41 |
[en] A SUGGESTION FOR THE STRUCTURE IDENTIFICATION OF LINEAR AND NON LINEAR TIME SERIES BY THE USE OF NON PARAMETRIC REGRESSION / [pt] UMA SUGESTÃO PARA IDENTIFICAÇÃO DA ESTRUTURA DE SÉRIES TEMPORAIS, LINEARES E NÃO LINEARES, UTILIZANDO REGRESSÃO NÃO PARAMÉTRICAROSANE MARIA KIRCHNER 10 February 2005 (has links)
[pt] Esta pesquisa fundamenta-se na elaboração de uma
metodologia para identificação da estrutura de séries
temporais lineares e não lineares, baseada na estimação não
paramétrica e semi-paramétrica de curvas em modelos do tipo
Yt=E(Yt|Xt) +e, onde Xt=(Yt-1, Yt-2,...,Yt-d). Um modelo de
regressão linear paramétrico tradicional assume que a forma
da função E(Yt|Xt) é linear. O processo de estimação é
global, isto é, caso a suposição seja, por exemplo, a de
uma função linear, então a mesma reta é usada ao longo do
domínio da covariável. Entretanto, tal abordagem pode ser
inadequada em muitos casos. Já a abordagem não paramétrica,
permite maior flexibilidade na possível forma da função
desconhecida, sendo que ela pode ser estimada através de
funções núcleo local. Desse modo, somente pontos na
vizinhança local do ponto xt , onde se deseja estimar
E(Yt|Xt=xt), influenciarão nessa estimativa. Isto é,
através de estimadores núcleo, a função desconhecida será
estimada através de uma regressão local, em que as
observações mais próximas do ponto onde se deseja estimar a
curva receberão um peso maior e as mais afastadas, um peso
menor. Para estimação da função desconhecida, o parâmetro
de suavização h (janela) foi escolhido automaticamente com
base na amostra via minimização de resíduos, usando o
critério de validação cruzada. Além desse critério,
utilizamos intencionalmente valores fixos para o parâmetro
h, que foram 0.1, 0.5, 0.8 e 1. Após a estimação da função
desconhecida, calculamos o coeficiente de determinação para
verificar a dependência de cada defasagem. Na metodologia
proposta, verificamos que a função de dependência da
defasagem (FDD) e a função de dependência parcial da
defasagem (FDPD), fornecem boas aproximações no caso linear
da função de autocorrelação (FAC) e da função de
autocorrelação parcial (FACP), respectivamente, as quais
são utilizadas na análise clássica de séries lineares. A
representação gráfica também é muito semelhante àquelas
usadas para FAC e FACP. Para a função de dependência
parcial da defasagem (FDPD), necessitamos estimar funções
multivariadas. Nesse caso, utilizamos um modelo aditivo,
cuja estimação é feita através do método backfitting
(Hastie e Tibshirani-1990). Para a construção dos
intervalos de confiança, foi utilizada a técnica Bootstrap.
Conduzimos o estudo de forma a avaliar e comparar a
metodologia proposta com metodologias já existentes. As
séries utilizadas para esta análise foram geradas de acordo
com modelos lineares e não lineares. Para cada um dos
modelos foi gerada uma série de 100 ou mais observações.
