE MONTEIRO DE ABREU 03 September 2024 (has links)
[pt] O ensaio de tração é o ensaio mecânico mais aplicado para a obtenção das propriedades mecânicas de polímeros. Por meio de um ensaio de tração é obtida a curva tensão-deformação, e é a partir desta curva que são obtidas propriedades mecânicas tais como o módulo de elasticidade, a tenacidade e a resiliência do material, as quais podem ser utilizadas na identificação de comportamentos mecânicos equivalentes em materiais poliméricos, seja para a diferenciação de resíduos plásticos para a reciclagem ou para a classificação de um material plástico reciclado quanto ao teor de um determinado polímero em sua composição. Porém, a obtenção das propriedades mecânicas a partir da curva tensão-deformação envolve cálculos e ajustes nos intervalos da curva em que essas propriedades são determinadas, tornando a obtenção das propriedades mecânicas um processo complexo sem a utilização de programas computacionais especializados. A partir da compreensão do padrão de comportamento da curva tensão-deformação de um material, algoritmos de aprendizagem de máquina (AM) podem ser ferramentas eficientes para automatizar a classificação de diferentes tipos de materiais poliméricos. Com o objetivo de verificar a acurácia de um algoritmo de AM na classificação de três tipos de polímeros, foram realizados ensaios de tração em corpos de prova de polietileno de alta densidade (PEAD), polipropileno (PP) e policloreto de vinila (PVC). O conjunto de dados obtido a partir das curvas tensão-deformação foi utilizado no treinamento de uma rede neural artificial perceptron de múltiplas camadas (PMC). Com uma acurácia de 0,9261 para o conjunto de teste, o modelo obtido a partir da rede PMC foi capaz de classificar os polímeros com base nos dados da curva tensão-deformação, indicando a possibilidade do uso de modelos de AM para automatizar a classificação de materiais poliméricos a partir de dados de ensaios de tração. / [en] The tensile test is the most applied mechanical test to obtain the mechanical properties of polymers, which can be used in polymeric materials classification. Through a tensile test is obtained the stress-strain curve, is from which mechanical properties such as the modulus of elasticity, tenacity, and resilience of the material are obtained, which can be used to identify equivalent mechanical behaviors in polymeric materials, whether for the distinguishing plastic waste for recycling or for classifying recycled plastic material according to the content of a polymer type in its composition. However, obtaining mechanical properties from the stress-strain curve involves calculations and adjustments in the intervals of the curve in which these properties are determined, turning it into a complex process without the use of specialized software. By understanding the behavior pattern of a material’s stress-strain curve, machine learning (ML) algorithms can be efficient tools to automate the classification of different types of polymeric materials. To verify the accuracy of an ML algorithm in classifying three types of polymers, tensile tests were performed on specimens made of high-density polyethylene (HDPE), polypropylene (PP), and polyvinyl chloride (PVC). The dataset obtained from the stress-strain curves was used in the training of a multilayer perceptron (MLP) neural network. With an accuracy of 0.9261 for the test set, the model obtained from the MLP neural network was able to classify the polymers based on the stress-strain curve data, thus indicating the possibility of using an ML algorithm to automate the classification of polymeric materials based on tensile test data.
Read more
38

[pt] MODELAGEM DE OBJETOS GEOLÓGICOS: IA PARA DETECÇÃO AUTOMÁTICA DE FALHAS E GERAÇÃO DE MALHAS DE QUADRILÁTEROS / [en] MODELING OF GEOBODIES: AI FOR SEISMIC FAULT DETECTION AND ALL-QUADRILATERAL MESH GENERATION

AXELLE DANY JULIETTE POCHET 14 December 2018 (has links)
[pt] A exploração segura de reservatórios de petróleo necessita uma boa modelagem numérica dos objetos geológicos da sub superfície, que inclui entre outras etapas: interpretação sísmica e geração de malha. Esta tese apresenta um estudo nessas duas áreas. O primeiro estudo é uma contribuição para interpretação de dados sísmicos, que se baseia na detecção automática de falhas sísmicas usando redes neurais profundas. Em particular, usamos Redes Neurais Convolucionais (RNCs) diretamente sobre mapas de amplitude sísmica, com a particularidade de usar dados sintéticos para treinar a rede com o objetivo final de classificar dados reais. Num segundo estudo, propomos um novo algoritmo para geração de malhas bidimensionais de quadrilaterais para estudos geomecânicos, baseado numa abordagem inovadora do método de quadtree: definimos novos padrões de subdivisão para adaptar a malha de maneira eficiente a qualquer geometria de entrada. As malhas obtidas podem ser usadas para simulações com o Método de Elementos Finitos (MEF). / [en] Safe oil exploration requires good numerical modeling of the subsurface geobodies, which includes among other steps: seismic interpretation and mesh generation. This thesis presents a study in these two areas. The first study is a contribution to data interpretation, examining the possibilities of automatic seismic fault detection using deep learning methods. In particular, we use Convolutional Neural Networks (CNNs) on seismic amplitude maps, with the particularity to use synthetic data for training with the goal to classify real data. In the second study, we propose a new two-dimensional all-quadrilateral meshing algorithm for geomechanical domains, based on an innovative quadtree approach: we define new subdivision patterns to efficiently adapt the mesh to any input geometry. The resulting mesh is suited for Finite Element Method (FEM) simulations.
Read more
39

[pt] DESENVOLVIMENTO DE PIV ULTRA PRECISO PARA BAIXOS GRADIENTES USANDO ABORDAGEM HÍBRIDA DE CORRELAÇÃO CRUZADA E CASCATA DE REDE NEURAIS CONVOLUCIONAIS / [en] DEVELOPMENT OF ULTRA PRECISE PIV FOR LOW GRADIENTS USING HYBRID CROSS-CORRELATION AND CASCADING NEURAL NETWORK CONVOLUTIONAL APPROACH

