31 |
[en] THE WIND FORECAST FOR WIND POWER GENERATION / [pt] PREVISÃO DE VENTO PARA GERAÇÃO DE ENERGIA ELÉTRICAILITCH VITALI GOMES DA SILVA 01 February 2011 (has links)
[pt] A energia eólica é uma das alternativas mais promissoras para geração de energia elétrica, pois assegura a diversidade e segurança no fornecimento de energia e atende à necessidade premente de reduzir os níveis de emissão de gases poluentes. Na operação de sistemas elétricos com forte presença de geração eólica é fundamental prever com pelo menos um dia de antecedência os valores futuros (pelo menos horários) da veloci-dade do vento, pois assim pode-se avaliar a disponibilidade de energia para o próximo dia, uma informação útil no despacho das unidades geradoras e no controle do sistema elétrico. A proposta dessa dissertação objetiva especificamente desenvolver modelos de previsão de curto prazo da velocidade do vento, baseado em técnicas de inteligência artificial, modelo da rede neural artificial e neuro-fuzzy adaptativa (ANFIS) e um mode-lo Estatístico composto por um modelo de regressão harmônica e Box-Jenkins. Para aplicação da metodologia considerou-se o município de São João do Cariri (Estado de Paraíba), onde está localizada uma das estações de referência do projeto SONDA (Sis-tema Nacional de Dados Ambientais para o setor de energia). O desempenho dos mode-los rede neural, neuro-fuzzy (ANFIS) e modelo Estatístico são comparados nas previ-sões de 6 horas, 12 horas, 18 h e 24horas a frente. Os resultados obtidos mostram o me-lhor desempenho da modelagem ANFIS e encorajam novos estudos no tema. / [en] Wind power is one of the most promising options for power generation. It ensures the diversity and security of energy supply and meets the pressing need to reduce the levels of emission of polluting gases. In the operation of electrical systems with a strong presence of wind generation, it is essential to provide at least one day in advance the future values (at least hourly) of wind speed, so that we can assess the availability of energy for the next day, a useful information in the order of the generating units and electrical control system. The purpose of this dissertation aims to develop models spe-cifically to develop models to forecast short-term wind speed, based on artificial intelligence techniques, artificial neural network model and adaptive neuro-fuzzy Systems (ANFIS) and a statistical model composed of a harmonic regression model and Box-Jenkins. For application of the methodology, the city of São João do Cariri (State of Paraíba), where a reference station of SONDA project (National Environmental Data for the energy sector) is located, was considered.To apply the methodology was consi-dered the city of the ray tracing model (State of Paraíba), which is located a station ref-erence design (National Environmental Data for the energy sector). The performance of artificial neural network model and adaptive neuro-fuzzy Systems (ANFIS) and a statis-tical model are compared mixed forecasts of 6 hours, 12 hours, 18hours and 24 hours ahead. The results show the best performance of the ANFIS model and encourage fur-ther studies on the subject.
|
32 |
[en] ANALYSIS AND FORECASTING OF TIME SERIES USING MULTIPLE SEASONAL EXPONENTIAL SMOOTHING AND SIMULATION TECHNIQUES IN THE WIND ENERGY PRODUCTION / [pt] ANÁLISE E PREVISÃO DE SÉRIES TEMPORAIS UTILIZANDO AMORTECIMENTO EXPONENCIAL COM MÚLTIPLOS CICLOS E TÉCNICAS DE SIMULAÇÃO NA PRODUÇÃO DE ENERGIA EÓLICAMATHEUS FERREIRA DE BARROS 17 May 2016 (has links)
[pt] A presente dissertação se insere no contexto da energia eólica, que é a
fonte de energia que mais cresce na matriz elétrica brasileira, segundo dados da
Empresa de Pesquisa de Energia (EPE), com projeções para que esse
crescimento se mantenha. Com isso, a principal motivação do presente trabalho
é o fato de que desenvolver e aplicar métodos de previsão cada vez mais precisos
para as variáveis determinantes na produção de energia eólica em um
aerogerador, como a velocidade do vento, é de crucial importância para o
planejamento da operação do sistema elétrico nacional. Logo, o objetivo
principal do trabalho é adaptar e aplicar uma metodologia de previsão de séries
temporais em um banco de dados formado por medições de velocidade de vento.
