51 |
[en] A SPECTRAL SEQUENTIAL APPROACH TO STUDY NON-STATIONARY TIME SERIE / [pt] UMA ABORDAGEM SEQÜENCIAL ESPECTRAL NO ESTUDO DE SÉRIES TEMPORAIS NÃO ESTACIONÁRIASMAYSA SACRAMENTO DE MAGALHAES 07 August 2006 (has links)
[pt] Diferentes procedimentos têm sido propostos para a
modelagem e previsão de séries temporais sendo que nos
anos recentes muitos dos métodos mais importantes têm sido
formulados na representação espaço de estado. A principal
vantagem de tal abordagem é que se pode usar o Filtro de
Kalman diretamente para, seqüencialmente, atualizar o
vetor de estado.
Apresentamos de forma sistemática a abordagem para a
previsão de Séries Temporais não- Estacionárias formulada
na representação de espaço de estado desenvolvida por
P.Young. A novidade desta abordagem não está na natureza
dos algoritmos recursivos, e sim na maneira como os
hiperparâmetros são obtidos.
Modelling and forecasting of Time Series have been
approached in many different ways. Lately, the most
important approaches have been formulated in a state space
framework. The state space representation enables the
state vector to be sequentially updated in time via the
Kalman filter.
In this dissertation, we present in a systematic way an
approach to modelling and forecasting of non-stationary
time series, formulated in state space terms, and due to
P. Young. The novelty of this methodology is neither the
nature fo the time series models nor the recursive
algorithms, but on how the hyperparameters are estimated / [en] Modelling and forecasting of times Series have been
approached in many different ways. Lately, the most
important approaches have been formulated in a space
framework. The state space representation enables the
state vector to be sequencially updated in time via the
Kalman filter.
In this dissertation, we present in a systematic way an
approach to modelling and forecasting of non-stationary
time series, formulated in state space terms, and due to
P. Young. The novelty of this methodology is neither the
nature of the time series models nor the recursive
algorithms, but on how the hyperparameteres are estimated
|
52 |
[en] SEMIPARAMETRIC POISSON-GAMMA MODELS: A ROUGHNESS PENALTY APPROACH / [pt] MODELO POISSON-GAMA SEMI-PARAMÉTRICO: UMA ABORDAGEM DE PENALIZAÇÃO POR RUGOSIDADEWASHINGTON LEITE JUNGER 19 February 2004 (has links)
[pt] Neste trabalho, os modelos Poisson-gama são estendidos
para
uma formulação mais geral onde o preditor linear das
covariáveis é substituído por um preditor aditivo de
funções genéricas destas covariáveis. Como nos modelos
aditivos generalizados (MAG), as funções lineares das
covariáveis constituem um caso particular de modelo
aditivo
e as funções suavizadores utilizadas são as splines
cúbicas
naturais. A formulação semi-paramétrica permite ampliar o
campo de aplicação desta classe de modelos. Os modelos
semi-paramétricos são estimados por um processo iterativo
combinando maximização da verossimilhança e algoritmo
backfitting. Todos os algoritmos de estimação e
diagnósticos estão implementados nas linguagens de
programação R e C. / [en] This work is aimed at extending the Poisson-Gamma models
towards a more general specification, where the linear
predictor of covariates is replaced by an additive
predictor of generic functions of these covariates. Just
like the generalized additive models (GAM), the linear
functions of covariates are a particular case of additive
models and the natural cubic splines are used as smoothing
functions. The semiparametric specification allows to
enlarge the possibilities of application of these models.
The semiparametric models are fitted by an iterative
process that combines maximization of likelihood and
backfitting algorithm. All the routines for model fitting
and diagnostics are implemented in R and C programming
languages.
|
53 |
[en] IMPACT OF DEMAND FORECASTING INACCURACY ON THE SUPPLY CHAIN: A CASE STUDY IN THE BEVERAGE INDUSTRY / [pt] IMPACTO DA IMPRECISÃO DA PREVISÃO DE DEMANDA NA CADEIA LOGÍSTICA: UM ESTUDO DE CASO NA INDÚSTRIA DE BEBIDASPAULO MENDES DE OLIVEIRA JUNIOR 19 January 2005 (has links)
[pt] Esta dissertação teve como objetivo desenvolver uma metodologia e
aplicá-la em uma indústria de bebidas, a fim de mensurar o impacto da
imprecisão da previsão de demanda nos processos logísticos de gestão de
estoque, distribuição física e vendas, demonstrando a importância que a
previsão possui no planejamento e na execução dos processos logísticos.
