• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 32
  • 8
  • 1
  • Tagged with
  • 100
  • 33
  • 27
  • 21
  • 16
  • 13
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Synthèse et caractérisation de poly[5-alkyl-thieno-[3,4-c]-pyrrole-4,6-dione]s pour la fabrication d’électrodes de batteries lithium-ion

Robitaille, Amélie January 2015 (has links)
Le potentiel d’oxydoréduction des anodes utilisée dans un pile lithium-ion doit se trouver au-dessus de 0,75V vs Li/Li+ pour rester sécuritaire et ne doit pas excéder 2V vs Li/Li+ pour conserver une puissance adéquate. Suite aux travaux effectués les polythienopyrroledione (PTPD) ont démontré des potentiels d'oxydo-réduction de 1,6V vs Li/Li+ ce qui correspond aux critères établis ci-haut. De plus, ils ont une capacité théorique de 215 mAh/g, ont obtenu une capacité expérimentale de 209 mAh/g. Cette capacité est toutefois inférieure à celle des matériaux d'anodes actuellement sur le marché. Par contre, étant donné que la capacité d'une pile est limitée par la capacité de l'électrode la plus faible, et qu'actuellement les piles lithium-ion sur le marché sont basées sur le LiFePO₄ qui possède une capacité de 170 mAh/g, il serait envisageable que les PTPD puissent potentiellement être des anodes commercialisables.
32

Développement d'une électrode composite thermoformable pour le procédé d'électroérosion dans l'air

Gagnon, Philippe 17 April 2018 (has links)
Cette étude traite de la conception d'une électrode composite thermoformable à base de polymère pour le procédé de polissage par électroérosion dans l'air. L'électrode en question est constituée d'un mélange de polyethylene et de cuivre ou de graphite sous forme de poudre. Un mélange uniforme des différentes poudres à l'état solide est obtenu à l'aide d'un mélangeur à chambre rotative. L'électrode finale est consolidée par le procédé de moulage par compression Une étude des paramètres de moulage (température de moulage, de démoulage, force appliquée, temps de moulage et de démoulage), de l'utilisation de vibrations mécaniques (fréquence, amplitude et énergie) et des propriétés des matériaux (composition et proportion) est faite afin d'évaluer leur influence sur les propriétés de l'électrode. Les paramètres observés sont la porosité, l'homogénéité, le retrait radial, la résistivité électrique, ainsi que les performances en usinage de l'électrode résultante. Les résultats montrent que la proportion de poudre est le paramètre le plus influent sur toutes les propriétés de l'électrode. Son augmentation accroit notamment la porosité à partir d'un volume critique et diminue la résistivité électrique du composite. Les résultats démontrent également que l'augmentation de certains paramètres du procédé (force et température de moulage) permet d'améliorer les propriétés de l'électrode. Finalement, les essais d'usinage démontrent qu'une électrode composite s'use plus rapidement qu'une électrode commerciale en graphite. Elle permet cependant un taux d'enlèvement de matière plus grand et une amélioration du fini de surface plus significative de l'échantillon usiné par électroérosion (EDM) que pour une électrode commerciale.
33

Relation entre les propriétés physico-chimiques de l'anode en carbone et sa vitesse de réaction sous CO2

