21 |
[en] IDENTIFICATION SYSTEM OF FAULTS IN TRANSMISSION LINES BASED ON NEURAL NETWORKS / [pt] SISTEMA DE IDENTIFICAÇÃO E LOCALIZAÇÃO DE FALTAS EM LINHAS DE TRANSMISSÃO BASEADO EM REDES NEURAISMARCO ANTONIO FERNANDES RAMOS 20 May 2003 (has links)
[pt] Quando ocorre algum tipo de falta em uma Linha de
Transmissão (LT), sua localização exata é essencial para
uma rápida recomposição do Sistema Elétrico. Métodos que
utilizam tensão e corrente de apenas um terminal contêm
simplificações que podem acarretar erros. Esta
dissertação
investiga a aplicação de Redes Neurais Artificiais (RNA)
na
obtenção de uma nova forma de identificar o tipo do
curto-
circuito e determinar a sua localização, utilizando
dados
obtidos em somente um terminal. O trabalho consiste de 4
partes principais: estudo bibliográfico da área de Redes
Neurais; simulações de faltas para a obtenção de
padrões;
definição e implementação dos modelos de Redes Neurais
para
identificação e localização da falta; e estudos de casos.
Na fase do estudo bibliográfico sobre RNA, foi
verificado
que as topologias de redes mais usuais são as Feed-
Forward, que podem ter uma ou mais camadas de Elementos
Processadores (EP), sendo as redes com múltiplas camadas
(Multi-Layer) a configuração mais completa. Para
treinamento da rede, o algoritmo de aprendizado mais
utilizado é o Back Propagation. Como fruto deste estudo
bibliográfico é apresentado neste trabalho um resumo
sobre
RNA.
Nas simulações de faltas para obtenção dos padrões de
treinamento e teste, foi utilizado um sistema automático
que, através da combinação de vários parâmetros do
sistema
elétrico, gera situações diferentes de falta. Este
sistema
utiliza como base o programa Alternative Transient
Program - ATP. Neste trabalho o sistema elétrico está
representado por uma LT de 345 KV, com fontes
equivalentes
representando um sistema real de Furnas Centrais
Elétricas.
Todos o sinais de tensão e corrente utilizados são
representados por fasores de 60 Hz, obtidos através da
Transformada Discreta de Fourier (TDF).
Os modelos de RNAs para identificação e localização de
falta foram implementados com sub-rotinas de redes
neurais
do programa MATLAB ver. 6.0, representados por Redes
Perceptron Multicamadas (Multi Layer Perceptron),
treinadas
com algoritmo Back Propagation com taxa de aprendizado
adaptativa e o termo momentum fixo. Um modelo único de
RNA
identifica quais as fases (A, B, C e T) envolvidas,
classificando o tipo de falta, que pode ser: Monofásica;
Bifásica; Bifásica-Terra ou Trifásica. Para a
localização
da falta, foram definidas 4 arquiteturas de RNA, uma
para
cada tipo de falta. A ativação de cada topologia de RNA
para localização é definida em função do tipo de falta
classificada no modelo de identificação com RNA.
Na etapa de estudo de casos testou-se o desempenho de
cada
modelo de RNA utilizando casos de testes em outras
situações de falta, diferentes dos conjuntos de
treinamento. A RNA de identificação de falta foi
avaliada
para situações de faltas envolvendo outras LTs, com
diferentes níveis de tensão. Os resultados das 4 RNAs de
localização da falta foram comparados com os resultados
obtidos utilizando o método tradicional, tanto para os
casos simulados quanto para algumas situações reais de
falta.
A utilização de RNAs para a identificação e a
localização
de falta mostrouse bastante eficiente para os casos
analisados, comprovando a aplicabilidade das redes
neurais
nesse problema. / [en] When a kind of fault occurs in a Transmission Line, its
exact location is essential for a fast reclosing of the
Electric System. Methods that use voltages and currents
from only one terminal contain simplifications that can to
cause mistakes. This paper presents an investigation about
application of Artificial Neural Network (ANN) obtaining a
new way of identification for the type of the short circuit
and its location, using data obtained only in one terminal.
The work consists on the following 4 main parts:
bibliographical study of Neural Network`s area; simulations
of faults in order to obtain of patterns; definition and
implementation of Neural Network`s models for
identification and location of the fault; and studies
of cases.