A metodologia se constrói a partir da análise exploratória dos dados, onde pode
se observar características importantes, como estacionariedade na média e uma
estrutura sazonal complexa, que envolve um ciclo diário e uma sazonalidade
mensal. Com isso, foi adaptado um modelo de amortecimento exponencial com
múltiplos ciclos que incorpora simulação de Monte Carlo e decomposição da
série através do método TBATS, para realizar as previsões. Como resultados e
conclusões, é possível observar que modelo adaptado se mostrou adequado para
tratar o problema proposto, quando comparado com os modelos de previsão
estabelecidos pela literatura, resultando em um aumento na precisão das
previsões realizadas. / [en] This work is in the context of wind energy, which is the energy source that
grows more in the Brazilian energy matrix, according to the Energy Research
Company (EPE), with projections that this growth will continue. Thus, the main
motivation of this work is the fact that developing and implementing
increasingly precise forecasting methods for the key variables in the production
of wind energy in a wind turbine, such as wind speed, is of crucial importance
for planning of the national electric system operation. Therefore, the main
objective of this work is to adapt and apply a time series forecasting
methodology in a database formed by wind speed measurements. The
methodology is built from the exploratory analysis of data, which can be
observed important features such as stationary mean and a complex seasonal
structure, which involves a daily cycle and monthly seasonality. Thus, it was
adapted an exponential smoothing model that incorporates multiple cycles,
Monte Carlo simulation and decomposition of the series through the TBATS
method, to make forecasts. As results and conclusions, it is possible to observe
that model adapted was adequate to address the proposed issue, compared with
the forecast models established in the literature, resulting in an increase in the
accuracy of forecasts made.
|
33 |
[en] AN AUTOMATIC APPROACH TO BOX & JENKINS MODELLING / [pt] UM MÉTODO AUTOMÁTICO PARA PREVISÃO DE SÉRIES TEMPORIAS USANDO A METODOLOGIA BOX & JENKNISMARCELO KRIEGER 02 May 2007 (has links)
[pt] Apesar do reconhecimento amplo da qualidade das previsões
obtidas na aplicação de um modelo ARIMA à previsão de
séries temporais univariadas, seu uso tem permanecido
restrito pela falta de procedimentos automáticos,
computadorizados. Neste trabalho este problema é discutido
e um algoritmo é proposto. / [en] Inspite of general recognition of the good forecasting
ability of ARIMA models in predicting time series, this
approach is not widely used because of the lack of
automatic, computerized procedures. In this study this
problem is discussed, and an algorithm is proposed.
|
34 |
[en] EXTENDING THE CYCLICAL COMPONENT IN THE STRUCTURAL MODEL FORMULATION / [pt] EXTENSÃO DA COMPONENTE CÍCLICA DO MODELO ESTRUTURALKLAUS LEITE PINTO VASCONCELOS 02 May 2007 (has links)
[pt] O Modelo Estrutural, recentemente desenvolvido por Harvey,
considera a tradicional idéia de modelar uma série a
partir de suas componentes básicas não observadas. Em
particular, a componente cíclica, que descreve um
movimento senoidal amortecido, pode ser utilizada para
explicar um comportamento repetitivo ao longo da série. O
uso desta componente é motivado pelo fato de que o seu
espectro teórico apresenta um pico de valor finito. O
modelo original de Harvey define o ciclo da série a partir
de uma única senóide amortecida. Porém, a estimação do
espectro de algumas séries reais revelou ser razoável
supor que a componente cíclica de tais séries representa
uma soma de várias senóides amortecidas em diferentes
seqüências. Neste trabalho é proposta uma extensão da
componente cíclica para o modelo de Harvey e discute-se,
para o modelo estendido, a estrutura ARIMA equivalente.
Constrói-se um teste de multiplicadores de Lagrange no
domínio da freqüência, com o objetivo de verificar a
existência de uma freqüência adicional na estrutura do
ciclo. Finalmente, a teoria apresentada na dissertação é
aplicada de forma a testar a presença de uma segunda
freqüência no ciclo da série de índices pluviométricos de
Fortaleza. / [en] The Structural Models, recently suggested by Harvey, uses
the classic idea of modelling a time series y its non
observed components. The cyclical component of the series,
which is defined by a smoothed sine, is a special one that
may be used for explaining a repetitive behaviour along
the series. The motivation for using this component lies
in the finite valued peak presnted by its theoretic
spectrum. Harvey´s model stays that the cycle of the
series is defined by a single smoothed sine. However, the
estimated spectrum of certain series showed that it is
reasonable to suppose the cyclical component of those
series as being a sum of distinct smoothed sines of
different frequencies. This thesis proposses an extension
of the cyclical component in Harvey´s model and discusses
the equivalent ARIMA structure for this extended
component. We develop a Lagrange Multipliers test in the
frequence domain for verifying the existence of an extra
frequence in the cyclical component. The theory presented
in the dissertation is applied with the purpose of testing
the presence of a second frequence in the cycle of the
series of sunspot numbers and in the series of rainfall in
Fotaleza.