Chevarin, Francois 23 April 2018 (has links)
L’aluminium de première fusion est, de nos jours, produit principalement par l’électrolyse de l’alumine à 960 °C appelé procédé Hall-Héroult. L’électrolyse est réalisée par le passage du courant électrique entre des anodes en carbone et une cathode en carbone par l’intermédiaire d’un électrolyte (cryolithe : Na3AlF6). Ces anodes sont composées de coke de pétrole et d’anodes usagées (mégots) collés ensemble par du pitch (brai de houille). Dans ce procédé, les anodes sont attaquées lors de l’électrolyse mais également en raison de réactions parasites avec l’air et le CO2 provoquant une surconsommation de ces anodes et créant de la charbonnaille. La charbonnaille est définie par l’ensemble des particules d’anode tombant dans le bain électrolytique et générant de nombreux problèmes électriques. Ce projet de recherche porte sur la compréhension de la consommation (réactivité) des anodes en carbone, utilisées dans le procédé électrochimique, par le CO2 à 960 °C. Dans le but de mieux comprendre cette consommation des anodes, l’étude de la réactivité est divisée en trois sections principales; la réaction du CO2 avec l’anode dite de Boudouard en régime chimique, la réactivité avec de grosses particules et la proposition d’une nouvelle représentation de l’anode. La réaction de Boudouard (CO2 + C → 2 CO) sous régime chimique est contrôlée par les propriétés intrinsèques du matériau carboné (impuretés et niveau de graphitisation). Dans ce projet, les paramètres (taille des particules, masse initiale, débit) du régime chimique, c'est-à-dire sans limitation du transport de masse, ont été déterminés pour des particules d’anode broyées. Le test de réactivité utilisé pour ces particules est un réacteur thermogravimétrique (TGA). La vitesse de réaction apparente obtenue à partir des données brutes du TGA permet d’évaluer la réactivité de l’anode en fonction du pourcentage de gazéification. Les conditions obtenues sont une masse initiale de 2 mg, un temps de broyage des particules de 10 minutes, un débit de 100 ml/min de CO2 et une température de 960 °C. Avec une préparation similaire à l’échantillon d’anode, des particules cuites provenant de chaque constituant d’une anode (coke, pitch et mégot) ont été placés dans le TGA et leur vitesse de réaction apparente a été mesurée. La détermination de la réactivité sous régime chimique de ces matériaux démontre que la vitesse de réaction apparente du pitch (pour un pitch ayant un niveau de graphitisation similaire au coke et pour des matières premières utilisées dans ce projet) n’est pas plus élevée que celles du coke et du mégot (ce qui est en contradiction par rapport à la littérature), ainsi le phénomène de charbonnaille, attribué à une supposée sélectivité du CO2 sur le pitch n’est pas confirmée. La consommation de l’anode en carbone dans la cuve d’électrolyse est contrôlée par les impuretés, par le niveau de graphitisation mais également par le transport de masse à travers sa structure poreuse. Dans ce projet, la gazéification des grosses particules pourrait se rapprocher de la consommation de l’anode industrielle dans une cuve d’électrolyse. La vitesse de réaction apparente mesurée pour 9 tailles de particules d’anode (allant de 33 µm à 4 380 µm de diamètre) a permis de révéler l’effet de la taille, de la porosité et de la masse de l’échantillon sur la réactivité. Trois tailles de particules comprises entre 725 et 2 190 µm ont particulièrement été étudiées car elles sont proches de la taille standardisée (ISO 12981-1; - 1 400 + 1 000 µm). Les surfaces et les volumes spécifiques différentiels de ces trois tailles de particules gazéifiées à 5 pourcentages (0; 15; 25; 35 et 50%) déterminés par adsorption d’argon et par infiltration de mercure ont permis d’évaluer les contributions des gazéifications sous-critique (taille de pores inférieure à la taille critique des pores) et sur-critique (taille de pores supérieure à la taille critique des pores) sur la gazéification totale des anodes sous CO2 à 960 °C. La détermination de la taille critique des pores (TC) pour les 3 tailles de particules (20 µm pour 725 µm et 40 µm pour les particules de 1 200 et 2 190 µm) et la mesure des contributions sous-critique et sur-critique ont permis de révéler que les pores ayant une taille supérieure à cette taille critique jouerait un rôle prépondérant dans la réactivité au CO2 des anodes. En se basant sur une dimension intermédiaire de cet intervalle de taille de particules et sur la norme ISO 12981-1 (utilisée pour mesurer la réactivité au CO2 des particules de coke), les particules comprises entre - 1 400 + 1 000 µm ont été choisies pour mettre en évidence l’effet de la porosité sur la réactivité de l’anode et de ses constituants (coke, pitch, mégot et matrice liante) sous CO2 à 960 °C. La matrice liante est un mélange de fines particules de coke (inférieur à 150 µm) et le pitch. La mesure de la vitesse de réaction apparente de ces matériaux permet d’évaluer que la matrice liante semble avoir une réactivité légèrement plus grande que celles du coke, du mégot et de l’anode et très largement supérieure à celle du pitch (valable pour les matériaux utilisés dans ce projet). Ces différences peuvent s’expliquer par le ratio des impuretés catalysantes et inhibitrices, (Vanadium + Nickel) / Soufre, qui est très élevé dans le cas de la matrice liante et du coke mais également à un niveau de graphitisation légèrement plus faible. L’utilisation du facteur d’efficacité apparent permet de mettre en évidence l’effet de la structure du matériau sur la réactivité de particules de grandes tailles par rapport à la vitesse de réaction en régime chimique. En associant les vitesses de réaction apparente des deux régimes (chimique et particules de grandes tailles) pour les 5 matériaux (anode, coke, pitch, mégot et matrice liante), il est possible de révéler l’effet de la structure. Ainsi, pour l’anode et le pitch, le facteur d’efficacité est très faible (inférieure à 0,3) indiquant par conséquent qu’une structure adaptée de l’anode peut diminuer la réactivité globale. Lors de la caractérisation de ces matériaux afin de comprendre leurs réactivités, il a été révélé que la surface spécifique initiale de l’anode ne peut être estimée par la moyenne pondérée des surfaces de ses constituants (coke, pitch, mégot et matrice liante). Ainsi, malgré une similitude chimique, une division par matière première (coke, pitch et mégot) ou physique (coke, mégot et matrice liante) ne semble pouvoir expliquer cette grande surface spécifique et une nouvelle représentation de l’anode doit être envisagée. En raison d’un manque de support lors de la cuisson, le pitch, cuit seul ou bien cuit sous forme de matrice liante, ne peut pas s’étaler lors de sa pyrolyse. Ainsi, le mixage et la cuisson de trois recettes de coke et de pitch (coke/pitch : 100/0, 95/5 et 85/15 en masse/masse) révèlent une très grande surface spécifique initiale pour la recette 95/5. La réactivité de cette recette et celle de 100/0 sont très similaires alors que celle de 85/15 est très faible alors que celle de l’anode se situe à un niveau intermédiaire. En conséquence, en se basant sur les surfaces spécifiques initiales et sur les