In the bibliographical study step on ANN, it was verified
that the topologies for the more usual nets are Feed-
Forward,that can have one or more layers of Processor
Elements (PE), being the nets with multiple layers the most
complete configuration. For the net training, the more used
learning algorithm is Back Propagation. Product of this
bibliographical study presents in this work a summary about
ANN.
In the faults simulations in order to obtain the training
patterns and test, it was used an automatic system that,
through the combination of several parameters of the
electric system, generates different fault situations. This
system uses as base the program Alternative Transient
Program - ATP. In this work the electric system is
represented by a Transmission Line of 345 KV, with
equivalent sources representing a real system of Furnas
Centrais Elétricas. All the voltages and currents signs
used are represented by fasors of 60 Hz, obtained from
Discret Fourier Transformer (DFT).
The ANN models for identification and fault location were
implemented with subroutines of neural network of the
program MATLAB version 6.0, represented by Multi Layer
Perceptron, with algorithm Back Propagation with tax of
adaptive learning and the term momentum fixed. Only one
model of ANN identifies which phases (A, B, C and T) are
involved, classifying the fault type, that can be:
Singlephase; Phase-to-Phase; Double Phase-to-Ground or
Three-phase. For the fault location, they were defined 4
architectures of ANN, one for each type of fault. The
activation of each topology of ANN for location is defined
depending on of the fault type classified in the
identification model with ANN.
In the stage of cases study the representation of each
model of ANN was tested using cases of tests in other fault
situations, different from the training groups. The ANN of
fault identification was evaluated for situations of faults
involving other Transmission Line, with different voltage
levels. The results of 4 ANNs of fault location were
compared with the obtained results using the traditional
method, so much for the simulated cases as for some real
situations of fault.
The use of ANNs for the identification and the fault
location has shown quite efficient for the analyzed cases,
proving the applicability of the neural networks in
that problem.
|
22 |
[en] IDENTIFICATION AND EPIDEMIOLOGICAL SURVEILLANCE OF BACTERIA: WEB SYSTEM DEVELOPMENT AND EVALUATION OF INTELLIGENT METHODS / [pt] IDENTIFICAÇÃO E RASTREAMENTO EPIDEMIOLÓGICO DE BACTÉRIAS: DESENVOLVIMENTO DE SISTEMA WEB E AVALIAÇÃO DE MÉTODOS INTELIGENTES05 November 2021 (has links)
[pt] A maioria dos laboratórios não conta com um sistema informatizado para gestão dos procedimentos pertinentes a cada caso. A administração e controle das amostras é feito manualmente, através de diversas fichas que são preenchidas desde o colhimento do material biológico, no hospital, até a identificação final da bactéria no laboratório. Dessa forma, a organização das informações fica limitada, uma vez que, estando as informações escritas à mão e guardadas em livros, é quase impossível a extração de conhecimento útil que possa servir não só no apoio à decisão, como também, na formulação de simples estatísticas. Esta dissertação teve dois objetivos principais. O desenvolvimento de um sistema Web, intitulado BCIWeb (Bacterial Classification and Identification for Web), que fosse capaz de auxiliar na identificação bacteriológica e prover a tecnologia necessária para a administração e controle de amostras clínicas oriundas de hospitais. E a descoberta de conhecimento na base de dados do sistema, através da mineração de dados utilizando os métodos de Mapas Auto-Organizáveis (SOM: Self-Organizing Maps) e Redes Multilayer Perceptrons (MLP) para classificação e identificação de bactérias. A partir do desenvolvimento desta ferramenta amigável, no estudo de caso, os dados históricos do LDCIC (Laboratório de Difteria e Corinebactérias de Importância Clínica) do Departamento de Biologia da UERJ foram inseridos no sistema. Os métodos inteligentes propostos para classificação e identificação de bactérias foram analisados e apresentaram resultados promissores na área. / [en] Most laboratories do not have a computerized system for management procedures. The administration and control of the samples are made manualy through many forms of data sheets which are filled from the beginning, when the samples of biological materials are gathered at the hospital, up to the final identification at the laboratory. In this context, the organization of the information become very limited, while the information writting by hands and stored in books, its almost impossible to extract useful knowledge, which could help not only supporting decisions but also in the formulations of simples statistics. This thesis had two objectives. The development of a web system called BCIWeb (Bacterial Classifiation and Identification for Web) that could assist in bacterial identification and provide the technology necessary for the administration and control of clinical specimen coming from the hospitals and the discovery of knowledge in database system, through data mining methods using SOM (Self Organizing Maps) and Multilayer Perceptron Neural Networks (MLP) for classification and identificatin of bactéria. From the development of this friendly tool, in the case study, the historical data from LDCIC (Laboratório de Difteria e Corinebactérias de Importância Clínica) of UERJ Biology Department were entered into the system. The proposed intelligent methods for classification and identification of bacteria were analysed and showed promising results.
