• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 4
  • 1
  • Tagged with
  • 67
  • 67
  • 67
  • 67
  • 26
  • 22
  • 15
  • 13
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

[en] A SPECTRAL SEQUENTIAL APPROACH TO STUDY NON-STATIONARY TIME SERIE / [pt] UMA ABORDAGEM SEQÜENCIAL ESPECTRAL NO ESTUDO DE SÉRIES TEMPORAIS NÃO ESTACIONÁRIAS

MAYSA SACRAMENTO DE MAGALHAES 07 August 2006 (has links)
[pt] Diferentes procedimentos têm sido propostos para a modelagem e previsão de séries temporais sendo que nos anos recentes muitos dos métodos mais importantes têm sido formulados na representação espaço de estado. A principal vantagem de tal abordagem é que se pode usar o Filtro de Kalman diretamente para, seqüencialmente, atualizar o vetor de estado. Apresentamos de forma sistemática a abordagem para a previsão de Séries Temporais não- Estacionárias formulada na representação de espaço de estado desenvolvida por P.Young. A novidade desta abordagem não está na natureza dos algoritmos recursivos, e sim na maneira como os hiperparâmetros são obtidos. Modelling and forecasting of Time Series have been approached in many different ways. Lately, the most important approaches have been formulated in a state space framework. The state space representation enables the state vector to be sequentially updated in time via the Kalman filter. In this dissertation, we present in a systematic way an approach to modelling and forecasting of non-stationary time series, formulated in state space terms, and due to P. Young. The novelty of this methodology is neither the nature fo the time series models nor the recursive algorithms, but on how the hyperparameters are estimated / [en] Modelling and forecasting of times Series have been approached in many different ways. Lately, the most important approaches have been formulated in a space framework. The state space representation enables the state vector to be sequencially updated in time via the Kalman filter. In this dissertation, we present in a systematic way an approach to modelling and forecasting of non-stationary time series, formulated in state space terms, and due to P. Young. The novelty of this methodology is neither the nature of the time series models nor the recursive algorithms, but on how the hyperparameteres are estimated
52

[en] SEMIPARAMETRIC POISSON-GAMMA MODELS: A ROUGHNESS PENALTY APPROACH / [pt] MODELO POISSON-GAMA SEMI-PARAMÉTRICO: UMA ABORDAGEM DE PENALIZAÇÃO POR RUGOSIDADE

WASHINGTON LEITE JUNGER 19 February 2004 (has links)
[pt] Neste trabalho, os modelos Poisson-gama são estendidos para uma formulação mais geral onde o preditor linear das covariáveis é substituído por um preditor aditivo de funções genéricas destas covariáveis. Como nos modelos aditivos generalizados (MAG), as funções lineares das covariáveis constituem um caso particular de modelo aditivo e as funções suavizadores utilizadas são as splines cúbicas naturais. A formulação semi-paramétrica permite ampliar o campo de aplicação desta classe de modelos. Os modelos semi-paramétricos são estimados por um processo iterativo combinando maximização da verossimilhança e algoritmo backfitting. Todos os algoritmos de estimação e diagnósticos estão implementados nas linguagens de programação R e C. / [en] This work is aimed at extending the Poisson-Gamma models towards a more general specification, where the linear predictor of covariates is replaced by an additive predictor of generic functions of these covariates. Just like the generalized additive models (GAM), the linear functions of covariates are a particular case of additive models and the natural cubic splines are used as smoothing functions. The semiparametric specification allows to enlarge the possibilities of application of these models. The semiparametric models are fitted by an iterative process that combines maximization of likelihood and backfitting algorithm. All the routines for model fitting and diagnostics are implemented in R and C programming languages.
53

[en] IMPACT OF DEMAND FORECASTING INACCURACY ON THE SUPPLY CHAIN: A CASE STUDY IN THE BEVERAGE INDUSTRY / [pt] IMPACTO DA IMPRECISÃO DA PREVISÃO DE DEMANDA NA CADEIA LOGÍSTICA: UM ESTUDO DE CASO NA INDÚSTRIA DE BEBIDAS