réactivités de ces trois recettes, il est possible d’estimer qu’une anode entière est composée de particules de coke partiellement enrobé de pitch (95/5) et totalement enrobé (85/15). / Primary aluminum is mainly produced by electrolysis of alumina at 960 °C by the Hall-Héroult process. The electrolysis is carried out by passing the electric current between carbon anodes and a carbon cathode through molten cryolite (Na3AlF6) that acts as electrolyte. The anodes are consisted of petroleum coke and anode butts bonded together by coal tar pitch. The anodes are consumed in the cell by the electrolysis reaction but also by air and CO2 gas reactions. The anode-gas reactions cause an overconsumption of the anodes and create dusting phenomenon. The dusting is defined by the falling out of anode particles in the electrolytic bath that generates many electrical problems. This research project focuses on the understanding of CO2 consumption (reactivity) of carbon anodes at 960 °C to increase the service life of anodes. In order to reveal the mechanism of the CO2 reactivity of anodes, the present study was divided into three main sections; 1) the reaction of CO2 and carbon, called Boudouard reaction, under chemical regime, 2) the CO2 reactivity of large particles under mass transport limitations and 3) the proposal of a new representation of the anode. The Boudouard reaction (CO2 + C → 2 CO) under chemical regime is controlled by the intrinsic properties of the carbonaceous materials, i.e. the impurities and of graphitization levels. In this project, the parameters (particle size, initial mass and CO2 flow) of chemical regime (without mass transport limitations) were determined for milled anode particles. A Thermo-Gravimetric Analyzer (TGA) was used to measure the CO2 reactivity of anode particles. The apparent reaction rate versus gasification percentage was obtained from the TGA raw data to estimate the carbon activity under CO2 atmosphere. The experimental conditions for chemical regime with TG instrument included an initial mass of 2 mg, 10 minutes of milling and a CO2 flow rate of 100 ml/min at 960 °C. A similar preparation was applied to the anode samples and each constituent of anode (coke, pitch and butt) was prepared and baked separately. The anode constituents were placed in the TGA and their apparent reaction rate was measured. The chemical reactivity of anode constituents showed that the apparent reaction rate of the pitch material (with a similar level of graphitization than that of coke material and for the raw materials used in this project) was not higher than that of the coke and the butt particles (which is in contradiction to the literature) and thus the dusting phenomenon which is attributed to a supposed selectivity of CO2 on pitch constituent was not confirmed. The consumption of the industrial carbon anodes in the electrolytic bath is controlled by the impurities, the level of graphitization and also by the mass transport through its porous structure. In this project, the gasification of large particles could be assimilated at the consumption of industrial anodes. The apparent reaction rates were measured for 9 particle sizes of anode (between 33 µm and 4380 µm of diameter). A larger particle size decreased the reaction rate. Three sizes of anode particles (725, 1200 and 2190 µm) were specifically studied because they are close to the particle sizes recommended by the ISO standard 12981-1 where - 1400 + 1000 µm is used to measure the CO2 reactivity of coke particles. The specific differential surface areas and volumes measured by argon adsorption and mercury infiltration were determined for the 3 particle sizes consumed at 5 gasified percentages (0; 15; 25; 35 and 50%). With the pore volumes, it was possible to weight the internal and external gasification on overall gasification. The determination of the critical pore size (TC) for the 3 particle sizes (20 µm to 725 µm particles and 40 µm for 1200 and 2190 µm particles) and the weights of internal and external gasifications revealed that the pores having a size greater than this critical size could have an essential weight on the overall CO2 reactivity of the anodes. Based on the ISO standard 12981-1, the particles between - 1400 + 1000 µm were chosen to demonstrate the effect of porosity on the CO2 reactivity of the anode and its constituents (coke, pitch, butt and binder matrix) under CO2 at 960 °C. The measurement of apparent reaction rates of these materials revealed the reactivity of binder matrix was slightly higher than those of the coke, butt and anode samples and was much greater than the reactivity of pitch material (considering the materials studied). These differences could be explained by the ratio of catalysts/inhibitor, (Vanadium + Nickel) / Sulfur, which was very high for the binder matrix and coke samples, used in this project and a lower level of graphitization for binder matrix. The butt was also highly reactive because the catalyst effect of sodium on the Boudouard reaction at 960 °C is very important. The apparent effectiveness factor allowed to highlight the effect of structure on the reactivity of large particle sizes compared to the reaction rate under chemical regime. The ratio of apparent reaction rate under mass transport limitations over the rate under chemical regime for the 5 materials (anode, coke, pitch, butt and binder matrix) indicated the porosity impact. The apparent effectiveness factor for anode and pitch samples was very low (less than 0.3 for 4 gasification percentages of 15; 25; 35 and 50%) revealing that a suitable structure of carbon material may decrease the overall reactivity. After characterization of anode and its constituents, it was assumed that the initial surface area of the anode could be estimated by the weighted average of the surface areas of its components (coke + butt + pitch and coke + butt + binder matrix). The binder matrix is a mixture of the fine particles of coke and the pitch material. In spite of similar chemical compositions, classification of raw materials as coke + pitch + butt and coke + butt + binder matrix could not explain the large specific area of anode. Consequently, a new representation of the anode should be considered. Due to the lack of support during baking, the pitch material, baked alone or baked in binder matrix, could not be spread during its pyrolysis. Thus, three recipes of pitch/coke mixtures (coke/pitch: 100/0, 95/5 and 85/15 w/w) were mixed and baked, separately. The 95/5 mixture presented a very large initial surface area (similar to that of anode). The CO2 reactivity was measured in TG instrument at 960 °C. The reactivity of 95/5 composition was very similar to that of 100/0 while the reactivity of 85/15 composition was very low. The anode reactivity had an intermediate level. According to the initial specific surface area and the CO2 reactivity of these three recipes, it was possible to approximate the surface area and the CO2 reactivity of the carbon anode with a mixture of coke particles partially coated (95/5) and fully coated (85/15) with pitch. Consequently, this new assembly could be useful to better understand the wetting of coke by pitch during baking.
34