CARLOS EDUARDO RODRIGUES CORREIA 31 January 2022 (has links)
[pt] Ao longo da história a engenharia de fluidos vem se mostrado como uma das áreas mais importantes da engenharia devido ao seu impacto nas áreas de transporte, energia e militar. A medição de campos de velocidade, por sua vez, é muito importante para estudos nas áreas de aerodinâmica e hidrodinâmica. As técnicas de medição de campo de velocidade em sua maioria são técnicas ópticas, se destacando a técnica de Particle Image Velocimetry (PIV). Por outro lado, nos últimos anos importantes avanços na área de visão computacional, baseados em redes neurais convolucionais, se mostram promissores para a melhoria do processamento das técnicas ópticas. Nesta dissertação, foi utilizada uma abordagem híbrida entre correlação cruzada e cascata de redes neurais convolucionais, para desenvolver uma nova técnica de PIV. O projeto se baseou nos últimos trabalhos de PIV com redes neurais artificiais para desenvolver a arquitetura das redes e sua forma de treinamento. Diversos formatos de cascata de redes neurais foram testados até se chegar a um formato que permitiu reduzir o erro em uma ordem de grandeza para escoamento uniforme. Além do desenvolvimento da cascata para escoamento uniforme, gerou-se conhecimento para fazer cascatas para outros tipos de escoamentos. / [en] Throughout history, fluid engineering is one of the most important areas of engineering due to its impact in the areas of transportation, energy and the military. The measurement of velocity fields is important for studies in aerodynamics and hydrodynamics. The techniques for measuring the velocity field are mostly optical techniques, with emphasis on the PIV technique. On the other hand, in recent years, important advances in computer vision, based on convolutional neural networks, have shown promise for improving the processing of optical techniques. In this work, a hybrid approach between cross-correlation and cascade of convolutional neural networks was used to develop a new PIV technique. The project was based on the latest work of PIV with an artificial neural network to develop the architecture of the networks and their form of training. Several cascade formats of neural networks were tested until they reached a format that allowed the error to be reduced by an order of magnitude for uniform flow. In addition to the development of the cascade for uniform flow, knowledge was generated to make cascades for other types of flows.
Read more
40

[pt] ESTIMAÇÃO DA IMPORTÂNCIA DE ATRIBUTOS COM BASE EM MECANISMO DE ATENÇÃO PARA ATRIBUTOS SÍSMICOS / [en] FEATURE IM PORTANCE ESTIMATION BASED IN ATTENTION MECHANISM FOR SEISMIC ATTRIBUTES

HUGO FABIANO ALVES CUNHA 20 March 2025 (has links)
[pt] A reflexão sísmica é o método geofísico mais empregado na indústria de petróleo e gás para estudar as camadas do subsolo. Com base nos padrões de reflexão das ondas sísmicas, os geocientistas podem inferir a estrutura e a composição das camadas geológicas abaixo da superfície, identificando potenciais reservatórios de petróleo e gás. No entanto, a interpretação dessas informações é desafiadora devido à ambiguidade inerentes dos dados, ou seja, eventos distintos podem ter respostas sísmicas similares. Com a intenção de direcionar e auxiliar esse processo, especialistas frequentemente empregam um grande conjunto de atributos sísmicos. No entanto, o uso de mais informação, em um contexto de aprendizado de máquina, não garante melhoria nos resultados e, em alguns casos, muita das features podem não ser aproveitadas pelo modelo. Sendo assim, a seleção de quais features apresentam maior relevância torna-se essencial. Contudo, uma seleção manual entre centenas de atributos pode apresentar um desafio exponencial. Este trabalho propõe uma abordagem que incorpora o uso de uma camada de atenção customizada para lidar com múltiplas features em conjunto a um modelo Long Short Term Memory (LSTM). Essa abordagem visa ponderar automaticamente os atributos sísmicos, pré-selecionados por especialistas da área, para avaliar quais são aqueles que apresentam para o modelo uma maior importância no processo de detecção de gás natural. Para avaliar a metodologia foram empregados levantamentos sísmicos 2D e 3D onshore e aplicado a técnica de K-fold. Para os resultados de forma quantitativa, foi avaliado a métrica F1-score atingindo uma melhora de até 13,94 por cento. / [en] Seismic reflection is the most widely used geophysical method in the oil and gas industry to study subsurface layers. Based on the reflection patterns of seismic waves, geoscientists can infer the structure and composition of geo logical layers beneath the surface, identifying potential oil and gas reservoirs. However, interpreting this information is challenging due to the inherent ambi guity of the data, meaning distinct events can have similar seismic responses. In order to guide and assist this process, experts often employ a large set of seismic attributes. However, the use of more information in a machine learning context does not guarantee improvement in results, and in some cases, many of the features may not be utilized by the model. Therefore, selecting which features are most relevant becomes essential. However, manual selection among hundreds of attributes can pose an exponential challenge. This work proposes an approach that incorporates the use of a customized attention layer to han dle multiple features in conjunction with a Long Short-Term Memory (LSTM) model. This approach aims to automatically weigh the seismic attributes, pre selected by domain experts, to evaluate which ones are most important for the model in the natural gas detection process. To evaluate the methodology, 2D and 3D onshore seismic surveys were employed, and the K-fold technique was applied. For quantitative results, the F1-score metric was evaluated, achieving an improvement of up to 13,94 percent.
Read more

Page generated in 0.0617 seconds