|
35 |
[en] DATA STRUCTURES FOR TIME SERIES / [pt] ESTRUTURAS DE DADOS PARA SERIES TEMPORAISCAIO DIAS VALENTIM 24 April 2013 (has links)
[pt] Séries temporais são ferramentas importantes para análise de eventos que ocorrem em diferentes domínios do conhecimento humano, como medicina, física, meteorologia e finanças. Uma tarefa comum na análise de séries temporais é a busca por eventos pouco frequentes que refletem fatos de interesse sobre o domínio de origem da série. Neste trabalho, buscamos desenvolver técnicas para detecção de eventos raros em séries temporais. Formalmente, uma série temporal A igual a (a1, a2,..., an) é uma sequência de valores reais indexados por números inteiros de 1 a n. Dados dois números, um inteiro t e um real d, dizemos que um par de índices i e j formam um evento-(t, d) em A se, e somente se, 0 menor que j - i menor ou igual a t e aj - ai maior ou igual a d. Nesse caso, i é o início do evento e j o fim. Os parâmetros t e d servem para controlar, respectivamente, a janela de tempo em que o evento pode ocorrer e a
magnitude da variação na série. Assim, nos concentramos em dois tipos de perguntas relacionadas aos eventos-(t, d), são elas: - Quais são os eventos-(t, d) em uma série A? - Quais são os índices da série A que participam como inícios de ao menos um evento-(t, d)? Ao longo desse trabalho estudamos, do ponto de vista prático e teórico, diversas estruturas de dados e algoritmos para responder às duas perguntas
listadas. / [en] Time series are important tools for the anaylsis of events that occur in different fields of human knowledge such as medicine, physics, meteorology and finance. A common task in analysing time series is to try to find events that happen infrequently as these events usually reflect facts of interest about the domain of the series. In this study, we develop techniques for the detection of rare events in time series. Technically, a time series A equal to (a1, a2,..., an) is a sequence of real values indexed by integer numbers from 1 to n. Given an integer t and a real number d, we say that a pair of time indexes i and j is a (t, d)-event in A, if and only if 0 less than j - i less than or equal to t and aj - ai greater than or equal to d. In this case, i is said to be the beginning of the event and j is its end. The parameters t and d control, respectively, the time window in which the event can occur and magnitude of the variation in the series. Thus, we focus on two types of queries related to the (t, d)-events, which are: - What are the (t, d)-events in a series A? - What are the indexes in the series A which are the beginning of at least one (t, d)-event? Throughout this study we discuss, from both theoretical and practical points of view, several data structures and algorithms to answer the two queries mentioned above.