Modelling the electrical resistivity of green carbon anodes for aluminium industry

Rouget, Geoffroy 21 August 2018 (has links)
L’aluminium primaire produit de nos jours est obtenu par l’électrolyse de l’alumine à 960 °C, suivant le procédé proposé par Charles Martin Hall, et Paul Louis-Toussain Héroult, en 1886. Ce procédé, communément appelé Hall-Héroult, du nom de ceux qui l’ont proposé, consiste à imposer un courant électrique au travers un mélange de cryolithe fondue dans laquelle est dissoute l’alumine. Le courant circule entre les anodes et la cathode de carbone. Les anodes sont principalement composées de coke de pétrole calciné et du reste non consommé des anodes usagées, que l’on appelle mégot. Toutes ces particules carbonées sont liées à l’aide de brai de houille (pitch). Une fois le bloc anodique formé, il doit être cuit afin de lui conférer une bonne tenue mécanique. Pour permettre un rendement efficace lors de ce procédé, les anodes, qui amènent le courant, doivent avoir une résistivité électrique la plus faible possible. De plus, ces anodes, consommables, servent aussi d’apport pour le carbone nécessaire à la réaction d’électrolyse, leur composition chimique doit par conséquent être suffisamment pure pour ne pas affecter la qualité de l’aluminium produit. Le projet de recherche présenté ici se focalise sur l’étude et la compréhension du comportement électrique de l’anode avant sa cuisson à des fins de contrôle de qualité en cours de fabrication. Pour déterminer la résistivité électrique d’un matériau composite, le modèle mathématique de Nielsen semble être un outil très intéressant et polyvalent dans différentes applications de modélisation de la résistivité électrique. Pour utiliser ce modèle, il est nécessaire de connaître certaines propriétés des différentes phases constituant l’anode. Dans le cas présent, le matériau anodique sera limité à une fraction de tailles de particules de coke de pétrole et la matrice liante, composée du pitch et de particules fines de coke de pétrole. Les propriétés à connaître sont, pour les particules de coke, leur résistivité électrique intrinsèque, leur rapport de forme, ainsi que la compacité maximale qui puisse être obtenu avec ce matériau. Seule la résistivité électrique de la matrice liante est à connaître nécessairement. Dans l’industrie de l’aluminium, seule la résistivité électrique d’un lit des particules est mesurée pour suivre l’évolution de ce paramètre suivant les différents lots utilisés. Pour implémenter la résistivité électrique du coke dans le modèle de Nielsen, il est nécessaire de déterminer la résistivité électrique intrinsèque du coke. Afin de déterminer cette valeur, des mesures de résistivité électriques ont été faites en utilisant une méthode quatre pointes, qui permet de mesurer la résistivité électrique des matériaux dont la résistivité est faible. Ensuite, le vide inter particulaire présent dans le volume de mesure est retranché afin de ne compter que le volume occupé par le matériau. Finalement, les contacts entre particules ont été estimés par calcul numérique, en utilisant la méthode des éléments discrets. Le nombre, la surface moyenne et la disposition de ces contacts ont été évalués afin d’être implémentés dans un modèle mathématique permettant de calculer la résistivité électrique du coke. Différentes mesures ont permis de proposer une valeur cohérente et acceptable pour la résistivité électrique du coke. Afin de mesurer la résistivité électrique de la matrice liante ainsi que de l’anode, une méthode précise est requise. La méthode standardisée utilisée par l’industrie montre de grands écarts à la moyenne et des valeurs souvent peu reproductibles. La méthode de mesure de la résistivité électrique proposée par Van der Pauw permet d’obtenir des résultats avec une plus grande reproductibilité et un écart à la moyenne fortement amoindri. Cette méthode peut être utile pour mesurer la résistivité électrique des sections coupées dans une carotte d’anode ou de matrice liante moulée. Différentes mesures, effectuées sur des échantillons type anode de différentes compositions ont révélé que la résistivité électrique mesurée en laboratoire ne correspond pas à celle calculée en utilisant le modèle de Nielsen, intégrant les paramètres physiques des matériaux utilisés. Pour expliquer la divergence entre le modèle et les mesures de laboratoire, une analyse en microscopie optique a été effectuée. Il a été révélé que l’épaisseur de la couche de matrice liante entre les particules demeure trop grande pour permettre la création d’un chemin électrique de particule à particule dans le matériau. Ceci implique que la résistivité électrique de la matrice liante impose principalement la résistivité électrique du composite, dans ce cas. / Primary aluminium produced nowadays is obtained by electrolysis of alumina at 960 °C, following the process proposed by Charles Martin Hall, and Paul Louis Toussain Héroult, in 1886. This process, named Hall-Héroult, due to the name of its creators, consists in applying an electrical current trough a mix of molten cryolithe in which is dissolved alumina. The current flows between the carbon anodes and the cathode. Anodes are mostly composed of calcined petroleum coke aggregates and remnant particles of used anodes, butt particles. Those carbonaceous particles are tied together using coal tar pitch. Once the anode bloc is formed, it is backed to gain mechanical strength. To allow an efficient yield during the electrolysis process, anodes, through which the current flows, shall have the lowest electrical resistivity. Furthermore, those consumable anodes, are also required to bring the carbon as reactant for the electrolytic reaction, consequently, their chemical composition must be pure enough not to diminish the produced aluminium quality. The research project presented focuses on the study and understanding of electrical behaviour of the anode prior to its backing, for quality control during manufacturing process. To determine the electrical resistivity of a composite material, Nielsen’s model appears as an interesting tool, reliable for multiple electrical modelling applications. Using this model implies knowing several properties of the different phases present in the anode. In the present case, anode material is restricted to a specific size fraction of coke particles and binder matrix, made of pitch and fine particles. The properties to know are, for the coke particles, their intrinsic electrical resistivity, aspect ratio, and the maximal packing fraction that can be reached. Only electrical resistivity is required for the binder matrix. In aluminium industry, only the electrical resistivities of beds of particles are measured to follow the evolution of this parameter depending the batch used. To implement the electrical resistivity of coke particles in Nielsen model, its intrinsic electrical resistivity is required. To obtain this value, measurement were performed using four probes setting, which allows measuring the electrical resistivity of material presenting low resistivity. Then, inter-particles void present in the measurement volume shall be removed in order to only take account of the volume occupied by the material investigated. Finally, the contacts between particles are estimated by numerical calculation, using discrete element method. The number, average surface and disposition of the contacts were assessed to implement them in a mathematical model allowing calculating the electrical resistivity of coke. Several measures lead to the proposition of a consistent and reliable value for electrical resistivity of coke. To measure the electrical resistivity of binder matrix, as well as the anode’s, an accurate method is required. The standardised method used in the industry reveals strong standard deviation and rather not often reproducible values. The method of measurement of electrical resistivity of continuous phases proposed by Van der Pauw allows retrieving highly reproducible results, with a much lower standard deviation. This technique can be useful to measure the electrical resistivity of slices cut out of anode cores or cast binder matrix. Several measurements, performed on anode like samples with different composition revealed that the electrical resistivity measured in laboratory does not fit with the one calculated using Nielsen’s model, using the physical parameters of the characterized materials. To explain the difference, between the model and laboratory measurements, an optical microscopic analysis was performed. It was disclosed that the binder matrix layer between particles remain too thick to allow the creation of an electrical path from particle to particle within the material. This implies that the electrical resistivity of the binder matrix mostly dictates the one of the composite material, in this case.
35

Caractérisation des propriétés mécaniques de la pâte de carbone à 150°C dans le but d’optimiser la mise en forme des anodes utilisées dans les cuves Hall-Héroult