|
23 |
[pt] IDENTIFICAÇÃO NÃO LINEAR HÍBRIDA DE SISTEMAS MECÂNICOS COM MODELOS FÍSICOS E DE APRENDIZADO DE MÁQUINA / [en] NONLINEAR SYSTEM IDENTIFICATION OF HYBRID MACHINE LEARNING AND PHYSICAL MODELS FOR MECHANICAL SYSTEMSDANIEL HENRIQUE BRAZ DE SOUSA 16 May 2023 (has links)
[pt] Existe uma crescente demanda por modelos dinâmicos precisos, parte
impulsionada pelo paradigma da indústria 4.0 que introduz, dentre outros, o
conceito de gêmeo digital no qual modelos dinâmicos possuem um papel importante. Idealmente, um modelo dinâmico apresenta um compromisso entre
complexidade e precisão, enquanto proporciona informações sobre a física do
sistema. Para melhorar a precisão de um modelo mantendo a interpretabilidade, a abordagem usual é modelar matematicamente todas não-linearidades,
o que leva a um modelo muito complexo. Outra abordagem envolve identificação caixa-preta, uma abordagem onde um modelo matemático é ajustado para
descrever a relação de entrada e saída do sistema, a qual pode fornecer um
modelo preciso, porém não interpretável. Os avanços na capacidade de processamento computacional permitiram o florescimento da area de aprendizado de
máquinas, a qual tem mostrado resultados interessantes em diferentes campos
do conhecimento. Uma dessas aplicações é em identificação caixa-preta, onde
o aprendizado de máquinas tem sido empregado com sucesso na modelagem de
sistemas não-lineares, o que tem inspirado pesquisas sobre o tema. Apesar dos
modelos baseados em aprendizado de máquina apresentarem elevada precisão,
o que é suficiente para diversas aplicações, eles não são interpretáveis. Dessa
forma, visando obter modelos que possuem ambas as características de precisão
e interpretabilidade, enquanto mantém um compromisso com a complexidade,
esta tese propõe uma metodologia de identificação híbrida que combina um
modelo fenomenológico caixa cinza com um modelo caixa preta baseado em
redes neurais artificiais. A metodologia proposta é aplicada em três casos de
estudo de sistemas não lineares com dados experimentais, a saber, a dinâmica
vertical de um veículo, um atuador com junta flexível baseado em elastômero
e um sistema de posicionamento eletromecânico. Os resultados mostram que
o modelo híbrido proposto é até 60 por cento mais preciso enquanto proporciona a
interpretabilidade física do sistema, sem aumentar significativamente a complexidade do modelo. / [en] There is a growing demand for accurate dynamic models, driven by the
Industry 4.0 paradigm that introduces, among others, the concept of the digital twin in which dynamic models play an important role. Ideally, a dynamic
model presents a compromise between complexity and accuracy, while providing physical insight into the system. To improve a model accuracy while
keeping interpretability, the usual approach is to mathematically model all
the nonlinearities, which ultimately leads to an overcomplex model. Another
approach involves a black-box identification, a data-driven approach where a
mathematical model is adjusted to describe the system s input-output relation,
which may provide an accurate model, but it does not provide interpretability.
The developments in computational processing capacity have allowed the flourishing of the field of machine learning, which has shown interesting results in
different fields of knowledge. One of these applications is black-box identification, where machine learning has successfully been employed in the modeling
of nonlinear systems, which has inspired research on the topic. Even though
the machine-learning-based models present enhanced accuracy, which for several applications is sufficient, they do not provide interpretability. Aiming at
providing both accuracy and interpretability while keeping a compromise with
model complexity, this work proposes a hybrid identification methodology that
combines a gray-box phenomenological model with a black-box model based
on artificial neural networks. The proposed methodology is applied in three
case studies of nonlinear systems with experimental data, namely, the vertical
dynamics of a vehicle, an elastomer-based series elastic actuator, and an electromechanical positioning system. The results show that the proposed hybrid
model is up to 60 percent more accurate while providing the physical interpretability
of the system, without significantly increasing the complexity of the model.