PAULO MENDES DE OLIVEIRA JUNIOR 19 January 2005 (has links)
[pt] Esta dissertação teve como objetivo desenvolver uma metodologia e aplicá-la em uma indústria de bebidas, a fim de mensurar o impacto da imprecisão da previsão de demanda nos processos logísticos de gestão de estoque, distribuição física e vendas, demonstrando a importância que a previsão possui no planejamento e na execução dos processos logísticos. Para atingir os objetivos propostos acima, foi realizada uma breve revisão conceitual dos principais métodos de previsão de demanda e de cada um dos três processos logísticos em estudo. Em seguida, foram detalhadas as etapas da metodologia e aplicadas aos dados de 3 depósitos da empresa analisada. Como desdobramento da aplicação da metodologia, foram identificadas oportunidades de melhoria e elaboradas propostas de mudanças para o processo de previsão atual. A aplicação da metodologia e a implementação das alterações propostas permitiu à empresa aumentar o nível de precisão da previsão de demanda de todos os principais SKUs e melhorar a comunicação entre todos os elos da cadeia de valor. Com esta maior precisão da previsão de demanda será possível melhorar a alocação dos recursos físicos e humanos, reduzir os custos operacionais e atingir os requisitos de nível de serviço requeridos pelos clientes. / [en] This thesis has the objective of developing and applying a methodology to measure the impact of demand forecast inaccuracy in the supply chain of a beverage industry, specifically in the inventory management, physical distribution and sales processes. The purpose is to create an awareness of the importance of forecasting area in the logistics planning and execution activities. To achieve these goals, a conceptual review of the major demand forecasting methods and of the three logistics processes under analysis has been made. After that, a methodology was defined and applied to three different warehouse data sets of the company analyzed. As a result of the methodology application, some opportunities for process improvement were identified and some changes were proposed for the current demand forecasting process. The results of methodology application and proposed actions implementation allowed the company to increase the demand forecasting accuracy for the major SKUs and to improve communication among the different links of the supply chain. Based on more accurate forecasts, the company will be able to better allocate physical and human resources, reduce operational costs and achieve the required customer service level.
54

[pt] PREVISÃO DE VELOCIDADE DO VENTO UTILIZANDO SINGULAR SPECTRUM ANALYSIS / [en] WIND SPEED PREDICTION USING SINGULAR SPECTRUM ANALYSIS

LARISSA MORAES DANTAS CAMPOS 14 September 2020 (has links)
[pt] Uma mudança de paradigma no mundo todo foi ocasionada pelo aumento da preocupação quanto ao uso de combustíveis fósseis usados como principal fonte de geração elétrica, a correspondente mudança climática e os danos ambientais crescentes. Nos últimos anos, a energia eólica apresentou um crescimento incessante como alternativa sustentável para a produção de eletricidade, o que pode ser observado a partir do crescimento de sua capacidade instalada mundialmente. O Brasil está entre os dez países que tem as maiores capacidades instaladas, e apresentou 9,42 por cento de geração de energia elétrica advinda da fonte eólica em 2019. No entanto, a aleatoriedade e a intermitência do vento são os maiores desafios na integração dessa fonte no sistema de energia. Diante deste contexto, esta pesquisa propõe a aplicação da técnica Singular Spectrum Analysis (SSA) como método de previsão para uma série de velocidade eólica no Brasil, fazendo uma análise comparativa de modelos SSA considerando diferentes horizontes de previsão e conjunto de treinamento para diferentes dias de previsão, com diferentes tamanhos de série temporal. Deste modo, é comparada a série temporal do ano todo com somente o último mês desta série para prever os últimos sete dias do mês de dezembro. Os resultados dessa aplicação mostram que para a maioria dos dias a utilização do ano todo como conjunto de treinamento obteve melhor desempenho, indicando que o uso da técnica SSA pode ser uma alternativa para séries temporais com uma grande quantidade de dados. / [en] A paradigm shift around the world was caused by increased concern about the use of fossil fuels used as the main source of electricity generation, the corresponding climate change and increasing environmental damage. In recent years, wind energy has shown steady growth as a sustainable alternative for electricity production, which can be seen from the growth of its installed capacity worldwide. Brazil is among the ten countries that have the largest installed capacities, and presented 9.42 percent of electricity generation from the wind source in the last year. However, wind randomness and intermittency are the biggest challenges in integrating this source into the energy system. In this context, this research proposes the application of the Singular Spectrum Analysis (SSA) technique as a forecast method for a series of wind speed in Brazil, making a comparative analysis of SSA models considering different forecast horizons and training set for different days forecast, with different time series sizes. In this way, the time series of the whole year is compared with only the last month of this series to forecast the last seven days of the month of December. The results of this application show that for most days the use of the whole year as a training set obtained better performance, indicating that the use of the SSA technique can be an alternative for time series with a large amount of data.
55