Thibodeau, Stéphane 24 April 2018 (has links)
Les anodes de carbone sont des éléments consommables servant d’électrode dans la réaction électrochimique d’une cuve Hall-Héroult. Ces dernières sont produites massivement via une chaine de production dont la mise en forme est une des étapes critiques puisqu’elle définit une partie de leur qualité. Le procédé de mise en forme actuel n’est pas pleinement optimisé. Des gradients de densité importants à l’intérieur des anodes diminuent leur performance dans les cuves d’électrolyse. Encore aujourd’hui, les anodes de carbone sont produites avec comme seuls critères de qualité leur densité globale et leurs propriétés mécaniques finales. La manufacture d’anodes est optimisée de façon empirique directement sur la chaine de production. Cependant, la qualité d’une anode se résume en une conductivité électrique uniforme afin de minimiser les concentrations de courant qui ont plusieurs effets néfastes sur leur performance et sur les coûts de production d’aluminium. Cette thèse est basée sur l’hypothèse que la conductivité électrique de l’anode n’est influencée que par sa densité considérant une composition chimique uniforme. L’objectif est de caractériser les paramètres d’un modèle afin de nourrir une loi constitutive qui permettra de modéliser la mise en forme des blocs anodiques. L’utilisation de la modélisation numérique permet d’analyser le comportement de la pâte lors de sa mise en forme. Ainsi, il devient possible de prédire les gradients de densité à l’intérieur des anodes et d’optimiser les paramètres de mise en forme pour en améliorer leur qualité. Le modèle sélectionné est basé sur les propriétés mécaniques et tribologiques réelles de la pâte. La thèse débute avec une étude comportementale qui a pour objectif d’améliorer la compréhension des comportements constitutifs de la pâte observés lors d’essais de pressage préliminaires. Cette étude est basée sur des essais de pressage de pâte de carbone chaude produite dans un moule rigide et sur des essais de pressage d’agrégats secs à l’intérieur du même moule instrumenté d’un piézoélectrique permettant d’enregistrer les émissions acoustiques. Cette analyse a précédé la caractérisation des propriétés de la pâte afin de mieux interpréter son comportement mécanique étant donné la nature complexe de ce matériau carboné dont les propriétés mécaniques sont évolutives en fonction de la masse volumique. Un premier montage expérimental a été spécifiquement développé afin de caractériser le module de Young et le coefficient de Poisson de la pâte. Ce même montage a également servi dans la caractérisation de la viscosité (comportement temporel) de la pâte. Il n’existe aucun essai adapté pour caractériser ces propriétés pour ce type de matériau chauffé à 150°C. Un moule à paroi déformable instrumenté de jauges de déformation a été utilisé pour réaliser les essais. Un second montage a été développé pour caractériser les coefficients de friction statique et cinétique de la pâte aussi chauffée à 150°C. Le modèle a été exploité afin de caractériser les propriétés mécaniques de la pâte par identification inverse et pour simuler la mise en forme d’anodes de laboratoire. Les propriétés mécaniques de la pâte obtenues par la caractérisation expérimentale ont été comparées à celles obtenues par la méthode d’identification inverse. Les cartographies tirées des simulations ont également été comparées aux cartographies des anodes pressées en laboratoire. La tomodensitométrie a été utilisée pour produire ces dernières cartographies de densité. Les résultats des simulations confirment qu’il y a un potentiel majeur à l’utilisation de la modélisation numérique comme outil d’optimisation du procédé de mise en forme de la pâte de carbone. La modélisation numérique permet d’évaluer l’influence de chacun des paramètres de mise en forme sans interrompre la production et/ou d’implanter des changements coûteux dans la ligne de production. Cet outil permet donc d’explorer des avenues telles la modulation des paramètres fréquentiels, la modification de la distribution initiale de la pâte dans le moule, la possibilité de mouler l’anode inversée (upside down), etc. afin d’optimiser le processus de mise en forme et d’augmenter la qualité des anodes. / The carbon anode electrodes are consumable elements used in the electrochemical reaction of a Hall-Héroult cell. These are massively produced through a production line whose forming process is a critical step because it defines part of their quality. The currently used forming process is not fully optimized. Significant density gradients inside the anodes decrease their performance in the electrolysis cells. Even today, carbon anodes are produced with only their overall density and final mechanical properties as quality criteria. The anode manufacturing is optimized empirically directly on the production line. However, the quality of the anodes resides in a uniform electrical conductivity to minimize the current concentrations that have several adverse effects on their performance and aluminum production costs. This thesis is based on the assumption that the electrical conductivity of the anode is influenced only by its density, considering a uniform chemical composition. The objective is to characterize the model parameters to feed a constitutive law that will model the forming process of the anode blocks. Numerical modeling is used to analyze the anode paste behaviour during its forming process. Therefore, it becomes possible to predict the anode density gradients and optimize the forming process parameters with the aim of improving their quality. The selected model is based on the real mechanical and tribological anode paste properties. The first study of this thesis aims to improve the understanding of the constitutive behaviour of the carbon paste observed during preliminary paste compression tests. This study is based on compression tests on hot carbon paste and dry aggregates performed in a rigid mould instrumented with a piezoelectric sensor to record acoustic emissions. This analysis was performed prior to the characterization of the paste properties in order to better interpret its mechanical behaviour given by the complex carbonaceous nature of this material whose mechanical properties evolve as a function of density. A first experimental setup was specifically developed to characterize the Young's modulus and Poisson's ratio of the anode paste. This apparatus was also used in the characterization of the paste viscosity (time dependence). There exists no appropriate test to characterize these properties for this type of material heated to 150°C. A deformable wall mould instrumented with strain gauges was used to perform the experiments. A second assembly was developed to characterize the paste’s static and kinetic friction coefficients. The paste was also heated to 150°C. The model was used to characterize the paste’s mechanical properties by reverse identification and simulate the forming process of laboratory scaled anodes. The paste’s mechanical properties obtained by the experimental characterization were compared with those obtained by the reverse identification method. The density mappings obtained from simulations were also compared to the density mappings of the laboratory pressed anodes. Tomography was used to produce these density mappings. Simulation results confirm the major potential of using numerical modeling as an optimization tool of the carbon paste forming process. Numerical modeling is used to evaluate the influence of each of the forming parameters without interrupting production and/or implementing expensive changes in the production line. Thus, this tool allows the exploration of ways to optimize the forming process and increase the quality of the anodes such of the modulation frequency parameters, the modification of the initial paste distribution into the mould, the possibility of forming inverted anodes (upside down), etc.
36