Além dessas, também foi exemplificada com o estudo da
estrutura de duas séries de demanda de energia elétrica,
uma do DEMEI- Departamento Municipal de Energia de Ijuí,
Rio Grande do Sul e outra de uma concessionária da região
Centro-Oeste. Utilizamos como terceiro exemplo uma série
econômica de ações da Petrobrás. / [en] This paper suggests an approach for the identification of
the structure of inear and non-linear time series through
non-parametric estimation of the unknown curves in models
of the type Y)=E(Yt|Xt =xt) +e , where Xt=(Yt-1,Yt-2,...,Yt-
d). A traditional nonlinear parametric model assumes that
the form of the function E(Yt,Xt) is known. The estimation
process is global, that is, under the assumption of a
linear function for instance, then the same line is used
along the domain of the covariate. Such an approach may be
inadequate in many cases, though. On the other hand,
nonparametric regression estimation, allows more
flexibility in the possible form of the unknown function,
since the function itself can be estimated through a local
kernel regression. By doing so, only points in the local
neighborhood of the point Xt, where E(Yt|Xt =xt) is to be
estimated, will influence this estimate. In other words,
with kernel estimators, the unknown function will be
estimated by local regression, where the nearest
observations to the point where the curve is to be
estimated will receive more weight and the farthest ones, a
less weight. For the estimation of the unknown function, the
smoothing parameter h (window) was chosen automatically
based on the sample through minimization of residuals,
using the criterion of cross-validation. After the
estimation of the unknown function, the determination
coefficient is calculated in order to verify the dependence
of each lag. Under the proposed methodology, it was
verified that the Lag Dependence Function (LDF) and the
Partial Lag Dependence Function (PLDF) provide good
approximations in the linear case to the function of
autocorrelation (ACF) and partial function of
autocorrelation (PACF) respectively, used in classical
analysis of linear time series. The graphic representation
is also very similar to those used in ACF and PACF.
For the Partial Lag Dependence Function (PLDF) it becomes
necessary to estimate multivariable functions. In this
case, an additive model was used, whose estimate is
computed through the backfitting method, according to
Hastie and Tibshirani (1990). For the construction of
confidence intervals, the bootstrap technique was used.
The research was conducted to evaluate and compare the
proposed methodology to traditional ones. The simulated
time series were generated according to linear and nonlinear
models. A series of one hundred observations was generated
for each model. The approach was illustrated with the study
of the structure of two time series of electricity demand
of DEMEI- the city department of energy of Ijui, Rio Grande
do Sul, Brazil and another of a concessionary of the Centro-
Oeste region. We used as third example an economical series
of Petrobras.
|
42 |
[en] MONITORING OF THE CORUMBÁ-I DAM INSTRUMENTATION BY NEURAL NETWORKS AND THE BOX & JENKINSNULL MODELS / [pt] MONITORAMENTO DA INSTRUMENTAÇÃO DA BARRAGEM DE CORUMBÁ I POR REDES NEURAIS E MODELOS DE BOX & JENKINSJOSE LUIS CARRASCO GUTIERREZ 02 December 2003 (has links)
[pt] Neste trabalho empregou-se a técnica de redes neurais
artificiais e modelos de Box & Jenkins (1970) para análise,
modelagem e previsão dos valores de vazão e de cargas de
pressão na barragem Corumbá I, do sistema Furnas Centrais
Elétricas, a partir dos dados de instrumentação disponíveis
desde 1997. A previsão de valores prováveis pode auxiliar
em tomadas de decisão durante a operação da barragem.
A utilização de métodos estatísticos e de redes neurais
artificiais é especialmente recomendado em situações onde a
solução através de métodos determinísticos, analíticos ou
numéricos, torna-se difícil por envolver modelagens
tridimensionais, com condições de contorno complexas e
incertezas na variação espacial e temporal das propriedades
dos materiais que constituem a barragem e sua fundação.
Tradicionalmente, as análises de séries temporais são
normalmente abordadas sob a perspectiva de métodos
estatísticos, como os modelos de Box & Jenkins. No entanto,
redes neurais artificiais têm-se constituído ultimamente em
uma alternativa atraente para investigações de séries
temporais por sua capacidade de análise de problemas de
natureza não-linear e não-estacionários. Neste trabalho são
apresentadas três aplicações envolvendo o comportamento da
barragem Corumbá I: previsão das vazões através da fundação
junto à ombreira esquerda, previsão das cargas de pressão
em piezômetros instalados no núcleo central da barragem e
no solo residual de fundação e, finalmente, a previsão dos
valores das leituras em um piezômetro supostamente
danificado em determinado instante de tempo. Em todos estes
casos, os resultados obtidos pelos modelos de Box & Jenkins
e redes neurais artificiais foram bastante satisfatórios. / [en] In this work, artificial neural networks and the Box &
Jenkins models (1970) were used for analysis, modeling and
forecasts of water discharges and pressure head development
in the Corumbá-I dam, owned by Furnas Centrais Elétricas,
from the instrumentation data recorded since 1997.