|
24 |
[pt] MAPEAMENTO DE PERDAS ELÉTRICAS E FLUXOS DE POTÊNCIA EM LINHAS DE DISTRIBUIÇÃO COM REDES NEURAIS ARTIFICIAIS / [en] MAPPING NETWORK LOSSES AND DISTRIBUTION LINE FLOWS WITH ARTIFICIAL NEURAL NETWORKSMARIANA DE ARAGAO RIBEIRO RODRIGUES 23 September 2021 (has links)
[pt] O cálculo do fluxo de potência em uma rede elétrica consiste em determinar o estado da rede, os fluxos e perdas elétricas nas linhas e as perdas internas totais no sistema. Nesse tipo de problema, a modelagem do sistema é estática e a rede é representada por um conjunto de equações e inequações algébricas.
Diferentes métodos de solução foram propostos na literatura para realizar cálculos de fluxo de potência. No entanto, para redes de distribuição, esses métodos devem ser capazes de modelar, com detalhes suficientes, algumas características únicas desses sistemas, como sua estrutura quase radial, a
natureza desequilibrada das cargas e a inserção de geradores distribuídos. Além disso, a modelagem do padrão de consumo nos sistemas de distribuição é mais complexa e os parâmetros das linhas são mais difíceis de serem obtidos, quando comparados com o sistema de transmissão. Portanto, a aplicação de métodos tradicionais para cálculos de fluxo de potência em redes de distribuição pode levar a soluções divergentes. Nesse contexto, o presente trabalho propõe uma nova abordagem para cálculos de fluxo de potência em sistemas de distribuição, baseada em Machine Learning. Os modelos propostos utilizam
Redes Neurais Artificiais (RNAs) para prever as perdas ativas internas de uma rede de distribuição e os fluxos de potência nas fronteiras com o sistema de transmissão. Simulações numéricas demonstram o desempenho eficiente da abordagem proposta, além de suas vantagens computacionais em relação aos
softwares normalmente utilizados nesse tipo de estudo pois, uma vez treinadas, as RNAs podem aproximar, de modo extremamente rápido, cálculos de fluxo de potência, já que apenas operações matriciais são realizadas. Além disso, o trabalho apresenta uma aplicação da metodologia proposta: as previsões,
obtidas pela RNA, para os fluxos nas fronteiras com a rede de transmissão foram utilizadas para gerar contratos ótimos de demanda para um sistema de distribuição real no Brasil. / [en] The power flow calculation on an electric network consists of determining the network s state, power flows and electrical losses on the lines, and total losses on the feeder. In this type of problem, the system s modeling is static, and the network is represented by a set of algebraic equations and inequations. Different solution methods were proposed in the literature to perform power flow calculations. However, for distribution networks, these methods must be able to model, with sufficient details, some unique features of these systems, such as their near radial structure, the unbalanced nature of the loads, and distributed
generators insertion. Besides that, modeling the consumption pattern in distribution systems is more complex, and the line parameters are more difficult to be obtained when compared to the transmission system. Hence, applying traditional methods for power flow calculations in distribution networks may
lead to divergent solutions. Within this context, this work proposes a new approach for power flow calculations in distribution systems based on Machine Learning. The proposed models use Artificial Neural Networks (ANNs) to predict the active internal losses of a distribution network and the power
flows at the borders with the transmission system. Numerical simulations demonstrate the effective performance of the proposed approach, as well as its computational advantages over benchmark software programs since, once trained, ANNs can approximate power flow calculations extremely fast, as only
matrix operations are needed. Moreover, the work presents an application of the ANN methodology proposed: predictions of the flows at the borders with the transmission network were used to generate optimal demand contracts for a real distribution system in Brazil.