Development of gas diffusion layer for proton exchange membrane fuel cell, PEMFC

Yakisir, Dinçer 12 April 2018 (has links)
Presently, fuel cell technology is one of the most exciting fields in the area of new energy development with high scientific and technological challenges. Progress made up to now in the field of Proton Exchange Membrane Fuel Cell, PEMFC, technology offers large perspectives of applications. The interest in this environmentally benign technology has grown during the last years due to the Kyoto protocol requirements. However, a drastic decrease in PEMFC cost is needed prior to the widespread acceptance of PEMFC as automotive power Systems. The main objective of this study was to develop a new concept of high performance and low-cost porous electrode gas diffusion layer for PEMFC. Novel and industrially viable processing techniques based on twin-screw extrusion, post-extrusion film stretching or selective dissolution treatment were used. Conventional materials presently used for PEMFC electrodes were replaced in this project by new formulations based on highly filled thermoplastic polymers. To create the porous structure of the gas diffusion layer, two different techniques were used. For the first technique, a thin film was made from low viscosity polypropylene, PP, filled with high specific surface area carbon black and synthetic flake graphite. Conductive blends were first prepared in a co-rotating twin-screw extruder and subsequently extruded through a sheet die to obtain films of around 500 microns in thickness. These films were then stretched in two successive steps to generate a film (100-200 microns) of controlled porous structure. However, for the second technique, the thin film was made from two immiscible polymers filled with a mixture of electronic conductive additives via twin-screw extrusion followed by selective extraction of one of the two polymers. The two polymers were a low viscosity PP and polystyrene, PS, and the conductive additives were the same as those used in the first technique. Conductive blends were first compounded in a co-rotating twin-screw extruder and subsequently extruded through a flexible film die to obtain a 500 microns film of high electronic conductivity. The PS phase was then extracted with tetrahydrofuran, THF, solvent and a film of controlled porosity was generated. The morphology of the porous structures was then analyzed by scanning electron microscopy, SEM, and by BET surface area measurements. The effects of PS concentration and extraction time with THF on film conductivity and porosity were also studied. / Actuellement, la technologie des piles à combustible représente l'un des champs les plus passionnants avec des défis scientifiques et technologiques élevés. Les progrès réalisé jusqu'à date dans le domaine des piles à combustibles à membrane échangeuse de proton, PEMFC, offre de grandes perspectives d'applications. L'intérêt pour cette technologie non polluante a fortement grandit durant les dernières années à cause des conditions exigeantes du protocole de Kyoto. Cependant, l'optimisation des coûts de production des piles de type PEMFC est nécessaire avant leur intégration en tant que systèmes d'alimentation des véhicules à moteur. L'objectif principal de cette étude était de mettre au point un nouveau design non coûteux de couche poreuse de diffusion de gaz pour électrodes de piles PEMFC. Des techniques pouvant être intégrées à l'échelle industrielle qui sont basées sur l'extrusion bi-vis, l'étirage postextrusion de film mince ou la dissolution sélective ont été utilisés. Les matériaux conventionnels présentement utilises pour fabriquer les électrodes ont été remplacés dans le cadre de ce projet par des nouvelles formulations basées sur les polymères thermoplastiques fortement chargés avec des additifs à conductivité électronique élevée. Pour créer la structure poreuse de la couche de diffusion de gaz, deux techniques différentes ont été employées. Pour la première technique, un film a été développé à partir d'une matrice en polypropylène, PP, de faible viscosité, chargé d'un grade spécial de noir de carbone possédant une surface spécifique élevée et de graphite synthétique en forme de feuillets. Les mélanges conducteurs ont d'abord été préparés dans une extrudeuse co-rotative bi-vis puis poussés à travers une filière plate. Cela a permis d'obtenir des films d'environ 500 microns d'épaisseur. Ces films ont ensuite été étirés en deux étapes successives afin de produire des films (de 100 à 200 microns) à structure poreuse contrôlée. En ce qui concerne la seconde technique, le film fin a été obtenu en mélangeant deux polymères immiscibles puis en y additionnant un mélange de charges électriquement conductrices. Cette opération a été menée en extrusion bi-vis. Elle a ensuite été suivie d'une extraction sélective de l'un des deux polymères. Les deux polymères dont il s'agit sont le PP à basse viscosité et le polystyrène, PS. Les charges conductrices sont les mêmes que celles utilisées à la première technique. Ces mélanges conducteurs ont été composés dans une extrudeuse co-rotative bi-vis puis poussés à travers une filière plate flexible afin d'obtenir un film de 500 microns à grande conductivité électrique. Le phase PS a été extraite par la suite grâce à un solvant : le tétrahydrofurane, THF. Des films à porosité contrôlée ont ainsi été générés. Les morphologies des structures poreuses ont été analysées par microscopie électronique à balayage, SEM, ainsi que par des mesures de surfaces spécifiques BET. Les effets de la concentration du PS et du temps d'extraction sélective par THF sur la conductivité et la porosité des films ont également été étudiés.
37

Étude des interfaces électrodes/électrolyte à base de liquides ioniques pour batterie lithium-ion / Investigation of the interface electrode/ionic liquid based electrolyte for lithium ion battery

Bolimowska, Ewelina 28 June 2016 (has links)
Dans les batteries ion lithium, la présence d’électrolytes organiques volatiles et inflammables engendre des problèmes récurrents de sécurité. Une possible solution consiste à les remplacer par des sels fondus liquides à température ambiante, les liquides ioniques (LI), présentant une tension de vapeur négligeable et sont considérés comme flamme retardant. Leur utilisation avec des électrodes carbone (les plus usitées dans les batteries commerciales) nécessitent la présence d’un additif pour améliorer les performances des batteries.Le but de cette thèse était de déterminer le rôle de cet additif par des méthodes analytiques et de la modélisation. Tout d’abord, l’impact de cet additif sur la solvatation et la diffusion des sels de lithium a été étudié par RMN 2-D [NOE et HOESY {1H-7Li}, {1H-19F}, et la sphère de coordination du cation lithium a été simulée par dynamique moléculaire. Puis des études électrochimiques ont été développées notamment le cyclage galvanostatique à potentiel sélectionné et le cyclage voltamétrique afin de déterminer la capacité de la batterie et d’étudier les étapes d‘insertion du cation lithium au cours de la première étape de réduction. Cette étape a également été analysée par impédance électrochimique. En complément, une analyse par XPS (spectrométrie photoélectronique X) sur les électrodes post-mortem de piles arrêtées aux potentiels déterminés par impédance, a permis de caractériser les composés chimiques formés à la surface des électrodes au cours de la première réduction, mais également après plusieurs cycles de charge/décharge / In lithium ion batteries, the commercial organic electrolytes induce difficulties in the manufacturing and the use of the battery (volatile and flammable components). There are active research to eliminate these safety problems, one of the approach is the replacement of conventional battery electrolytes with room temperature ionic liquids (RTILs), which exhibit negligible vapor pressure, low flammability, high flash point. The use of ILs based electrolytes for carbon based electrodes requires presence of organic additive for improving the cyclic performance. The aim of this thesis was to determine the exact role of the organic additive through experimental and computer simulation methodologies. Its impact onto the solvation and transportation of lithium cation was investigated through {1H-7Li}, {1H-19F} NOE correlations (HOESY), and pulsed field gradient spin-echo (PGSE) NMR experiences and Molecular Dynamic simulation. The electrochemical studies were developed such as electrochemical window, galvanostatic cycling with potential limitation and cycling voltammetry showing the obtained capacity of the cell and [Li+] insertion stages during the first reduction step. Moreover, the electrochemical impedance spectroscopy (EIS) during the first reduction process, and XPS analysis of post mortem Gr electrodes stopped at chosen potential during the first reduction process, as well as, after the several charge/discharge cycles were used
38