|
36 |
[en] FORECASTING DEMAND FOR OFFSHORE AIR PASSENGERS USING HIERARCHICAL TIME SERIES TECHNIQUES / [pt] PREVISÃO DE DEMANDA DE PASSAGEIROS AÉREOS OFFSHORE UTILIZANDO TÉCNICAS DE SÉRIES TEMPORAIS HIERÁRQUICASTIAGO FARIA ROCHA 21 September 2020 (has links)
[pt] Um bom gerenciamento logístico otimiza as atividades de transporte aéreo offshore, tornando-as mais eficientes e diminuindo custos para o contratante. Uma série de decisões estratégicas, por exemplo a contratação de helicópteros e os investimentos em infraestrutura aeroportuária, são dependentes da previsão de demanda de passageiros. O presente trabalho analisou a demanda de transporte aéreo offshore da Petrobras para o Estado do Rio de janeiro, à luz das principais teorias de séries temporais hierárquicas, com o objetivo de identificar qual destas é mais adequada para um horizonte de previsão de doze meses à frente. Foram analisadas as estratégias de single-level approach (bottom-up e top-down), de reconciliação ótima (ordinary least squares e weighted least squares) e de minimização de traço (covariância da própria amostra e valendo-se do shrink estimator), todas utilizando como método de previsão base o amortecimento exponencial. Foram utilizados dados dos anos de 2014 até 2019 de todos os aeródromos usados pela Petrobras no Estado do Rio de Janeiro: Farol de São Tomé, Campos dos Goytacazes, Macaé, Cabo Frio e Jacarepaguá. Os resultados foram avaliados em três métricas distintas de acurácia: RMSE (Root Mean Square Error), MAPE (Mean Absolute Percentage Error) e MASE (Mean Absolute Scaled Error), sendo aplicados para os dois níveis existentes de agregação. Os resultados foram ranqueados para cada técnica, nas três métricas citadas anteriormente, sendo, então, consolidados através de uma média aritmética simples. Ao cabo, concluiu-se que o método de minimização de traço sample covariance é o mais preciso em termos globais. / [en] Good logistical management optimizes offshore air transport activities, making them more efficient and reducing costs for the contractor.A series of strategic decisions, such as hiring helicopters and investments in airport infrastructure are dependent on forecasting passenger demand. The present work consisted of analyzing the demand for Petrobras offshore air transport to the State of Rio de Janeiro, based on the main theories of hierarchical time series, with the objective of identifying which of these is more suitable for a twelve-month steps ahead forecast. The strategies of single-level approach (bottom-up and top-down), optimal reconciliation (ordinary least squares and weighted least squares) and trace minimization (sample covariance and shrink estimator) were analyzed, all using exponential smoothing as the basic forecasting method. Data from 2014 to 2019 were gathered for all aerodromes used by Petrobras in the State of Rio de Janeiro: Farol de São Tomé, Campos dos Goytacazes, Macaé, Cabo Frio and Jacarepaguá. The results were evaluated with three different metrics of accuracy: RMSE (Root Mean Square Error), MAPE (Mean Absolute Percentage Error) and MASE (Mean Absolute Scaled Error), applied to the two existing levels of aggregation. The results were ranked for each technique, in the three metrics mentioned above, and then consolidated using a simple arithmetic mean. The overall results indicated that sample covariance trace minimization method provided the most accurate results.
|
37 |
[en] MODEL FOR PREDICTING SHORT-TERM SPEED USING HOLT-WINTERS / [pt] MODELO PARA PREVISÃO DE CURTO PRAZO DE VELOCIDADE DE VENTO USANDO HOLT-WINTERSCAMILA MARIA DO NASCIMENTO MONTEIRO 05 August 2014 (has links)
[pt] Após o choque de racionamento de energia elétrica, decorrente do desequilíbrio entre oferta e demanda, os vários setores da sociedade brasileira constataram a real e iminente necessidade de diversificação das fontes de geração de energia elétrica e de seu uso racional. Busca-se hoje novas fontes, entre as quais a energia eólica, uma alternativa nova e promissora. A energia eólica está aumentando no mundo todo e o Brasil tem um enorme potencial devido a sua localização geográfica e o governo tem investido neste tipo de energia. O principal objetivo desta dissertação é estudar e desenvolver modelos de previsão de velocidade de vento, de curto prazo da velocidade do vento. Os métodos de amortecimento exponencial, em particular o método de Holt-Winters e suas variações, são apropriados para este contexto devido à sua alta adaptabilidade e robustez. Para aplicação da metodologia considerou-se o município de São João do Cariri (Estado de Paraíba), onde está localizada uma das estações de referência do projeto SONDA (Sistema Nacional de Dados Ambientais para o setor de energia). Será utilizado o método de Holt-Winters, que será comparado com os modelos: de persistência, neuro-fuzzy (ANFIS) e estatísticos. / [en] After the shock of electricity rationing, due to the imbalance between supply and demand, the various sectors of the Brazilian society found a real and imminent need to diversify sources of electricity generation and its rational use. New sources are searched today, including wind power, a promising new alternative. Wind energy has been increasing worldwide and Brazil has huge potential due to its geographical location and the government has invested in this type of energy. The main objective of this thesis is to study and develop forecasting models, of short-term wind speed. The methods of exponential smoothing, in particular the method Holt-Winters and its variations, are suitable in this context because of its high adaptability and robustness. The city of São João do Cariri (State of Paraíba), where it is located one of the reference stations of project SONDA (National Environmental Data for the energy sector) was chosen in order to apply the methodology. The method that will be used is Holt-Winters, who will be compared with the models: persistence, neuro-fuzzy (ANFIS) and statistics.