Prediction of the probable values can be a powerful tool
for early detection of abnormal conditions during the dam
operation. The use of statistical methods and artificial
neural network techniques are specially recommend in
situations where a solution with a deterministic approach,
analytical or numerical, is difficult for involving three-
dimensional modeling, complex boundary conditions and
uncertainty with respect to the spatial and temporal
variation of the material properties of the dam and its
foundation. Time series analyses are traditionally carried
out using a statistical approach, such as the Box & Jenkins
models. However, artificial neural networks have become in
the recent years an attractive alternative for time series
problems due to their inherent ability to analyze nonlinear
and non-stationary phenomena. Three applications of time
series analysis, related to the instrumentation data
collected from Corumba-I dam, are presented and discussed
in this thesis: forecast of water discharges through the
foundation near the dam left abutment, prediction of
pressure heads in piezometers installed in the impermeable
central core and the residual soil foundation and, finally,
prediction of the pressure heads that would be read in a
piezometer that, at a given instant of time, stops working
being supposedly damaged. In all these cases, the results
obtained from the Box & Jenkins models as well as the
artificial neural networks are quite satisfactory.
|
43 |
[en] FUZZYFUTURE: TIME SERIES FORECASTING TOOL BASED ON FUZZY-GENETIC HYBRID SYSTEM / [pt] FUZZYFUTURE: FERRAMENTA DE PREVISÃO DE SÉRIES TEMPORAIS BASEADA EM SISTEMA HÍBRIDO FUZZY-GENÉTICOVICTOR BARBOZA BRITO 20 October 2011 (has links)
[pt] A previsão de séries temporais está presente em diversas áreas como os
setores elétrico, financeiro, a economia e o industrial. Em todas essas áreas, as
previsões são fundamentais para a tomada de decisões no curto, médio e longo
prazo. Certamente, as técnicas estatísticas são as mais utilizadas em problemas
de previsão de séries, principalmente por apresentarem um maior grau de
interpretabilidade, garantido pelos modelos matemáticos gerados. No entanto,
técnicas de inteligência computacional têm sido cada vez mais aplicadas em
previsão de séries temporais no meio acadêmico, com destaque para as Redes
Neurais Artificiais (RNA) e os Sistemas de Inferência Fuzzy (FIS). Muitos são os
casos de sucesso de aplicação de RNAs, porém os sistemas desenvolvidos são
do tipo caixa preta, inviabilizando uma melhor compreensão do modelo final de
previsão. Já os FIS são interpretáveis, entretanto sua aplicação é comprometida
pela dependência de criação de regras por especialistas e pela dificuldade em
ajustar os diversos parâmetros como o número e formato de conjuntos e o
tamanho da janela. Além disso, a falta de pessoas com o conhecimento
necessário para o desenvolvimento e utilização de modelos baseados nessas
técnicas também contribui para que estejam pouco presentes na rotina de
planejamento e tomada de decisão na maioria das organizações. Este trabalho
tem como objetivo desenvolver uma ferramenta computacional capaz de realizar
previsões de séries temporais, baseada na teoria de Sistemas de Inferência
Fuzzy, em conjunto com a otimização de parâmetros por Algoritmos Genéticos,
oferecendo uma interface gráfica intuitiva e amigável. / [en] The time series forecasting is present in several areas such as electrical,
financial, economy and industry. In all these areas, the forecasts are critical to
decision making in the short, medium and long term. Certainly, statistical
techniques are most often used in time series forecasting problems, mainly
because of a greater degree of interpretability, guaranteed by the mathematical
models generated. However, computational intelligence techniques have been
increasingly applied in time series forecasting in academic research, with
emphasis on Artificial Neural Networks (ANN) and Fuzzy Inference Systems
(FIS). There are many cases of successful application of ANNs, but the systems
developed are black box, not allowing a better understanding of the final
prediction. On the other hand the FIS are interpretable, but its application is
compromised by reliance on rule-making by experts and by the difficulty in
adjusting the various parameters as the number and shape of fuzzy sets and the
window size. Moreover, the lack of people with the knowledge necessary for the
development and use of models based on these techniques also restricts their
application in the routine planning and decision making in most organizations.