Para atingir os objetivos propostos acima, foi realizada uma breve revisão
conceitual dos principais métodos de previsão de demanda e de cada um dos
três processos logísticos em estudo. Em seguida, foram detalhadas as etapas da
metodologia e aplicadas aos dados de 3 depósitos da empresa analisada. Como
desdobramento da aplicação da metodologia, foram identificadas oportunidades
de melhoria e elaboradas propostas de mudanças para o processo de previsão
atual.
A aplicação da metodologia e a implementação das alterações propostas
permitiu à empresa aumentar o nível de precisão da previsão de demanda de
todos os principais SKUs e melhorar a comunicação entre todos os elos da
cadeia de valor. Com esta maior precisão da previsão de demanda será possível
melhorar a alocação dos recursos físicos e humanos, reduzir os custos
operacionais e atingir os requisitos de nível de serviço requeridos pelos clientes. / [en] This thesis has the objective of developing and applying a
methodology to
measure the impact of demand forecast inaccuracy in the
supply chain of a
beverage industry, specifically in the inventory
management, physical distribution
and sales processes. The purpose is to create an awareness
of the importance of
forecasting area in the logistics planning and execution
activities.
To achieve these goals, a conceptual review of the major
demand
forecasting methods and of the three logistics processes
under analysis has been
made. After that, a methodology was defined and applied to
three different
warehouse data sets of the company analyzed. As a result of
the methodology
application, some opportunities for process improvement
were identified and
some changes were proposed for the current demand
forecasting process.
The results of methodology application and proposed actions
implementation allowed the company to increase the demand
forecasting
accuracy for the major SKUs and to improve communication
among the different
links of the supply chain. Based on more accurate
forecasts, the company will be
able to better allocate physical and human resources,
reduce operational costs
and achieve the required customer service level.
|
54 |
[pt] PREVISÃO DE VELOCIDADE DO VENTO UTILIZANDO SINGULAR SPECTRUM ANALYSIS / [en] WIND SPEED PREDICTION USING SINGULAR SPECTRUM ANALYSISLARISSA MORAES DANTAS CAMPOS 14 September 2020 (has links)
[pt] Uma mudança de paradigma no mundo todo foi ocasionada pelo aumento da preocupação quanto ao uso de combustíveis fósseis usados como principal fonte de geração elétrica, a correspondente mudança climática e os danos ambientais crescentes. Nos últimos anos, a energia eólica apresentou um crescimento incessante como alternativa sustentável para a produção de eletricidade, o que pode ser observado a partir do crescimento de sua capacidade instalada mundialmente. O Brasil está entre os dez países que tem as maiores capacidades instaladas, e apresentou 9,42 por cento de geração de energia elétrica advinda da fonte eólica em 2019. No entanto, a aleatoriedade e a intermitência do vento são os maiores desafios na integração dessa fonte no sistema de energia. Diante deste contexto, esta pesquisa propõe a aplicação da técnica Singular Spectrum Analysis (SSA) como método de previsão para uma série de velocidade eólica no Brasil, fazendo uma análise comparativa de modelos SSA considerando diferentes horizontes de previsão e conjunto de treinamento para diferentes dias de previsão, com diferentes tamanhos de série temporal. Deste modo, é comparada a série temporal do ano todo com somente o último mês desta série para prever os últimos sete dias do mês de dezembro. Os resultados dessa aplicação mostram que para a maioria dos dias a utilização do ano todo como conjunto de treinamento obteve melhor desempenho, indicando que o uso da técnica SSA pode ser uma alternativa para séries temporais com uma grande quantidade de dados. / [en] A paradigm shift around the world was caused by increased concern about the use of fossil fuels used as the main source of electricity generation, the corresponding climate change and increasing environmental damage. In recent years, wind energy has shown steady growth as a sustainable alternative for electricity production, which can be seen from the growth of its installed capacity worldwide. Brazil is among the ten countries that have the largest installed capacities, and presented 9.42 percent of electricity generation from the wind source in the last year. However, wind randomness and intermittency are the biggest challenges in integrating this source into the energy system. In this context, this research proposes the application of the Singular Spectrum Analysis (SSA) technique as a forecast method for a series of wind speed in Brazil, making a comparative analysis of SSA models considering different forecast horizons and training set for different days forecast, with different time series sizes. In this way, the time series of the whole year is compared with only the last month of this series to forecast the last seven days of the month of December. The results of this application show that for most days the use of the whole year as a training set obtained better performance, indicating that the use of the SSA technique can be an alternative for time series with a large amount of data.