|
25 |
[en] ELECTRIC LOAD FORECASTING MODEL CONSIDERING THE INFLUENCE OF DISTRIBUTED GENERATION ON THE LOAD CURVE PROFILE / [pt] MODELO DE PREVISÃO DE CARGA ELÉTRICA CONSIDERANDO A INFLUÊNCIA DA MINI E MICROGERAÇÃO DISTRIBUÍDA NO PERFIL DA CURVA DE CARGARAFAEL GAIA DUARTE 28 June 2021 (has links)
[pt] O Brasil vem registrando a cada ano um crescimento expressivo no número de conexões de geração distribuída na rede de distribuição devido à concessão de incentivos governamentais que permitiu a difusão do uso de placas solares fotovoltaicas, fonte de geração de energia mais usada na geração distribuída no Brasil. Em sistemas elétricos com alta penetração de fontes intermitentes a previsão do comportamento da curva de carga tende a representar um grande desafio para os operadores do sistema devido à imprevisibilidade associada à geração de energia, podendo impactar diretamente no planejamento e operação da rede elétrica. Para lidar com esse desafio, este trabalho propõe uma metodologia de previsão de carga usando redes neurais recorrentes com arquitetura LSTM, considerando o impacto da mini e microgeração distribuída solar fotovoltaica conectada à rede de distribuição brasileira. São feitas previsões de carga do Sistema Interligado Nacional brasileiro e dos subsistemas que o integram, levando em conta um horizonte de curto prazo, de 24 horas, em intervalos horários, e um horizonte de médio prazo, de 60 meses, em intervalos mensais. Os resultados indicam que a metodologia pode ser uma ferramenta eficiente para a obtenção de previsões de carga podendo ser utilizada também para horizontes de previsão distintos dos apresentados neste trabalho. O MAPE encontrado para as previsões de curto prazo não passam de 2 por cento e para as previsões de médio prazo não passam de 3,5 por cento. / [en] Every year, Brazil has been registering a significant growth in the number of distributed generation connections in the distribution grid due to the granting of government incentives that allowed the use of solar photovoltaic panels to spread, the most used source of energy in distributed generation in Brazil. In electrical systems with high penetration of intermittent sources, the prediction of the behavior of the load curve tends to represent a great challenge for system operators due to the unpredictability associated with power generation, which can directly impact the planning and operation of the electrical grid. To deal with this challenge, this work proposes a load forecasting methodology using recurrent neural networks with LSTM architecture, considering the impact of the distributed photovoltaic solar generation connected to the Brazilian distribution grid. Load forecasts are made for the Brazilian National Interconnected System and for the subsystems that integrate it, taking into account a short-term horizon, of 24 hours, in hourly intervals, and a medium-term horizon, of 60 months, in monthly intervals. The results indicate that the methodology can be an efficient tool for obtaining load forecasts and can also be used for different forecast horizons than those presented in this work. The MAPE found for short-term forecasts is no more than 2 percent and for medium-term forecasts, no more than 3.5 percent.
|
26 |
[en] THE USE OF ARTIFICIAL INTELLIGENT FOR PREDICTING CONCRETE DRYING SHRINKAGE / [pt] USO DA INTELIGÊNCIA ARTIFICIAL PARA PREDIÇÃO DA RETRAÇÃO POR SECAGEM DO CONCRETODIOGO FARIA DE SOUSA 24 January 2024 (has links)
[pt] Devido a variações volumétricas do concreto, a compreensão dos mecanismos da retração tornou-se ponto importante para redução de fissuras e, consequentemente, da penetração de agentes agressivos. Apesar do aumento do número de estudos experimentais de retração por secagem e autógena ainda é necessário o desenvolvimento de novos modelos analíticos e numéricos para a predição da retração apoiando assim o projeto de estruturas de concreto. Este estudo propôs um modelo de redes neurais artificiais para a predição da retração por secagem do concreto. Um banco de dados nacionais contendo 689 leituras de retração por secagem em mais de 90 dosagens diferentes de concreto convencional foi construído, de acordo com a NBR 16834. O modelo teve como dados de entrada para a predição da retração o consumo e tipo de cimento, aditivo retardador e plastificante, compensador de retração, relação água/cimento e idade do concreto. O modelo apresentou coeficientes de determinação (R²) para dados de treino e teste acima de 0,998 e 0,906, respectivamente, comprovando que o modelo é uma importante ferramenta para a predição da retração por secagem para tomadas de decisão durante os estudos iniciais na fase de projeto e dosagem do concreto. / [en] Due to volume change effects of concrete, understanding the mechanisms of shrinkage has become an important point for reducing cracks and, consequently, the penetration of deleterious agents into concrete structures. Despite the increase in experimental studies on concrete drying and autogenous shrinkage there is still a need to develop new analytical and numerical methods to predict shrinkage supporting the design of concrete structures. This study proposed an Artificial Neural Network (ANN) model to predict the concrete drying shrinkage. A national database containing 689 experimental shrinkage data records, in more than 90 different mixtures of conventional concrete was constructed, in accordance with NBR 16834. The model had as input data for predicting shrinkage the consumption and type of cement, retarding and plasticizer additive, shrinkage compensator, water/cement ratio and age of concrete. The model presented coefficients of determination(R²) for training and test data above 0,998 and 0,906, proving that the model is an important tool for predicting drying shrinkage for decision making during the initial study in the design phase and concrete mix design.