This work aims to develop a computational tool able to make forecasts of time
series, based on the theory of Fuzzy Inference Systems, in conjunction with the
optimization of parameters by Genetic Algorithms, providing an intuitive and
friendly graphical user interface.
|
44 |
[en] DEMAND FORECAST: A CASE STUDY IN SUPPLY CHAIN / [pt] PREVISÃO DE DEMANDA: ESTUDO DE CASO NA CADEIA DE SUPRIMENTOSACHILES RAMOS RIBEIRO 08 November 2017 (has links)
[pt] A presente dissertação tem como principal objetivo a conceituação e apresentação das metodologias básicas de previsão de demanda e, a partir de um estudo de caso, a seleção da metodologia mais adequada e sua respectiva implantação. No primeiro capítulo é apresentada, além da importância do referido tema, a empresa selecionada para aplicação dos conceitos levantados, com a descrição de seus principais processos internos. No segundo capítulo foram abordados os conceitos de previsão de demanda e uma revisão dos principais modelos existentes. No capítulo seguinte, o problema que deverá ser tratado com a metodologia proposta é apresentado. Neste momento a metodologia conceituada é aplicada, através da seleção do método de previsão mais adequado ao caso estudado e respectiva modelagem, buscando melhorias em relação aos métodos de previsão existentes na empresa. Neste processo de modelagem utilizou-se o software Forecast Pro, um dos mais conceituados aplicativos de previsão de demanda no mercado. Por fim, na conclusão, avalia-se o impacto das mudanças propostas nos resultados da empresa, principalmente o aumento da precisão da previsão da demanda e, conseqüentemente, redução dos custos de importação e dos índices de stockout. / [en] The main objective of this dissertation is the presentation of basic forecasting methods and their implementation in a case study in supply chain. The first chapter points out the importance of forecasting in this context and describes the company selected for the case study and some of its internal
processes that will be under scrutiny in the case study presented in this dissertation. The second chapter discusses the concepts and models of forecasting and reviews some of the major techniques in the field. In chapter three, standard forecasting techniques are apllied to real data (ten time series) from the company
and select the most appropriate model in each case. Model adjustment is performed through the Forecast Pro software, one of the best-known products in the market. Chapter four contains the conclusions and the evaluation of the impacts of the proposed methodology on the company s results, especially the
increased accuracy of forecasting and, consequently, the reduction in the import costs and stock out index.