|
55 |
[pt] MODELOS E APLICAÇÕES PARA SÉRIES TEMPORAIS HIERÁRQUICAS: ABORDAGENS DE RECONCILIAÇÃO ÓTIMA E PROPORÇÕES DE PREVISÃO / [en] MODELS AND APPLICATIONS TO HIERARCHICAL TIME SERIES: APPROACHES OF RECONCILIATION OPTIMAL AND FORECAST PROPORTIONSTHAISA DE FREITAS 30 August 2016 (has links)
[pt] Séries Temporais que podem ser organizadas em níveis de acordo com, por exemplo, o tipo de produto, região geográfica, classe de consumo, dentre outros, são chamadas de Séries Temporais Hierárquicas (ou agrupadas, quando possuem mais de uma variável de agregação). Informações referentes à previsão destas séries são fundamentais para a tomada de decisão seja no nível gerencial ou operacional de todo tipo de negócio. Para atender a essas informações, são utilizadas técnicas de previsão hierárquica, que têm como foco reduzir os custos e melhorar a acurácia da previsão. O objetivo deste trabalho é estudar abordagens para agregar/desagregar previsões feitas para Séries Temporais Hierárquicas ou Agrupadas. Como resultado do trabalho destaca-se a apresentação das abordagens que representam o estado da arte em previsão hierárquica: Reconciliação Ótima (também chamada de Combinação Ótima) e Top-Down baseada na Proporção das Previsões. Ainda referente aos resultados destaca-se a análise das diversas técnicas de previsão hierárquica encontradas na literatura aplicadas a duas séries clássicas do contexto brasileiro: a série agrupada de consumo de energia elétrica agregada por região do país e classe de consumo, e a série hierárquica de demanda de transporte aéreo representada pela variável RPK (Revenue Passenger Kilometers). O desempenho preditivo das abordagens foi avaliado com base na métrica MAPE, e o teste de Diebold-Mariano foi aplicado para verificar se a diferença no desempenho das abordagens novas e tradicionais é significativa. / [en] Time Series which can be arranged in levels according to, for example, the type of product, geography, consumption class, among others, are called Hierarchical Time Series (or grouped, if they have more than one aggregation variable). Information relating these series prediction is fundamental for decision-making at the management or operational level of all types of business. To meet these information, hierarchical forecasting techniques are used, which are focused on reducing costs and improving the accuracy of prediction. The objective of this work is to study approaches to aggregate / disaggregate predictions for Hierarchical or Grouped Time Series. As a result of the work there is the presentation of the approaches that represent the state of the art hierarchical forecast: Optimal Reconciliation approach (also called the Optimal Combination) and Top-Down Forecast Proportions approach. Still on the results highlight the analysis of the various hierarchical forecasting techniques found in the literature applied to two classic series of the Brazilian context: a grouped series of electricity consumption aggregated by region of the country and consumer class, and the hierarchical series air transport demand represented by the variable RPK (Revenue Passenger Kilometers). The predictive performance of the approaches was evaluated based on the metric MAPE and the Diebold-Mariano test was used to verify that the difference in performance of new and traditional approaches is significant.
|
56 |
[en] TEMPORAL MODELLING OF THE WATER DISCHARGES MEASUREMENTS ON FUNIL DAM (RJ) USING NEURAL NETWORK AND STATISTICAL METHODS / [pt] MODELAGEM TEMPORAL DAS MEDIDAS DE VAZÃO DE DRENOS NA BARRAGEM DE FUNIL (RJ) UTILIZANDO REDES NEURAIS E MÉTODOS ESTATÍSTICOSJANAINA VEIGA CARVALHO 15 September 2005 (has links)
[pt] Em obras de maior porte e grande responsabilidade (portos,
barragens,
usinas nucleares, etc.), a quantidade de instrumentações
pode se tornar suficiente
para permitir a construção de modelos de variabilidade
temporal das propriedades
de interesse com base em redes neurais artificiais. No caso
de barragens, o
monitoramento através da instalação de um sistema de
instrumentação
desempenha um papel fundamental na avaliação do
comportamento destas
estruturas, tanto durante o período de construção quanto no
período de operação.