|
27 |
[en] SSA-WAVELET COMBINATION OF PREDICTIVE METHODS WITH MINIMAX NUMERICAL ADJUSTMENT IN FORECAST AND SCENARIOS GENERATION / [pt] COMBINAÇÃO SSA-WAVELET DE MÉTODOS PREDITIVOS COM AJUSTE NUMÉRICO MINIMAX, NA GERAÇÃO DE PREVISÕES E DE CENÁRIOSLUIZ ALBINO TEIXEIRA JUNIOR 30 April 2014 (has links)
[pt] Nesta tese de doutorado, é proposta uma combinação híbrida de métodos
preditivos que agrega cinco abordagens distintas e genéricas, do ponto de vista de
modelagem: método SSA; decomposição wavelet; redes neurais artificiais;
programação matemática multiobjetivo MINIMAX, com abordagem de
programação por metas; e método de simulação de quase Monte-Carlo. Para
exemplificar e demonstrar a eficiência da combinação híbrida proposta, são
mostrados, no Capítulo 7, os principais resultados de uma aplicação
computacional, no qual é possível verificar que o seu desempenho, em termos de
modelagem, foi consideravelmente superior, em relação a todas as estatísticas de
aderência consideradas. / [en] In this thesis, we propose a hybrid combination of predictive methods that
aggregates five distinct and general approaches, from the viewpoint of modeling:
SSA method; wavelet decomposition, artificial neural networks, multiobjective
mathematical programming MINIMAX, with goal programming approach; quasi-
Monte-Carlo simulation method. To exemplify and demonstrate the efficiency of
the proposed hybrid combination are shown, in Section 7, the main results of a
computer application in which you can verify that their performance, in terms of
modeling, was significantly higher, compared to all considered adherence
statistics.
|
28 |
[en] DETECTION AND CHARACTERIZATION OF STRUCTURAL DAMAGE USING FIBER BRAGG GRATING SENSORS AND ARTIFICIAL NEURAL NETWORKS / [pt] DETECÇÃO E CARACTERIZAÇÃO DE DANOS ESTRUTURAIS ATRAVÉS DE SENSORES A REDE DE BRAGG E REDES NEURAIS ARTIFICIAISDANIEL RAMOS LOUZADA 26 February 2019 (has links)
[pt] O aumento dos custos relacionados aos processos de manutenção em estruturas como aeronaves, aliadas à crescente demanda das mesmas, alimentam a necessidade de investimentos em técnicas inovadoras de monitoramento estrutural. Dessa forma, o trabalho realizado nesta tese, busca o desenvolvimento de uma técnica de monitoramento ativo, visando o acompanhamento de parâmetros da estrutura analisada, a fim de identificar e caracterizar processos de dano não visíveis, tais como corrosão e delaminação. A metodologia empregada, teve como base a análise dos padrões de deformação superficial, obtidos com o uso de grades de sensores à fibra óptica baseadas em redes de Bragg (FBG). Inicialmente, tais padrões foram provocados por carregamentos estáticos (tração), e posteriormente por atuadores PTZ fixados à estrutura. Estes últimos são submetidos a uma voltagem alternada e frequência fixa. Esta técnica apresenta todas as vantagens dos sensores FBG (massa e dimensões reduzidas, imunidade eletromagnética, elevado poder de multiplexação e alta sensibilidade entre outras), alem de permitir a visualização de alterações nos padrões de deformação, provocados por danos, através da variação da
frequência de excitação. Com relação à interpretação dos resultados, a estratégia empregada consistiu em separar o problema de detecção e caracterização dos danos. Dessa forma, a detecção é realizada comparando a energia das deformações superficiais dos corpos de prova nos casos com e sem defeito, enquanto a caracterização é obtida através a utilização de redes neurais artificiais (RNA), por meio de rotinas de reconhecimento de padrões. / [en] The higher costs related to maintenance processes in structures such as aircraft, coupled with the growing demand of them, fueling the need for investment in innovative techniques for structural monitoring. Thus, the work done in this thesis seeks to develop a technique of active monitoring, aiming at monitoring of structure parameters analyzed in order to identify and characterize processes of hidden damage such as corrosion and delamination. The maid methodology was based on the analysis of patterns of surface deformation, obtained with the use of nets of optical fiber sensors based on fiber Bragg gratings ( FBG ). Initially, these patterns were caused by static loads (tension ), and later by PTZ actuators fixed to the frame, who are subjected to an AC voltage and fixed frequency. This technique has all the advantages of the FBG s sensors (mass and small dimensions, electromagnetic immunity, high multiplexing s power and high sensitivity among others), in addition to allowing visualization of changes in the patterns of deformation caused by damage, by varying the frequency excitation. With respect to the interpretation of the results, the strategy employed was to separate the problem of detection and characterization of damage. Thus, the detection is performed by comparing the deformation energy of the surface of the specimens in the cases with and without defect, whereas the characterization is obtained through the use of artificial neural networks (ANN) by means of pattern recognition routines.