|
45 |
[en] ESTIMATION OF THE SHORTAGE EFFECTS IN LOAD FORECASTING / [pt] ESTIMATIVA DOS EFEITOS DO RACIONAMENTO NAS PREVISÕES DE CARGA ELÉTRICAMARCELO PIERI FERREIRA 01 March 2004 (has links)
[pt] Esta dissertação investiga os efeitos do racionamento de
energia elétrica ocorrido no período entre junho de 2001 a
fevereiro de 2002, nas previsões de energia das principais
concessionárias brasileiras. Para tal, estudamos o
desempenho de modelos lineares e não-lineares. Dentre os
modelos lineares, analisamos os modelos ARIMA (p,d,q) de
Box & Jenkins e os modelos de amortecimento exponencial de
Holt & Winters. Dentre os modelos não-lineares, são
abordadas técnicas de inteligência artificial tais como
Redes Neurais e Lógica Fuzzy. Visto que o racionamento
levou a previsões ineficientes, propomos alternativas para
reduzir seu impacto. Por último, investigamos os impactos
causados pela crise energética nas previsões doze passos à
frente de carga elétrica provenientes de vinte e oito
concessionárias. A base de dados é composta pelos valores
observados e as previsões fornecidas pelo PREVCAR, um dos
sistemas de previsão da cadeia oficial de programas do
setor elétrico brasileiro. Por meio de um procedimento de
Análise de Agrupamento utilizando Redes Neurais Artificiais
do tipo SOM (Self Organizing Map) de Kohonen são
estabelecidos os grupos de concessionárias que possuem os
mesmos comportamentos diante do racionamento. Como
resultado final, foram estimados fatores de redução das
previsões causados pelo racionamento, que servem como base
de cálculo para reduções nas previsões futuras em períodos
de crise de abastecimento. / [en] This dissertation aims at an exploratory study of impacts
caused by the 2001 energy crisis on the current forecasts
produced on a monthly basis for main distributing
utilities. For that we show an accuracy study of the
performance of the linear and non-linear models. It has
been used, within the linear models class, the modeling
approach of Box-Jenkins and exponential smoothing of Holt-
Winters. Within the non-linear ones, it was chosen those
based on artificial intelligence techniques, such as Fuzzy
Logic and Artificial Neural Network. Due to the lack of
accuracy of the models to cope with the discontinuities
provoked by the crisis on the forecasts, some alternative
tools to reduce the impact on the forecast errors are
proposed. Finally, the impacts caused by the crisis on
multiple steps ahead forecasts have also been
investigated. It was taken the monthly forecasts produced
by PREVCAR (one of official Brazilian load forecasting
system), as well as the observed values covering the same
period, to create the crisis response indices series for
each one of the twenty and eight utilities included in the
analysis. It was also used the well-known neural network
based algorithm SOM (Self Organizing Maps) to classify the
utilities into homogeneous groups, according to their
response to the energy crisis. As a final result, for each
group, it was estimated the reduction factors that can be
used as a prior information in future energy supply
crisis.
|
46 |
[en] MODELING AND FORECASTING THE ELECTRICITY CONSUMPTION SERIES IN BRAZIL WITH PEGELS EXPONENTIAL SMOOTHING TECHNIQUES AND BOTTOM UP APPROACH PER END USE / [pt] MODELAGEM E PREVISÃO DAS SÉRIES DE CONSUMO DE ENERGIA ELÉTRICA NO BRASIL COM MÉTODOS DE SUAVIZAÇÃO EXPONENCIAL DE PEGELS E ABORDAGEM BOTTOM UP POR USO FINALPAULA MEDINA MACAIRA 05 January 2016 (has links)