[pt] MODELOS E APLICAÇÕES PARA SÉRIES TEMPORAIS HIERÁRQUICAS: ABORDAGENS DE RECONCILIAÇÃO ÓTIMA E PROPORÇÕES DE PREVISÃO / [en] MODELS AND APPLICATIONS TO HIERARCHICAL TIME SERIES: APPROACHES OF RECONCILIATION OPTIMAL AND FORECAST PROPORTIONS

THAISA DE FREITAS 30 August 2016 (has links)
[pt] Séries Temporais que podem ser organizadas em níveis de acordo com, por exemplo, o tipo de produto, região geográfica, classe de consumo, dentre outros, são chamadas de Séries Temporais Hierárquicas (ou agrupadas, quando possuem mais de uma variável de agregação). Informações referentes à previsão destas séries são fundamentais para a tomada de decisão seja no nível gerencial ou operacional de todo tipo de negócio. Para atender a essas informações, são utilizadas técnicas de previsão hierárquica, que têm como foco reduzir os custos e melhorar a acurácia da previsão. O objetivo deste trabalho é estudar abordagens para agregar/desagregar previsões feitas para Séries Temporais Hierárquicas ou Agrupadas. Como resultado do trabalho destaca-se a apresentação das abordagens que representam o estado da arte em previsão hierárquica: Reconciliação Ótima (também chamada de Combinação Ótima) e Top-Down baseada na Proporção das Previsões. Ainda referente aos resultados destaca-se a análise das diversas técnicas de previsão hierárquica encontradas na literatura aplicadas a duas séries clássicas do contexto brasileiro: a série agrupada de consumo de energia elétrica agregada por região do país e classe de consumo, e a série hierárquica de demanda de transporte aéreo representada pela variável RPK (Revenue Passenger Kilometers). O desempenho preditivo das abordagens foi avaliado com base na métrica MAPE, e o teste de Diebold-Mariano foi aplicado para verificar se a diferença no desempenho das abordagens novas e tradicionais é significativa. / [en] Time Series which can be arranged in levels according to, for example, the type of product, geography, consumption class, among others, are called Hierarchical Time Series (or grouped, if they have more than one aggregation variable). Information relating these series prediction is fundamental for decision-making at the management or operational level of all types of business. To meet these information, hierarchical forecasting techniques are used, which are focused on reducing costs and improving the accuracy of prediction. The objective of this work is to study approaches to aggregate / disaggregate predictions for Hierarchical or Grouped Time Series. As a result of the work there is the presentation of the approaches that represent the state of the art hierarchical forecast: Optimal Reconciliation approach (also called the Optimal Combination) and Top-Down Forecast Proportions approach. Still on the results highlight the analysis of the various hierarchical forecasting techniques found in the literature applied to two classic series of the Brazilian context: a grouped series of electricity consumption aggregated by region of the country and consumer class, and the hierarchical series air transport demand represented by the variable RPK (Revenue Passenger Kilometers). The predictive performance of the approaches was evaluated based on the metric MAPE and the Diebold-Mariano test was used to verify that the difference in performance of new and traditional approaches is significant.
56

[en] TEMPORAL MODELLING OF THE WATER DISCHARGES MEASUREMENTS ON FUNIL DAM (RJ) USING NEURAL NETWORK AND STATISTICAL METHODS / [pt] MODELAGEM TEMPORAL DAS MEDIDAS DE VAZÃO DE DRENOS NA BARRAGEM DE FUNIL (RJ) UTILIZANDO REDES NEURAIS E MÉTODOS ESTATÍSTICOS