|
29 |
[en] A HYBRID NEURO- EVOLUTIONARY APPROACH FOR DYNAMIC WEIGHTED AGGREGATION OF TIME SERIES FORECASTERS / [pt] ABORDAGEM HÍBRIDA NEURO-EVOLUCIONÁRIA PARA PONDERAÇÃO DINÂMICA DE PREVISORESCESAR DAVID REVELO APRAEZ 18 February 2019 (has links)
[pt] Estudos empíricos na área de séries temporais indicam que combinar
modelos preditivos, originados a partir de diferentes técnicas de modelagem,
levam a previsões consensuais superiores, em termos de acurácia, às previsões
individuais dos modelos envolvidos na combinação. No presente trabalho é
apresentada uma metodologia de combinação convexa de modelos estatísticos de
previsão, cujo sucesso depende da forma como os pesos de combinação de cada
modelo são estimados. Uma Rede Neural Artificial Perceptron Multi-camada
(Multilayer Perceptron - MLP) é utilizada para gerar dinamicamente vetores de
pesos ao longo do horizonte de previsão, sendo estes dependentes da contribuição
individual de cada previsor observada nos dados históricos da série. O ajuste dos
parâmetros da rede MLP é efetuado através de um algoritmo de treinamento
híbrido, que integra técnicas de busca global, baseadas em computação
evolucionária, junto com o algoritmo de busca local backpropagation, de modo a
otimizar de forma simultânea tanto os pesos quanto a arquitetura da rede, visando,
assim, a gerar de forma automática um modelo de ponderação dinâmica de
previsores de alto desempenho. O modelo proposto, batizado de Neural Expert
Weighting - Genetic Algorithm (NEW-GA), foi avaliado em diversos
experimentos comparativos com outros modelos de ponderação de previsores,
assim como também com os modelos individuais envolvidos na combinação,
contemplando 15 séries temporais divididas em dois estudos de casos: séries de
derivados de petróleo e séries da versão reduzida da competição NN3, uma
competição entre metodologias de previsão, com maior ênfase nos modelos
baseados em Redes Neurais. Os resultados demonstraram o potencial do NEWGA
em fornecer modelos acurados de previsão de séries temporais. / [en] Empirical studies on time series indicate that the combination of forecasting
models, generated from different modeling techniques, leads to higher
consen+sus forecasts, in terms of accuracy, than the forecasts of individual
models involved in the combination scheme. In this work, we present a
methodology for convex combination of statistical forecasting models, whose
success depends on how the combination weights of each model are estimated.