Membranes PBI pour pile à combustible haute température / PBI membranes for high temperature fuel cell

Kreisz, Aurélien 11 April 2016 (has links)
Cette thèse débute par une courte introduction traitant des principes et de l'état de l'art des PEMFC dans le but de situer le contexte des travaux. Le but des travaux présentés dans ce manuscrit est de développer une nouvelle méthode de préparation de membrane pour les piles à combustible haute température (> 120 °C). Le polybenzimidazole dopé à l'acide phosphorique est devenu la référence des PEM haute température. Un degré de dopage élevé est essentiel pour minimiser les pertes ohmiques dans la cellule. Malheureusement un degré de dopage élevé entraine aussi une plastification de la membrane détériorant aussi sa résistance mécanique. Il est donc essentiel d'atteindre un compromis entre conductivité protonique élevée et résistance mécanique en contrôlant le degré de dopage. Dans ce travail, nous avons développé une nouvelle méthode de préparation de membrane, basée sur la gélation thermoréversible d'une solution de PBI dans l'acide phosphorique ou polyphosphorique, dans le but d'obtenir des degrés de dopage élevés. Une modification chimique a été réalisée dans l'état dopé afin d'induire une réticulation du polymère. De plus, les résistances mécaniques ont été améliorées en introduisant dans la membrane un mat de PBI réticulé obtenu par filage électrostatique. La faisabilité des approches suivies dans ces travaux a été démontrée par des tests en cellule de pile à combustible jusqu'à une température de 180 °C. Les AMEs élaborés à partir de ces membranes ont montré une stabilité satisfaisante durant 900 - 1000 heures de fonctionnement sous conditions statiques (opération continue à 0.2 A.cm-2) et sous conditions dynamiques (cyclage en tension et courant) avec une décroissance de la tension de la cellule au cours du temps de 0.7 - 0.8 µV.h-1 à 0.2 A.cm-2. Les caractéristiques I-V de ces AMEs ont été comparées à des assemblages de référence PBI/H3PO4 commerciaux et ont présenté des performances améliorées par rapport aux assemblages commerciaux. / The thesis begins with a short overview of the principles and the current state at the art of the PEMFC in order to give a background on the specific subject of high temperature PEM fuel cell. The aim of the work presented in this thesis is to develop a new method of preparation of membrane for high temperature fuel cell (T > 120 °C). Phosphoric acid doped PBI has become the reference for high temperature PEM. A high phosphoric acid content is essential to minimize the ohmic voltage loss in the fuel cell for high current density. Unfortunately high phosphoric acid content exerts a strong plasticizing effect resulting in poor mechanical properties of the membrane. Consequently the doping level of the membrane should be a compromise between the highest proton conductivity and mechanical strength. In this work we have presented a new method of preparation of membrane based on the thermoreversible gelation of a PBI solution in phosphoric or polyphosphoric acid in order to obtain high acid doping. The chemical modification of the membrane has been performed in the doped state in order to induce a chemical crosslinking. The mechanical strength of the membrane has been further improved by the introduction of PBI electrospun mat as reinforcement. The feasibility of the approaches followed in this work was demonstrated in fuel cell tests at temperature up to 180 °C. The MEA based on those membranes have shown a stability up to 900 - 1000 hours either under static (continuous operation at 0.2 A.cm-2) or dynamic (voltage and current cycling) operation with a small voltage decay of 0.7 - 0.8 µV.h-1 at 0.2 A.cm-2. The I-V characteristics of these MEA have been compared with reference commercial PBI/H3PO4 MEAs and shown improved performances.
39

Oxydes sans plomb pour la détection de gaz : OSPÉGAZ / Lead-free oxides for gas detection : OSPÉGAZ