[pt] Desde 2001, quando ocorreu uma crise no setor energético brasileiro, o planejamento e, consequentemente, a previsão do consumo de energia a médio e longo prazo do consumo de eletricidade vem sendo prioridade. A Empresa de Pesquisa Energética, por meio do Plano Decenal de Energia e do Plano Nacional de Energia, é a responsável por publicar tais previsões, tendo como versão mais atual os horizontes de 2023 e 2050, respectivamente. Este trabalho tem como objetivo principal modelar e prever as séries de consumo através de duas abordagens, top down e bottom up. Para a primeira utiliza-se os métodos de suavização exponencial de Pegels e para a segunda, aplica-se, o modelo FORECAST-Residential, desenvolvido pelo Fraunhofer Institute. O modelo top down é o responsável por modelar e prever o consumo de energia elétrica do Brasil agregado e desagregado por classes de consumo, enquanto que o bottom up será utilizado somente nas séries do setor residencial, em cada região geográfica. Além da previsão com o melhor modelo dentro do histórico para o primeiro caso, para as técnicas Standard e Damped Pegels otimiza-se os hiperparâmetros a fim de ajustar cada um dos valores projetados com as pesquisas disponibilizadas pela EPE. Os resultados mostraram que com a abordagem top down foi possível prever o consumo de eletricidade até 2050 para todos os setores energéticos e ajustar os parâmetros para cada um dos casos propostos; e, com a abordagem bottom up, chegou-se a valores considerados prováveis para o setor residencial do Brasil. Finalmente, é possível concluir que todos os resultados aqui são muito promissores e dão direções para futuros aperfeiçoamentos. / [en] After the 2001 energy crises in Brazil, the energy sector priority has been the planning and consequently the forecast middle and long term energy consumption. The Energy Research Company (EPE for short) is in charge of publishing two official reports: The Ten Year Energy Planning and The National Energy Planning which contain, among other things, the forecast for longer lead times. In the present formulation these horizons are 2023 and 2050. This work aims to model and predict the consumption series with two approaches, top down and bottom up. The first uses Pegels exponential smoothing methods and for the second is applied the model FORECAST Residential, developed by the Fraunhofer Institute, Germany. The top-down model is responsible for modeling and predicting Brazil energy consumption aggregated and disaggregated by class of consumption, while the bottom up will be used only in the residential sector, but for each geographic region. In addition to the forecast with the best model in sample for the top down case, an optimization of the model hyper parameters is carried out in order to adjust each of the projected values with the figures provided by EPE. The results obtained show that with the top down approach it is possible to predict satisfactorily the electricity consumption up to 2050 for all energy sectors; and the bottom up approach produce forecasts very likely to occur in the future. Finally, it is possible to conclude that all the results obtained here are very promising and give directions for future improvements.
|
47 |
[en] ESTIMATING VAR MODELS FOR THE TERM STRUCTURE OF INTEREST RATES / [pt] ESTIMANDO UM MODELO VAR PARA A ESTRUTURA A TERMO DA TAXA DE JUROS NO BRASILREGINA KAZUMI FUKUDA 12 March 2007 (has links)
[pt] Nessa dissertação seguimos o artigo de Evans e Marshall
(1998) e propomos novas abordagens para modelar o
desenvolvimento conjunto de variáveis macroeconômicas e
retornos de títulos de renda fixacom diversas maturidades.
Os modelos são estimados e comparados com outros, já
tradicionais na literatura, baseados em modelos auto-
regresivos univariados ou de correção de erros. em
seguida, os novos modelos são utilizados para avaliar se a
informação contida nas variáveis macroeconômicas e na
estrutura a termo das taxas de juros ajuda a melhorar a
capacidade de previsão. A principal conclusão é que, se o
interese maior está em previsões de curto prazo, então não
há melhoria significativa ao agregar outras informações
que não sejam aquelas já contidas em observações passadas
do próprio rendimento em questão. se, no entanto, o
interesse maior está em previsões de longo prazo (que é o
caso de fundos de previdência, sejam eles abertos ou
fechados), então a informação inerente às variáveis
macroeconômicas consegue melhorar o desempenho preditivo. / [en] In this dissertation we follow Evans and Marshall (1998)
and propose new
approaches for modeling the joint development of macro
variables and the
returns of government bond yields of several maturities.