Neste trabalho empregou-se a técnica de redes neurais
temporais (RNT) para
análise, modelagem e previsão dos valores de vazão na
barragem Funil, do
sistema Furnas Centrais Elétricas, a partir dos dados de
instrumentações
disponíveis no período compreendido entre 02/09/1985 e
25/02/2002. As redes
neurais temporais empregadas foram: RNT com arquitetura
feedforward associada
a técnica de janelamento, RNT recorrente Elman, RNT FIR e
RNT Jordan.
Adicionalmente, foram utilizadas duas técnicas para análise
das séries temporais:
os modelos de Box & Jenkins (1970) e métodos
geoestatísticos, com a finalidade
de comparar com o desempenho das RNT´s. Nesta pesquisa
estuda-se ainda a
geração de intervalos de confiança para RNT e para métodos
geoestatísticos. As
previsões de vazão analisadas neste trabalho, envolvendo o
comportamento da
barragem Funil, apresentaram resultados satisfatórios tanto
os obtidos pelos
modelos de redes neurais temporais como pelos de Box &
Jenkins e métodos
geoestatísticos. / [en] In works of great responsibility (ports, dams, nuclear
power, etc.), the
amount of instrumentation data may allow the construction
of models for the
temporary variability of the properties of interest based
on neural network
techniques. In case of dams, the monitoring through the
installation of an
instrumentation system plays a fundamental part in the
evaluation of the behavior
of these structures, during the construction period as well
as in the operation
period. In this work the technique of temporal neural
networks (TNN) was used
for analysis, modeling and forecast of the water discharges
values in the Funil
dam, from Furnas Centrais Elétricas system, starting from
the data of available
instrumentation in the period between 02/09/1985 and
25/02/2002. The temporal
neural networks used in this research were the following:
TNN with feedforward
architecture and the windowing technique, recursive TNN
Elman, TNN FIR and
TNN Jordan. Two additional techniques (Box & Jenkins and
geostatistical
models) were employed for analysis of the time series with
the purpose to
compare the results obtained with neural networks. In this
research the generation
of confidence intervals for TNN and geostatistical methods
were also investigated.
The discharge values forecasts analyzed in this work for
the Funil dam presented
satisfactory results, with respect to the neural network,
Box & Jenkins and
geostatistical methods.
|
57 |
[en] A HYBRID NEURO- EVOLUTIONARY APPROACH FOR DYNAMIC WEIGHTED AGGREGATION OF TIME SERIES FORECASTERS / [pt] ABORDAGEM HÍBRIDA NEURO-EVOLUCIONÁRIA PARA PONDERAÇÃO DINÂMICA DE PREVISORESCESAR DAVID REVELO APRAEZ 18 February 2019 (has links)
[pt] Estudos empíricos na área de séries temporais indicam que combinar
modelos preditivos, originados a partir de diferentes técnicas de modelagem,
levam a previsões consensuais superiores, em termos de acurácia, às previsões
individuais dos modelos envolvidos na combinação. No presente trabalho é
apresentada uma metodologia de combinação convexa de modelos estatísticos de
previsão, cujo sucesso depende da forma como os pesos de combinação de cada
modelo são estimados. Uma Rede Neural Artificial Perceptron Multi-camada
(Multilayer Perceptron - MLP) é utilizada para gerar dinamicamente vetores de
pesos ao longo do horizonte de previsão, sendo estes dependentes da contribuição
individual de cada previsor observada nos dados históricos da série. O ajuste dos
parâmetros da rede MLP é efetuado através de um algoritmo de treinamento
híbrido, que integra técnicas de busca global, baseadas em computação
evolucionária, junto com o algoritmo de busca local backpropagation, de modo a
otimizar de forma simultânea tanto os pesos quanto a arquitetura da rede, visando,
assim, a gerar de forma automática um modelo de ponderação dinâmica de
previsores de alto desempenho. O modelo proposto, batizado de Neural Expert
Weighting - Genetic Algorithm (NEW-GA), foi avaliado em diversos
experimentos comparativos com outros modelos de ponderação de previsores,
assim como também com os modelos individuais envolvidos na combinação,
contemplando 15 séries temporais divididas em dois estudos de casos: séries de
derivados de petróleo e séries da versão reduzida da competição NN3, uma
competição entre metodologias de previsão, com maior ênfase nos modelos
baseados em Redes Neurais. Os resultados demonstraram o potencial do NEWGA
em fornecer modelos acurados de previsão de séries temporais. / [en] Empirical studies on time series indicate that the combination of forecasting
models, generated from different modeling techniques, leads to higher
consen+sus forecasts, in terms of accuracy, than the forecasts of individual
models involved in the combination scheme. In this work, we present a
methodology for convex combination of statistical forecasting models, whose
success depends on how the combination weights of each model are estimated.