JANAINA VEIGA CARVALHO 15 September 2005 (has links)
[pt] Em obras de maior porte e grande responsabilidade (portos, barragens, usinas nucleares, etc.), a quantidade de instrumentações pode se tornar suficiente para permitir a construção de modelos de variabilidade temporal das propriedades de interesse com base em redes neurais artificiais. No caso de barragens, o monitoramento através da instalação de um sistema de instrumentação desempenha um papel fundamental na avaliação do comportamento destas estruturas, tanto durante o período de construção quanto no período de operação. Neste trabalho empregou-se a técnica de redes neurais temporais (RNT) para análise, modelagem e previsão dos valores de vazão na barragem Funil, do sistema Furnas Centrais Elétricas, a partir dos dados de instrumentações disponíveis no período compreendido entre 02/09/1985 e 25/02/2002. As redes neurais temporais empregadas foram: RNT com arquitetura feedforward associada a técnica de janelamento, RNT recorrente Elman, RNT FIR e RNT Jordan. Adicionalmente, foram utilizadas duas técnicas para análise das séries temporais: os modelos de Box & Jenkins (1970) e métodos geoestatísticos, com a finalidade de comparar com o desempenho das RNT´s. Nesta pesquisa estuda-se ainda a geração de intervalos de confiança para RNT e para métodos geoestatísticos. As previsões de vazão analisadas neste trabalho, envolvendo o comportamento da barragem Funil, apresentaram resultados satisfatórios tanto os obtidos pelos modelos de redes neurais temporais como pelos de Box & Jenkins e métodos geoestatísticos. / [en] In works of great responsibility (ports, dams, nuclear power, etc.), the amount of instrumentation data may allow the construction of models for the temporary variability of the properties of interest based on neural network techniques. In case of dams, the monitoring through the installation of an instrumentation system plays a fundamental part in the evaluation of the behavior of these structures, during the construction period as well as in the operation period. In this work the technique of temporal neural networks (TNN) was used for analysis, modeling and forecast of the water discharges values in the Funil dam, from Furnas Centrais Elétricas system, starting from the data of available instrumentation in the period between 02/09/1985 and 25/02/2002. The temporal neural networks used in this research were the following: TNN with feedforward architecture and the windowing technique, recursive TNN Elman, TNN FIR and TNN Jordan. Two additional techniques (Box & Jenkins and geostatistical models) were employed for analysis of the time series with the purpose to compare the results obtained with neural networks. In this research the generation of confidence intervals for TNN and geostatistical methods were also investigated. The discharge values forecasts analyzed in this work for the Funil dam presented satisfactory results, with respect to the neural network, Box & Jenkins and geostatistical methods.
57

[en] A HYBRID NEURO- EVOLUTIONARY APPROACH FOR DYNAMIC WEIGHTED AGGREGATION OF TIME SERIES FORECASTERS / [pt] ABORDAGEM HÍBRIDA NEURO-EVOLUCIONÁRIA PARA PONDERAÇÃO DINÂMICA DE PREVISORES

CESAR DAVID REVELO APRAEZ 18 February 2019 (has links)
[pt] Estudos empíricos na área de séries temporais indicam que combinar modelos preditivos, originados a partir de diferentes técnicas de modelagem, levam a previsões consensuais superiores, em termos de acurácia, às previsões individuais dos modelos envolvidos na combinação. No presente trabalho é apresentada uma metodologia de combinação convexa de modelos estatísticos de previsão, cujo sucesso depende da forma como os pesos de combinação de cada modelo são estimados. Uma Rede Neural Artificial Perceptron Multi-camada (Multilayer Perceptron - MLP) é utilizada para gerar dinamicamente vetores de pesos ao longo do horizonte de previsão, sendo estes dependentes da contribuição individual de cada previsor observada nos dados históricos da série. O ajuste dos parâmetros da rede MLP é efetuado através de um algoritmo de treinamento híbrido, que integra técnicas de busca global, baseadas em computação evolucionária, junto com o algoritmo de busca local backpropagation, de modo a otimizar de forma simultânea tanto os pesos quanto a arquitetura da rede, visando, assim, a gerar de forma automática um modelo de ponderação dinâmica de previsores de alto desempenho. O modelo proposto, batizado de Neural Expert Weighting - Genetic Algorithm (NEW-GA), foi avaliado em diversos experimentos comparativos com outros modelos de ponderação de previsores, assim como também com os modelos individuais envolvidos na combinação, contemplando 15 séries temporais divididas em dois estudos de casos: séries de derivados de petróleo e séries da versão reduzida da competição NN3, uma competição entre metodologias de previsão, com maior ênfase nos modelos baseados em Redes Neurais. Os resultados demonstraram o potencial do NEWGA em fornecer modelos acurados de previsão de séries temporais. / [en] Empirical studies on time series indicate that the combination of forecasting models, generated from different modeling techniques, leads to higher consen+sus forecasts, in terms of accuracy, than the forecasts of individual models involved in the combination scheme. In this work, we present a methodology for convex combination of statistical forecasting models, whose success depends on how the combination weights of each model are estimated. An Artificial Neural Network Multilayer Perceptron (MLP) is used to generate dynamically weighting vectors over the forecast horizon, being dependent on the individual contribution of each forecaster observed over historical data series. The MLP network parameters are adjusted via a hybrid training algorithm that integrates global search techniques, based on evolutionary computation, along with the local search algorithm backpropagation, in order to optimize simultaneously both weights and network architecture. This approach aims to automatically generate a dynamic weighted forecast aggregation model with high performance. The proposed model, called Neural Expert Weighting - Genetic Algorithm (NEW-GA), was com- pared with other forecaster combination models, as well as with the individual models involved in the combination scheme, comprising 15 time series divided into two case studies: Petroleum Products and the reduced set of NN3 forecasting competition, a competition between forecasting methodologies, with greater emphasis on models based on neural networks. The results obtained demonstrated the potential of NEW-GA in providing accurate models for time series forecasting.
58