|
38 |
[en] FILTER DESIGN FOR THE SEASONAL ADJUSTMENT ROBUST TO VARIATIONS IN THE SEASONAL PATTERNS / [pt] PROJETO DE FILTROS PARA AJUSTE SAZONAL ROBUSTOS A VARIAÇÕES NA SAZONALIDADEMARCELA COHEN MARTELOTTE 20 March 2015 (has links)
[pt] Quando há mudanças no padrão sazonal de uma série temporal, ao longo do tempo, fica caracterizada a presença de sazonalidade móvel. Existem evidências de séries macroeconômicas que apresentam um grau considerável de sazonalidade móvel. Atualmente, para a realização do ajuste sazonal, o programa utilizado pelo IBGE é o X-12-ARIMA, que implementa o método X-11 de ajuste sazonal. O X-11 é um dos métodos mais utilizados no mundo pelos órgãos oficiais de estatística, no entanto, quando existe sazonalidade móvel, ele não consegue tratá-la de forma adequada. Este trabalho propõe dois projetos de filtros de extração da componente sazonal, no domínio da frequência, que são adequados tanto para séries com sazonalidade estável quanto para aquelas que apresentam sazonalidade móvel. O primeiro projeto de filtros, intitulado de filtro sazonal-WLS, utiliza critérios baseados em mínimos quadrados. O desempenho do filtro sazonal-WLS é avaliado com base em sinais sazonais artificiais, para séries mensais e trimestrais, baseados nas características das séries macroeconômicas. Os resultados são comparados com o método X-11 e são identificadas as situações nas quais ele é superior ao X-11. Considerando que o filtro sazonal-WLS é tanto superior ao X-11 quanto maior for a razão entre a variação da sazonalidade e a intensidade da componente irregular, foi desenvolvido o projeto de um segundo filtro. Este novo filtro combina a abordagem de mínimos quadrados ponderados com as características dos filtros de Chebyshev, minimizando simultaneamente o erro na estimativa da sazonalidade e a influência da componente irregular. A ele intitulou-se filtro sazonal-WLS-Chebyshev. Os resultados do filtro sazonal-WLS-Chebyshev são comparados com o filtro sazonal-WLS onde observam-se algumas melhorias. / [en] A time series is said to have moving seasonality when there are changes in the seasonal pattern. There is evidence that macroeconomic series show moving seasonality. Currently, to perform a seasonal adjustment, IBGE uses the program X-12-ARIMA, which implements the seasonal adjustment method X-11. This method is worldwide adopted by official statistical agencies. However, when a time series shows changing seasonal patterns, the X-11 seasonal adjustment method generates unreliable estimates. This thesis proposes two designs of filters to extract seasonal components in the frequency domain, that are suitable for series with stable seasonality and for those with moving seasonality. The first filter, named WLS-seasonal filter, uses criteria based on least squares. The performance of this filter is assessed based on artificial seasonal series for monthly and quarterly data, based on the characteristics of real macroeconomic series. The results are compared with the ones of X-11 method, and the situations in which this filter is superior to X-11 are identified. Taking into account the fact that the performance of the WLS-seasonal filter improves in relation to the one of X-11 the higher the ratio between the variation of seasonality and irregular intensity, the design of a second filter was developed. This new filter combines the approach of weighted least squares with the Chebyshev filters characteristics, simultaneously minimizing the error in estimating the seasonal component and the influence of the irregular component. It was named WLS-Chebyshev-seasonal filter. The performance of this new filter is compared with the one of the WLS-seasonal filter, and some improvements are observed.
|
39 |
[en] EMPIRICAL ANALYSIS OF THE QUANTILE AUTOREGRESSION MODELS / [pt] ANÁLISE EMPÍRICA DOS MODELOS DE AUTO-REGRESSÃO QUANTÍLICAFABIANO DOS SANTOS SOUZA 11 September 2007 (has links)
[pt] Modelos auto-regressivos (AR(p)) de séries temporais
supõem que a
dinâmica da série contém uma dependência linear nas
observações passadas até uma defasagem p, e um erro
aleatório independente e identicamente
distribuído (i.i.d). Modelos de auto-regressão
quantílica
(QAR(p)) são uma
generalização dos AR(p) em que os coeficientes auto-
regressivos variam com
o quantil da distribuição condicional, não sendo
necessária, portanto, uma
componente explícita de erro aleatório. Esta dissertação
estuda a inferência
estatística proposta para modelos QAR(p) por Koenker e
Xiao (2004), com
o auxílio de simulações de Monte Carlo. Enquanto a
estimação mostra-se
bem precisa, os resultados do teste de hipóteses, onde a
hipótese nula supõe
um modelo auto-regressivo (AR), não apresentam bons
resultados, variando
estes com o modelo gerador de dados. / [en] Autoregressive models (AR(p)) for time series assume that
the series dynamics has a linear dependence on past
observations up to a lag p, plus
an independent and identically distributed (i.i.d.) random
error. Quantile
autoregressive models (QAR(p)) generalize the AR(p) by
allowing different
autoregressive coefficients for different quantiles of the
conditional distribution and so there is no need for an
explicit random error component.