An Artificial Neural Network Multilayer Perceptron (MLP) is used to generate
dynamically weighting vectors over the forecast horizon, being dependent on the
individual contribution of each forecaster observed over historical data series. The
MLP network parameters are adjusted via a hybrid training algorithm that
integrates global search techniques, based on evolutionary computation, along
with the local search algorithm backpropagation, in order to optimize
simultaneously both weights and network architecture. This approach aims to
automatically generate a dynamic weighted forecast aggregation model with
high performance. The proposed model, called Neural Expert Weighting -
Genetic Algorithm (NEW-GA), was com- pared with other forecaster
combination models, as well as with the individual models involved in the
combination scheme, comprising 15 time series divided into two case studies:
Petroleum Products and the reduced set of NN3 forecasting competition, a
competition between forecasting methodologies, with greater emphasis on
models based on neural networks. The results obtained demonstrated the
potential of NEW-GA in providing accurate models for time series forecasting.
|
58 |
[en] USING LINEAR AND NON-LINEAR APPROACHES TO MODEL THE BRAZILIAN ELECTRICITY SPOT PRICE SERIES / [pt] MODELOS LINEARES E NÃO LINEARES NA MODELAGEM DO PREÇO SPOT DE ENERGIA ELÉTRICA DO BRASILLUIZ FELIPE MOREIRA DO AMARAL 17 July 2003 (has links)
[pt] Nesta dissertação, estratégias de modelagem são
apresentadas envolvendo modelos de séries temporais
lineares e não lineares para modelar a série do preço
spot no mercado elétrico brasileiro. Foram usados, dentre
os lineares, os modelos ARIMA(p,d,q) proposto por Box,
Jenkins e Reinsel (1994) e os modelos de regressão
dinâmica. Dentre os não lineares, o modelo escolhido foi o
STAR desenvolvido, inicialmente, por Chan e Tong (1986) e,
posteriormente, por Teräsvista (1994). Para este modelo,
testes do tipo Multiplicador de Lagrange foram usados para
testar linearidade, bem como para avaliar os modelos
estimados. Além disso, foi também utilizada uma proposta
para os valores iniciais do algoritmo de otimização,
desenvolvido por Franses e Dijk (2000). Estimativas do
filtro de Kalman suavizado foram usadas para substituir os
valores da série de preço durante o racionamento de energia
ocorrido no Brasil. / [en] In this dissertation, modeling strategies are presented
involving linear and non-linear time series models to model
the spot price of Brazil s electrical energy market. It has
been used, among the linear models, the modeling approach
of Box, Jenkins and Reinsel (1994) i.e., ARIMA(p,d,q)
models, and dynamic regression. Among the non-linear ones,
the chosen model was the STAR developed, initially,
by Chan and Tong (1986) and, later, by Teräsvirta (1994).
For this model, the Lagrange Multipliers test, to measure
the degree of non linearity of the series , as well as to
evaluate the estimated model was used. Moreover, it was
also used a proposal for the initial values of the
optimization algorithm, developed by Franses and Dijk
(2000). The smoothed Kalman filter estimates were used in
order to provide values for the spot price series during
the energy shortage period.
|
59 |
[en] THE INFLUENCE OF THE SAMPLING INTERVAL IN THE LONG MEMORY ESTIMATION IN TIME SERIES / [es] INFLUENCIA DEL INTERVALO DE OBSERVACIÓN EN LA ESTIMACIÓN DE LA MEMORIA PROLONGADA / [pt] INFLUÊNCIA DO INTERVALO DE OBSERVAÇÃO NA ESTIMAÇÃO DA MEMÓRIA LONGALEONARDO ROCHA SOUZA 06 April 2001 (has links)
[pt] Esta tese de doutorado relaciona a estimação da
diferenciação fracionária, como medida de
memória longa, com o intervalo de tempo entre observações
contíguas de uma série temporal. Em
teoria, o grau de diferenciação é constante em relação à
diminuição da freqüência de observação, não
importando se para diminuir a freqüência de observação
ignore-se as observações intermediárias ou
agregue-se as observações temporalmente. Entretanto, para o
caso de se obter séries amostradas a uma
freqüência mais baixa através de se ignorar observações
intermediárias, observamos nesta tese, através
de simulações Monte Carlo, um corportamento diverso.