[en] USING LINEAR AND NON-LINEAR APPROACHES TO MODEL THE BRAZILIAN ELECTRICITY SPOT PRICE SERIES / [pt] MODELOS LINEARES E NÃO LINEARES NA MODELAGEM DO PREÇO SPOT DE ENERGIA ELÉTRICA DO BRASIL

LUIZ FELIPE MOREIRA DO AMARAL 17 July 2003 (has links)
[pt] Nesta dissertação, estratégias de modelagem são apresentadas envolvendo modelos de séries temporais lineares e não lineares para modelar a série do preço spot no mercado elétrico brasileiro. Foram usados, dentre os lineares, os modelos ARIMA(p,d,q) proposto por Box, Jenkins e Reinsel (1994) e os modelos de regressão dinâmica. Dentre os não lineares, o modelo escolhido foi o STAR desenvolvido, inicialmente, por Chan e Tong (1986) e, posteriormente, por Teräsvista (1994). Para este modelo, testes do tipo Multiplicador de Lagrange foram usados para testar linearidade, bem como para avaliar os modelos estimados. Além disso, foi também utilizada uma proposta para os valores iniciais do algoritmo de otimização, desenvolvido por Franses e Dijk (2000). Estimativas do filtro de Kalman suavizado foram usadas para substituir os valores da série de preço durante o racionamento de energia ocorrido no Brasil. / [en] In this dissertation, modeling strategies are presented involving linear and non-linear time series models to model the spot price of Brazil s electrical energy market. It has been used, among the linear models, the modeling approach of Box, Jenkins and Reinsel (1994) i.e., ARIMA(p,d,q) models, and dynamic regression. Among the non-linear ones, the chosen model was the STAR developed, initially, by Chan and Tong (1986) and, later, by Teräsvirta (1994). For this model, the Lagrange Multipliers test, to measure the degree of non linearity of the series , as well as to evaluate the estimated model was used. Moreover, it was also used a proposal for the initial values of the optimization algorithm, developed by Franses and Dijk (2000). The smoothed Kalman filter estimates were used in order to provide values for the spot price series during the energy shortage period.
59

[en] THE INFLUENCE OF THE SAMPLING INTERVAL IN THE LONG MEMORY ESTIMATION IN TIME SERIES / [es] INFLUENCIA DEL INTERVALO DE OBSERVACIÓN EN LA ESTIMACIÓN DE LA MEMORIA PROLONGADA / [pt] INFLUÊNCIA DO INTERVALO DE OBSERVAÇÃO NA ESTIMAÇÃO DA MEMÓRIA LONGA