The models are
estimated and compared with other forecasting schemes
previously proposed
in the literature, especially those relying on univariate,
VAR and error
correction methods. The models are then used to judge the
hypothesis
that the information content of macro variables and the
term structure
of interest rates as a whole helps improving forecasting
performance. Our
main conclusion is quite simple: if one is interested in
computing short
term forecasts, then there is no significant improvement
in incorporating
information other than the one already present in past
observations of the
yield at hand; however, if one worries about long term
forecasts (which is
frequently the case of pension insurance companies), then
the information
content of macro variables and the term structure can
improve forecasting
performance
|
48 |
[en] RAIN ATTENUATION TIME SERIES SYNTHESIZERS FOR TERRESTRIAL LINKS / [pt] SINTETIZAÇÃO DE SÉRIES TEMPORAIS DE ATENUAÇÃO POR CHUVAS EM ENLACES TERRESTRESFERNANDO JOSE DE ALMEIDA ANDRADE 19 January 2011 (has links)
[pt] A atenuação por chuva é a causa principal de indisponibilidade em enlaces terrestres de rádio operando em frequências acima de 10 GHz. Devido às condições adversas de propagação, técnicas de mitigação de desvanecimentos são necessárias. Para desenvolver e otimizar estas técnicas, é preciso conhecer a distribuição cumulativa de atenuação por chuva e o comportamento dinâmico do canal de propagação, em termos das estatísticas de duração de desvanecimentos e de fade-slope. Esta necessidade é preenchida pelo uso de séries temporais que introduzem a deterioração da propagação nos sistemas de simulação. Estas séries podem ser de dados experimentais ou dados sintetizados que considerem as características climatológicas da região do enlace e os parâmetros geométricos e de propagação do mesmo. Três modelos para sintetização de séries temporais de longo prazo de atenuação por chuva são apresentados e testados neste trabalho utilizando dados medidos em cinco enlaces terrestres operando na faixa de frequência de 15 GHz. O primeiro modelo foi originalmente desenvolvido para enlaces satélite em climas temperados enquanto o segundo é uma versão modificada, proposta neste trabalho para enlaces terrestres em áreas tropicais. O terceiro modelo é proposto neste trabalho com base numa modelagem estatística da atenuação por chuva através da distribuição Gamma. Séries temporais foram sintetizadas pelos três modelos e suas estatísticas foram comparadas com as estatísticas dos dados experimentais. Os três modelos apresentam bons resultados em diversas situações analisadas, mas o terceiro modelo proporciona resultados significativamente melhores para distribuições de atenuação e fade-slope. / [en] Rain attenuation is the main cause of unavailability in fixed terrestrial radio systems operating at frequency of above 10 GHz in tropical areas. Propagation impairments are expected to be quite severe in these regions. Due to these adverse propagation conditions, Fade Mitigating Techniques (FMT) are often needed. To design and optimize FMT, the knowledge of the cumulative distribution of rain attenuation and of the dynamic behavior of the propagation channel, as provided by fade durations and fade slope statistics, is required. This need can be fulfilled by the introduction of time series of propagation impairments in system simulation. If real data collected from propagation experiments are not available, typical fading time-series may be generated making use of climatologic characteristics as well as geometrical and radiowave parameters of the link. Three models for long-term rain attenuation time series synthesizers are presented and tested in this work using data measured in five terrestrial radio links operating at 15 GHz. The first one was originally developed for satellite systems in temperate climates whereas the second one is a modified version proposed in this work for terrestrial links in tropical areas. A third model is proposed in this work and is based on a different approach using the Gamma distribution. Time series were synthesized by the three models and stationary and dynamic statistics between synthesized and experimental data were compared. The first two models provide good results in some cases but the third model provides significantly better results for cumulative distributions of attenuation and fade-slope.