Quando se amostra toda n-ésima observação de uma série,
n>1, nota-se um considerável vício
de estimação do grau de diferenciação (ou parâmetro de
memória longa). O viés é em direção de zero,
sendo positivo para valores negativos do parâmetro de
memória longa e negativo para valores
positivos do parâmetro de memória longa, d. Para valores
positivos de d, o viés tem natureza
aproximadamente quadrática, diminuindo para valores de d
próximos de zero ou 0,5 e sendo mais
intenso para valores em torno de 0,25. Para valores
negativos de d, o viés é tal que a estimativa fica
sempre bem próxima de zero, ou seja, é da magnitude de d.
Ao considerarmos o efeito de aliasing (em que componentes
de período menor que o intervalo
de observação são observados como se tivessem freqüências
mais baixas) conseguimos fórmulas
heurísticas que explicam satisfatoriamente esse vício,
produzindo resultados bastante semelhantes ao
verificado nas simulações Monte Carlo.
Por outro lado, se a diminuição na freqüência de observação
é induzida por agregação
temporal, não há vício considerável na estimação, como
também mostramos atrvés de simulações
Monte Carlo.
Propõe-se nesta tese ainda uma maneira de melhorar a
estimação da memória longa através da
combinação de estimativas da série amostrada a diferentes
freqüências. Em alguns casos, consegue-se
reduções de até 30% no desvio-padrão da estimativa
combinada em relação à original, sem causar viés
significativo. / [en] This thesis investigates the relationship between the
estimation of the fractional integration, as a measure of
long memory, and the time interval between observations of
a time series. In theory, the fractional integration is
invariant to the frequency of observation. However, skip-
sampling induces a considerable bias in the estimation, as
shown by Monte Carlo simulations. The aliasing effect
explains the bias and suggests formulas for it, which yield
results very close to the simulated ones. On the other
hand, temporal aggregation does not induce relevant bias to
the long memory estimation. In addition, a combination of
estimates from the same data sampled at different rates is
proposed, achieving in some cases reduction of 30% in the
root mean squared estimation error. / [es] Esta tesis de doctorado relaciona la estimación de la
diferenciación fraccionaria, como medida de memoria
prolongada, con el intervalo de tiempo entre observaciones
contíguas de una serie de tiempo. En teoría, el grado de
diferenciación es constante en relación a la disminución de
la frecuencia de observación, sin importar que para
disminuir la frecuencia de observación se ignoren las
observaciones intermedias o se agreguen observaciones
temporalmente. Sin embargo, en esta tesis se observa, a
través de simulaciones Monte Carlo, un comportamiento
diverso en el caso de obtener series muestreadas a una
frecuencia más baja ignorando observaciones intermedias.
Cuando se muestrea la n-ésima observación de una serie,
n>1, se nota un considerable sesgo de estimación del grado
de diferenciación (o parámetro de memoria longa). El sesgo
está en dirección de cero, siendo positivo para valores
negativos del parámetro de memoria prolongada y negativo
para valores positivos del parámetro de memoria prolongada,
d. Para valores positivos de d, el sesgo tiene una
naturaleza aproximadamente cuadrática, disminuyendo para
valores de d próximos de cero o 0,5 y siendo más intenso
para valores en torno de 0,25. Para valores negativos de d,
el sesgo es tal que la estimativa está siempre bien próxima
de cero, o sea, es de la magnitude de d. Al considerar el
efecto de aliasing (en que componentes de período menor que
el intervalo de observación son observados como se tuvieran
frecuencias más bajas) conseguimos fórmulas heurísticas que
explican satisfactoriamente ese sesgo, produciendo
resultados bastante semejantes a los obtenidos en las
simulaciones Monte Carlo. Por otro lado, si la disminución
en la frecuencia de observación se induce por agregación
temporal, no hay sesgo considerable en la estimación, como
también mostramos a través de simulaciones Monte Carlo. Se
propone en esta tesis una forma de mejorar la estimación de
la memoria prolongada a través de la combinación de
estimativas de la serie amostrada a diferentes frecuencias.