LEONARDO ROCHA SOUZA 06 April 2001 (has links)
[pt] Esta tese de doutorado relaciona a estimação da diferenciação fracionária, como medida de memória longa, com o intervalo de tempo entre observações contíguas de uma série temporal. Em teoria, o grau de diferenciação é constante em relação à diminuição da freqüência de observação, não importando se para diminuir a freqüência de observação ignore-se as observações intermediárias ou agregue-se as observações temporalmente. Entretanto, para o caso de se obter séries amostradas a uma freqüência mais baixa através de se ignorar observações intermediárias, observamos nesta tese, através de simulações Monte Carlo, um corportamento diverso. Quando se amostra toda n-ésima observação de uma série, n>1, nota-se um considerável vício de estimação do grau de diferenciação (ou parâmetro de memória longa). O viés é em direção de zero, sendo positivo para valores negativos do parâmetro de memória longa e negativo para valores positivos do parâmetro de memória longa, d. Para valores positivos de d, o viés tem natureza aproximadamente quadrática, diminuindo para valores de d próximos de zero ou 0,5 e sendo mais intenso para valores em torno de 0,25. Para valores negativos de d, o viés é tal que a estimativa fica sempre bem próxima de zero, ou seja, é da magnitude de d. Ao considerarmos o efeito de aliasing (em que componentes de período menor que o intervalo de observação são observados como se tivessem freqüências mais baixas) conseguimos fórmulas heurísticas que explicam satisfatoriamente esse vício, produzindo resultados bastante semelhantes ao verificado nas simulações Monte Carlo. Por outro lado, se a diminuição na freqüência de observação é induzida por agregação temporal, não há vício considerável na estimação, como também mostramos atrvés de simulações Monte Carlo. Propõe-se nesta tese ainda uma maneira de melhorar a estimação da memória longa através da combinação de estimativas da série amostrada a diferentes freqüências. Em alguns casos, consegue-se reduções de até 30% no desvio-padrão da estimativa combinada em relação à original, sem causar viés significativo. / [en] This thesis investigates the relationship between the estimation of the fractional integration, as a measure of long memory, and the time interval between observations of a time series. In theory, the fractional integration is invariant to the frequency of observation. However, skip- sampling induces a considerable bias in the estimation, as shown by Monte Carlo simulations. The aliasing effect explains the bias and suggests formulas for it, which yield results very close to the simulated ones. On the other hand, temporal aggregation does not induce relevant bias to the long memory estimation. In addition, a combination of estimates from the same data sampled at different rates is proposed, achieving in some cases reduction of 30% in the root mean squared estimation error. / [es] Esta tesis de doctorado relaciona la estimación de la diferenciación fraccionaria, como medida de memoria prolongada, con el intervalo de tiempo entre observaciones contíguas de una serie de tiempo. En teoría, el grado de diferenciación es constante en relación a la disminución de la frecuencia de observación, sin importar que para disminuir la frecuencia de observación se ignoren las observaciones intermedias o se agreguen observaciones temporalmente. Sin embargo, en esta tesis se observa, a través de simulaciones Monte Carlo, un comportamiento diverso en el caso de obtener series muestreadas a una frecuencia más baja ignorando observaciones intermedias. Cuando se muestrea la n-ésima observación de una serie, n>1, se nota un considerable sesgo de estimación del grado de diferenciación (o parámetro de memoria longa). El sesgo está en dirección de cero, siendo positivo para valores negativos del parámetro de memoria prolongada y negativo para valores positivos del parámetro de memoria prolongada, d. Para valores positivos de d, el sesgo tiene una naturaleza aproximadamente cuadrática, disminuyendo para valores de d próximos de cero o 0,5 y siendo más intenso para valores en torno de 0,25. Para valores negativos de d, el sesgo es tal que la estimativa está siempre bien próxima de cero, o sea, es de la magnitude de d. Al considerar el efecto de aliasing (en que componentes de período menor que el intervalo de observación son observados como se tuvieran frecuencias más bajas) conseguimos fórmulas heurísticas que explican satisfactoriamente ese sesgo, produciendo resultados bastante semejantes a los obtenidos en las simulaciones Monte Carlo. Por otro lado, si la disminución en la frecuencia de observación se induce por agregación temporal, no hay sesgo considerable en la estimación, como también mostramos a través de simulaciones Monte Carlo. Se propone en esta tesis una forma de mejorar la estimación de la memoria prolongada a través de la combinación de estimativas de la serie amostrada a diferentes frecuencias. En algunos casos, se consiguen reducciones de hasta 30% en la desviación estándar de la estimativa combinada en relación a la original, sin causar sesgo significativo.
60