This dissertation studies the statistical inference
proposed by Koenker e
Xiao (2004) for QAR(p) models, by means of Monte Carlo
simulations.
While the estimation tools show themselves very accurate,
the hypothesis
test which considers an AR model as the null hypothesis
yields poor results,
and these vary with the data generating process
|
40 |
[en] HIGH FREQUENCY DATA AND PRICE-MAKING PROCESS ANALYSIS: THE EXPONENTIAL MULTIVARIATE AUTOREGRESSIVE CONDITIONAL MODEL - EMACM / [pt] ANÁLISE DE DADOS DE ALTA FREQÜÊNCIA E DO PROCESSO DE FORMAÇÃO DE PREÇOS: O MODELO MULTIVARIADO EXPONENCIAL - EMACMGUSTAVO SANTOS RAPOSO 04 July 2006 (has links)
[pt] A modelagem de dados que qualificam as transações de ativos
financeiros,
tais como, preço, spread de compra e venda, volume e
duração, vem despertando
o interesse de pesquisadores na área de finanças, levando a
um aumento crescente
do número de publicações referentes ao tema. As primeiras
propostas se
limitaram aos modelos de duração. Mais tarde, o impacto da
duração sobre a
volatilidade instantânea foi analisado. Recentemente,
Manganelli (2002) incluiu
dados referentes aos volumes transacionados dentro de um
modelo vetorial. Neste
estudo, nós estendemos o trabalho de Manganelli através da
inclusão do spread de
compra e venda num modelo vetorial autoregressivo, onde as
médias condicionais
do spread, volume, duração e volatilidade instantânea são
descritas a partir de
uma formulação exponencial chamada Exponential Multivariate
Autoregressive
Conditional Model (EMACM). Nesta nova proposta, não se
fazem necessárias a
adoção de quaisquer restrições nos parâmetros do modelo, o
que facilita o
procedimento de estimação por máxima verossimilhança e
permite a utilização de
testes de Razão de Verossimilhança na especificação da
forma funcional do
modelo (estrutura de interdependência). Em paralelo, a
questão de antecipar
movimentos nos preços de ativos financeiros é analisada
mediante a utilização de
um procedimento integrado, no qual, além da modelagem de
dados financeiros de
alta freqüência, faz-se uso de um modelo probit ordenado
contemporâneo. O
EMACM é empregado com o objetivo de capturar a dinâmica
associada às
variáveis e sua função de previsão é utilizada como proxy
para a informação
contemporânea necessária ao modelo de previsão de preços
proposto. / [en] The availability of high frequency financial transaction
data - price,
spread, volume and duration -has contributed to the
growing number of scientific
articles on this topic. The first proposals were limited to
pure duration models.
Later, the impact of duration over instantaneous volatility
was analyzed. More
recently, Manganelli (2002) included volume into a vector
model. In this
document, we extended his work by including the bid-ask
spread into the analysis
through a vector autoregressive model. The conditional
means of spread, volume
and duration along with the volatility of returns evolve
through transaction events
based on an exponential formulation we called Exponential
Multivariate
Autoregressive Conditional Model (EMACM). In our proposal,
there are no
constraints on the parameters of the VAR model. This
facilitates the maximum
likelihood estimation of the model and allows the use of
simple likelihood ratio
hypothesis tests to specify the model and obtain some clues
about the
interdependency structure of the variables. In parallel,
the problem of stock price
forecasting is faced through an integrated approach in
which, besides the
modeling of high frequency financial data, a contemporary
ordered probit model
is used. Here, EMACM captures the dynamic that high
frequency variables
present, and its forecasting function is taken as a proxy
to the contemporaneous
information necessary to the pricing model.
|
Page generated in 0.0545 seconds