En algunos casos, se consiguen reducciones de hasta 30% en
la desviación estándar de la estimativa combinada en
relación a la original, sin causar sesgo significativo.
|
60 |
[en] STATISTICAL MODEL FOR PREDICTING THE SUPPLY OF HIGHER EDUCATION: 2015-2035 / [es] MODELO ESTADÍSTICO PARA LA PROYECCIÓN DE OFERTA DE EDUCACIÓN SUPERIOR: 2015-2035 / [pt] MODELO ESTATÍSTICO PARA A PROJEÇÃO DA OFERTA DE ENSINO SUPERIOR: 2015-2035CLARENA PATRICIA ARRIETA ARRIETA 03 October 2018 (has links)
[pt] Segundo o INEP/MEC, nos últimos 20 anos, o número de matrículas da educação superior de graduação no Brasil cresceu mais de duas vezes, com uma taxa de crescimento anual verificada a partir de 2001 em torno de 5,7 por cento ao ano. Ainda segundo esta instituição, em 2008 houve o ingresso de 1.505.819
novos estudantes nos cursos presenciais, ao mesmo tempo em que 1.479.318 vagas não foram ocupadas, sendo que 54,6 por cento do total de vagas ofertadas pelo setor privado. Tendo em conta que São Paulo é o maior estado do Brasil, é muito importante que o Ministério da Educação tome conhecimento de como
se dará a dinâmica da oferta de educação superior nos próximos 20 anos para que suas ações (políticas públicas, sobretudo) possam ser realizadas com êxito. O objetivo deste trabalho é aplicar modelagem estatística para estimar a oferta do ensino superior do Estado de São Paulo no período de 2015 a 2035, considerando dados da INEP de educação superior. A motivação para este trabalho é melhorar o planejamento da oferta de curso superior e fazer a replicação do modelo preditivo para outros estados do Brasil. A metodologia usada é modelagem estatística (modelos de regressão linear) e séries temporais
(Holt). Como resultado, têm-se as áreas e/os cursos onde o governo federal deve investir no futuro aprimorando seu planejamento. / [en] According to INEP/MEC, in the last 20 years, the number of
undergraduate higher education enrollments in Brazil has grown more than
twice, with an annual growth rate of 5,7 percent per year since 2001. According
to this institution, in 2008 there were 1.505.819 new students enrolled in
presential courses, while 1.479.318 vacancies were not filled, with 54.6 percent of the
total number of vacancies offered by the private sector. Given that São Paulo is
the largest state in Brazil, it is very important that the Ministry of Education
becomes aware of the dynamics of the offer of higher education in the next 20
years so that its actions (mainly public policies) can be successfully executed.
The objective of this study is to apply statistical modeling to estimate the
offer of higher education in the State of São Paulo in the period from 2015
to 2035, considering data from INEP about higher education. The motivation
for this work is to improve the planning of the offer of higher education and
to replicate the predictive model for other Brazilian states. The methodology
used concerns statistical modeling (linear regression models) and time series
(Holt). As a result, it is obtained the areas and/or courses where the federal
government should invest in the future, improving its planning. / [es] Según el INEP/MEC, en los últimos 20 años, el número de matrículas de educación superior en Brasil creció más de dos veces, con una tasa de crecimiento anual verificada a partir de 2001 en torno al 5,7 por ciento por año. Según esta institución, en 2008 hubo un ingreso de 1.505.819 nuevos estudiantes en los cursos presenciales, al mismo tiempo que 1.479.318 vacantes no fueron ocupadas, siendo el 54,6 por ciento del total de vacantes ofrecidas por el sector privado. Dado que São Paulo es el mayor estado de Brasil, es muy importante que el Ministerio de Educación tome conocimiento de cómo se dará la dinámica de la oferta de educación superior en los próximos 20 años para que sus acciones (políticas públicas, sobre todo) puedan realizarse con éxito. El objetivo de este trabajo es aplicar modelos estadísticos para estimar la oferta de educación superior del Estado de São Paulo en el período de 2015 a 2035, considerando datos de INEP de educación superior. La motivación para este trabajo es mejorar la planificación de la oferta de curso superior y hacer replicación del modelo predictivo para otros estados de Brasil. La metodología utilizada es
modelos estadístico (modelos de regresión lineal) y series tiempo (Holt). Como resultado, se tienen las áreas y/o cursos donde el gobierno federal debe invertir en el futuro mejorando su planificación.
|
Page generated in 0.3193 seconds