An Artificial Neural Network Multilayer Perceptron (MLP) is used to generate
dynamically weighting vectors over the forecast horizon, being dependent on the
individual contribution of each forecaster observed over historical data series. The
MLP network parameters are adjusted via a hybrid training algorithm that
integrates global search techniques, based on evolutionary computation, along
with the local search algorithm backpropagation, in order to optimize
simultaneously both weights and network architecture. This approach aims to
automatically generate a dynamic weighted forecast aggregation model with
high performance. The proposed model, called Neural Expert Weighting -
Genetic Algorithm (NEW-GA), was com- pared with other forecaster
combination models, as well as with the individual models involved in the
combination scheme, comprising 15 time series divided into two case studies:
Petroleum Products and the reduced set of NN3 forecasting competition, a
competition between forecasting methodologies, with greater emphasis on
models based on neural networks. The results obtained demonstrated the
potential of NEW-GA in providing accurate models for time series forecasting.
|
30 |
[en] USE OF ARTIFICIAL NEURAL NETWORK MODELS FOR FAULT DETECTION AND DIAGNOSIS OF TENNESSEE EASTMAN PROCESS / [pt] USO DE MODELOS DE REDES NEURAIS ARTIFICIAIS PARA DETECÇÃO DE FALHAS NO PROCESSO TENNESSEE EASTMANDANIEL LERNER 18 March 2019 (has links)
[pt] A humanidade está vivenciando a Quarta Revolução Industrial, caracterizada pela implementação global da internet, utilização de inteligência artificial e automatização dos processos. Este último é de grande importância para indústria química, uma vez que seu desenvolvimento possibilitou um aumento significativo da quantidade de dados armazenados diariamente, o que gerou uma demanda para análise desses dados. Este enorme fluxo de informações tornou o sistema cada vez mais complexo com uma aleatoriedade de falhas no processo que se identificadas poderiam ajudar a melhorar o processo e evitar acidentes. Uma solução ainda pouco comum na indústria, porém com grande potencial para identificar estas falhas de processo com excelência, é a emergente inteligência artificial. Para lidar com esta questão, o presente trabalho realiza a detecção e identificação de falhas em processos industriais através da modelagem de redes neurais artificias. O banco de dados foi obtido através do uso do benchmark de processo Tennessee Eastman, implementado no Software Matlab 2017b, o qual foi projetado para simular uma planta química completa. A enorme quantidade de dados gerados pelo processo tornou possível a simulação em um contexto de Big Data. Para modelagem dos dados, foram tanto aplicadas redes neurais tradicionais feedforward, quanto redes recorrentes: Rede de Elman e Echo State Network. Os resultados apontaram que as redes feedforward e de Elman obtiveram melhores desempenhos analisados pelo coeficiente de determinação (R2). Assim, o primeiro modelo obteve melhor topologia com 37x60x70x1, algoritmo de treinamento trainlm, funções de ativação tansig para as duas camadas intermediárias e camada de saída ativada pela purelin com R2 de 88,69 por cento. O modelo da rede de Elman apresentou sua melhor topologia com 37x45x55x1, algoritmo de treinamento trainlm, funções de ativação tansig para as duas camadas intermediárias e camada de saída ativada pela função purelin com R2 de 83,63 por cento. Foi concluido que as redes analisadas podem ser usadas em controle preditivo de falhas em processos
industriais, podendo ser aplicadas em plantas químicas no futuro. / [en] Humanity is experiencing the 4th Industrial Revolution, characterized by the global implementation of the internet, use of artificial intelligence and automation of processes. The last one is of great importance for the chemical industry, since its development allowed a significant increase in the amount of data stored daily, which generated a demand for the analysis of this data. This enormous flow of information made the system more and more complex with a randomness of process faults that if identified could help improve the process and prevent accidents. A solution not yet common in industry, but with great potential to identify these process faults with excellence, is the emergent artificial intelligence. To deal with this issue, the present work performs fault detection and diagnosis in industrial processes through artificial neural networks modeling. The database was obtained using the benchmark of processes Tennessee Eastman, implemented in Matlab 2017b Software, which is designed to simulate a complete chemical plant. The huge amount of data generated by the process made it possible to simulate in a Big Data context. For data modeling, were applied both traditional feedforward neural networks as well as recurrent networks: Elman Network and Echo State Network. The results indicated that the feedforward and Elman networks obtained better performances analyzed by the determination coefficient (R2). Thus, the first model obtained the best topology with 37x60x70x1, trainlm as training algorithm, tansig as activation functions for the two intermediate layers and output layer activated by the purelin function with R2 of 88.69 percent. The Elman
network model presented its best topology with 37x45x55x1, trainlm as training algorithm, tansig as activation functions for the two intermediate layers and output layer activated by purelin function with R2 of 83.63 percent. It was concluded that the analyzed networks can be used in predictive control of fault in industrial processes and can be applied in chemical plants in the future.
|
Page generated in 0.0855 seconds