|
49 |
[en] CONSERVATIVE MANAGED ENTERPRISES: DEMAND FORECAST AND COMPUTER SIMULATION POTENTIAL / [pt] EMPRESAS DE GESTÃO CONSERVADORA: POTENCIAL DA PREVISÃO DE DEMANDA E SIMULAÇÃO COMPUTACIONALALEXANDRE MAGNO CASTANON GUIMARAES 14 June 2017 (has links)
[pt] Esta dissertação tem como objetivo mostrar o potencial da aplicação das ferramentas Previsão de Demanda e Simulação Computacional em uma unidade produtiva com administração de característica familiar, que não adota as modernas técnicas propostas por especialistas para a gestão da cadeia de suprimento. Para isso, foram abordados os conceitos e os aspectos fundamentais, bem como as principais etapas, os benefícios, as limitações e as dificuldades da utilização dessas ferramentas. Além disso, foi proposta uma metodologia que aumentou a precisão da Previsão de Demanda. Com os dados obtidos foi possível analisar o desempenho dos fluxos dos processos simulados, o que permite auxiliar na gestão dos recursos, levando-se em conta principalmente a variabilidade da demanda e as incertezas dos mercados. Nessas análises foram utilizados os softwares Statgraphics Centurion e Arena a fim de elaborar, respectivamente, os modelos de previsão de demanda e de simulação computacional para o estudo de caso proposto. / [en] This thesis aims to show the potential of the Demand Forecast and Computer Simulation techniques carried out in a manufacturing plant with family administration feature that does not use the modern techniques proposed by Supply Chain management experts. In order to study the subject; concepts, fundamental principles, important steps, advantages, limitations as well as the difficulties of using those tools were investigated. In addition, a new method was proposed which resulted in the improvement of the demand forecast accuracy. With the forecasted data, it was possible to analyze the performance of the simulated manufacture flows. Such procedures improved the management of resources while the demand variability and the uncertainties of markets were considered. The Statgraphics Centurion and Arena softwares were used in order to developed, respectively, models for Demand Forecast and Computer Simulation for the study proposed.
|
50 |
[en] SOCCER CHAMPIONSHIP PROBABILITS ESTIMATION / [pt] ESTIMAÇÃO DE PROBABILIDADES EM CAMPEONATOS DE FUTEBOLEDUARDO LIMA CAMPOS 26 October 2001 (has links)
[pt] Neste trabalho, apresentamos uma metodologia para obter
probabilidades de classificação e rebaixamento de equipes
em campeonatos de futebol. A metodologia consiste
basicamente em quatro etapas. Na primeira etapa, ajustamos
modelos de séries temporais para dados de contagem a séries
de gols a favor e sofridos pelas equipes em partidas
sucessivas do campeonato, utilizando variáveis explicativas
para considerar o efeito do mando de campo, da participação
de determinados jogadores e de mudanças de técnico.
Alguns problemas referentes à construção de intervalos de
confiança e testes de hipóteses para os hiperparâmetros dos
modelos foram solucionados via bootstrap.
Na segunda etapa, obtivemos as distribuições de
probabilidade associadas aos resultados das partidas
futuras do campeonato, utilizando o Princípio da Máxima
Entropia para combinar as distribuições preditivas dos
modelos ajustados. Na terceira etapa, utilizamos as
distribuições dos resultados das partidas futuras para
simular cenários para o campeonato e, na quarta e última
etapa, estimamos as probabilidades de classificação e
rebaixamento das equipes, pela freqüência relativa da
ocorrência destes eventos em um grande número de cenários
gerados. A metodologia foi aplicada no Campeonato
Brasileiro/1999 e na Copa João Havelange/2000. / [en] In this thesis, we develop a methodology to obtain the
probabilities of qualifying and relegating of teams, in
soccer championships. The methodology consists of four steps.
In the first step, we fit time series models to the series
of number of goals scored in soccer matches. We account for
the effects of playing at home, soccer players and changes
of coaches, by introducing explanatory variables.
Confidence intervals and hipothesis tests are obtained by
bootstrap. In the second step, we get probability
distributions of the future matches results, by combining
preditive distributions of the fitted models via the
Maximum Entropy Principle. In the third step, we use the
distributions of the matches results to generate
simulation sceneries for the champhionship. In the forth
and last step, we finally estimate the probabilities of
qualifying and relegating of the teams, through the
relative frequencies of these events, in a great number of
sceneries generated. The empirical work was carried out
using data from Brazilian Champhionship/1999 and João
Havelange Cup/2000.
|
Page generated in 0.0509 seconds