[en] STATISTICAL MODEL FOR PREDICTING THE SUPPLY OF HIGHER EDUCATION: 2015-2035 / [es] MODELO ESTADÍSTICO PARA LA PROYECCIÓN DE OFERTA DE EDUCACIÓN SUPERIOR: 2015-2035 / [pt] MODELO ESTATÍSTICO PARA A PROJEÇÃO DA OFERTA DE ENSINO SUPERIOR: 2015-2035

CLARENA PATRICIA ARRIETA ARRIETA 03 October 2018 (has links)
[pt] Segundo o INEP/MEC, nos últimos 20 anos, o número de matrículas da educação superior de graduação no Brasil cresceu mais de duas vezes, com uma taxa de crescimento anual verificada a partir de 2001 em torno de 5,7 por cento ao ano. Ainda segundo esta instituição, em 2008 houve o ingresso de 1.505.819 novos estudantes nos cursos presenciais, ao mesmo tempo em que 1.479.318 vagas não foram ocupadas, sendo que 54,6 por cento do total de vagas ofertadas pelo setor privado. Tendo em conta que São Paulo é o maior estado do Brasil, é muito importante que o Ministério da Educação tome conhecimento de como se dará a dinâmica da oferta de educação superior nos próximos 20 anos para que suas ações (políticas públicas, sobretudo) possam ser realizadas com êxito. O objetivo deste trabalho é aplicar modelagem estatística para estimar a oferta do ensino superior do Estado de São Paulo no período de 2015 a 2035, considerando dados da INEP de educação superior. A motivação para este trabalho é melhorar o planejamento da oferta de curso superior e fazer a replicação do modelo preditivo para outros estados do Brasil. A metodologia usada é modelagem estatística (modelos de regressão linear) e séries temporais (Holt). Como resultado, têm-se as áreas e/os cursos onde o governo federal deve investir no futuro aprimorando seu planejamento. / [en] According to INEP/MEC, in the last 20 years, the number of undergraduate higher education enrollments in Brazil has grown more than twice, with an annual growth rate of 5,7 percent per year since 2001. According to this institution, in 2008 there were 1.505.819 new students enrolled in presential courses, while 1.479.318 vacancies were not filled, with 54.6 percent of the total number of vacancies offered by the private sector. Given that São Paulo is the largest state in Brazil, it is very important that the Ministry of Education becomes aware of the dynamics of the offer of higher education in the next 20 years so that its actions (mainly public policies) can be successfully executed. The objective of this study is to apply statistical modeling to estimate the offer of higher education in the State of São Paulo in the period from 2015 to 2035, considering data from INEP about higher education. The motivation for this work is to improve the planning of the offer of higher education and to replicate the predictive model for other Brazilian states. The methodology used concerns statistical modeling (linear regression models) and time series (Holt). As a result, it is obtained the areas and/or courses where the federal government should invest in the future, improving its planning. / [es] Según el INEP/MEC, en los últimos 20 años, el número de matrículas de educación superior en Brasil creció más de dos veces, con una tasa de crecimiento anual verificada a partir de 2001 en torno al 5,7 por ciento por año. Según esta institución, en 2008 hubo un ingreso de 1.505.819 nuevos estudiantes en los cursos presenciales, al mismo tiempo que 1.479.318 vacantes no fueron ocupadas, siendo el 54,6 por ciento del total de vacantes ofrecidas por el sector privado. Dado que São Paulo es el mayor estado de Brasil, es muy importante que el Ministerio de Educación tome conocimiento de cómo se dará la dinámica de la oferta de educación superior en los próximos 20 años para que sus acciones (políticas públicas, sobre todo) puedan realizarse con éxito. El objetivo de este trabajo es aplicar modelos estadísticos para estimar la oferta de educación superior del Estado de São Paulo en el período de 2015 a 2035, considerando datos de INEP de educación superior. La motivación para este trabajo es mejorar la planificación de la oferta de curso superior y hacer replicación del modelo predictivo para otros estados de Brasil. La metodología utilizada es modelos estadístico (modelos de regresión lineal) y series tiempo (Holt). Como resultado, se tienen las áreas y/o cursos donde el gobierno federal debe invertir en el futuro mejorando su planificación.

Page generated in 0.3193 seconds