El Romh, Mohamad Ali 01 July 2016 (has links)
La détection de gaz, qui utilise aujourd'hui principalement des capteurs optiques, des capteurs électrochimiques à base de plomb et des capteurs catalytiques est un marché très porteur (estimé à 3 milliards d'euros) et doté d'une forte croissance (10% par an). La nécessité de développer de nouveaux systèmes d'instrumentation dédiés à la surveillance de la qualité de l'air intérieur et à la détection de substances dangereuses implique l'étude et le développement de nouveaux capteurs élaborés à partir de produits compatibles avec les enjeux environnementaux (RoHs, REACH), et économiques (matériaux à faible coût, techniques de réalisation fiables, durée de vie élevée). Le projet ANR OSPÉGAZ (Oxydes sans plomb pour la détection de gaz) vise à développer des systèmes d'instrumentations intégrés innovants dédiés à la caractérisation des différentes expositions environnementales en lien notamment avec les actions recommandées dans le cadre du PNSE2 pour les impacts sanitaires avérés. Le travail de thèse présenté dans ce manuscrit fait partie du projet OSPÉGAZ. L'objectif du travail a été, d'une part, de mettre au point un nouveau procédé d'élaboration d'encre au sein du laboratoire UDSMM pour l'élaboration et la caractérisation de films épais poreux, et d'autre part, de réaliser des capteurs de gaz à base de ces films. Nous avons choisi d'utiliser le matériau BaTiO₃, bien connu de la littérature, comme matériau de départ afin de mettre au point le procédé d'élaboration de couches épaisses. Par la suite, nous avons choisi le BaSrTiFeO₃ comme matériau sensible au gaz, et nous avons étudié deux compositions correspondant à deux taux de fer : Ba₀.₈₅Sr₀.₁₅Ti₀.₉Fe₀.₁O₃ (BSTF 10%) et Ba₀.₈₅Sr₀.₁₅Ti₀.₉₈Fe₀.₀₂O₃ (BSTF 2%). Ces matériaux ont été caractérisés dans une large gamme de fréquence (100 Hz à 1 MHz) et de température (25°C à 500°C). Les propriétés diélectriques en fonction de la fréquence et de la température ont été étudiées sur deux structures différentes d'électrodes : capacité parallèle (MIM) et capacité interdigitée (CID). Enfin, des démonstrateurs de capteurs de gas basés sur le principe des capteurs semi-conducteurs, ont été réalisés à partir de films épais poreux (BT, BST, BSFT 10% et 2%). Ces démonstrateurs ont été testés dans les locaux de la société SIMTRONICS sous différents gaz comme le monoxyde de carbone CO (200ppm), le sulfure d'hydrogène H₂S (50ppm) et le dioxyde de soufre SO₂ (20ppm) à 400°C et 450°C. Sous H₂S (50ppm), ils ont montré une plus grande sensibilité relative du BSTF (10%) (55.4%) par rapport au BSTF (2%) (48%) à 450°C. La bonne sensibilité relative et la réponse dynamique très intéressante montrent que le matériau BSTF dispose d'un potentiel très intéressant pour la détection de gaz. L'optimisation de la géométrie des capteurs, du taux de fer et de la température de fonctionnement devrait nous permettre d'améliorer les performances de nos démonstrateurs. / Today gas detection, which now mainly uses optical sensors, electrochemical sensors based on lead, and catalytic sensors, is a very promising market (estimated at 3 billion euros) with a strong growth (10% per year). The need for new instrumentation systems dedicated to the monitoring of the air quality and to the detection of hazardous substances, requires the study and development of new sensors compatible with the European environmental standards : Restriction of the use of Hazardous Substances (RoHS) ; Registration, Evaluation and Authorization of Chemicals (REACh). The OSPÉGAZ project aims to develop innovative integrated instrumentations systems for the characterization of different environmental exposures linked to the actions recommended by the PNSE2 for proven health impacts. Our research project aims to develop innovating and cost-effective gas sensors containing lead-free oxides and dedicated to the detection of flammable gases and protection against toxic risks. The works of the thesis presented in this manuscript is a part of this project. The objectives were, firstly, to develop a new process for ink preparation in UDSMM laboratory, for the elaboration, electrical and physicochemical characterizations, of thick porous film, and secondly to make gas sensors based on these films. We chose to use the BaTiO3 (well-known material in literature) material as a first material in order to develop the process of thick film elaboration. After that, we chose the BaSrTiFeO₃ as gas-sensitive material, and we studied two compositions of Ba₁₋ ₓ Sr ₓ Ti₁₋yFeyO₃ with two different concentrations or iron : Ba₀.₈₅Sr₀.₁₅Ti₀.₉Fe₀.₁O₃ (BSTF 10%) and Ba₀.₈₅Sr₀.₁₅Ti₀.₉₈Fe₀.₀₂O₃ (BSTF 2%). Electrical characterizations were made in a wide range of frequency (100 HZ to 1 MHz) and temperature (25° C to 500° C). The dielectric properties as a function of temperature and frequency were studied using two different structures of capacitance : metal-insulator-metal (MIM) and interdigital electrodes (CID). Finally we have developed semi-conductor gas sensors based on BT, BST and BSTF (10% ; 2%) thick films. All our sensors were tested under different gases such as carbon monoxide CO (200ppm), hydrogen sulphide H₂S (50ppm) and sulfur dioxide SO₂ (20ppm), at various temperature, in the laboratory of SIMTRONICS SAS. We have measured the greatest relative sensitivity under H₂S (50ppm) gas ; 55.4% and 48% respectively for BSTF (10%) and BSTF (2%), at 450°C. Good relative sensitivity and very interesting dynamic responsesof BSTF show that the material has a great potential for the detection of gas. The optimization of the sensor geometry, iron rate and operating temperature should allow us to improve the performance of our demonstrators.
40

Design of electrical adaptive stimulators for different pathological contexts : a global approach / Conception de stimulateurs électriques adaptatifs pour différents contextes pathologiques : une approche globale

Kölbl, Florian 01 December 2014 (has links)
La stimulation électrique des tissus neuronaux est une technique largement utilisée dans la recherche en neuroscience et à des fins thérapeutiques. Ce travail est une contribution à la conception des circuits et systèmes électroniques de stimulation. De tels circuits sont requis dans quatre projets multi-disciplinaires en cours dans l’équipe Elibio de l’IMS, présentés dans ce document : STN-Oscillations (ANR 08-MNPS-036) concernant l’étude de la Stimulation Cérébrale Profonde(SCP), HYRENE (ANR 2010-Blan-031601), ayant pour but le développement d’un systèmehybride de restauration de l’activité motrice dans le cas d’une lésion de la moelle épinière, BRAINBOW (European project FP7-ICT-2011-C), ayant pour objectif l’élaboration de neuro-prothèses innovantes capables de restaurer la communication autour de lésions cérébrales, CENAVEX (ANR et NSH AN13-NEUIC-0001-01), visant au développement d’un système de stimulation en boucle fermée pour le contrôle de la respiration. Cette thèse propose une approche de conception globale qui aboutira au développement d’un système multi-applications, prenant en compte les spécificités de chaque contexte.Dans un premier temps, afin d’évaluer les contraintes liées à l’expérimentation in vivo et in vitro, deux stimulateurs spécifiques ont été réalisés. Le premier permet la SCP chronique du rat,résout la contrainte énergétique à l’aide d’une gestion dynamique de l’alimentation. Ce dispositif a été fabriqué et implanté in vivo avec succès. Une expérimentation à long terme a été effectuée afin de valider ses propriétés sur l’animal. Dans un second temps, un autre stimulateur a été conçu en utilisant un FPAA (Field Programmable Analog Array). La conception de ce circuit se concentre sur l’équilibrage des charges nécessaire à l’innocuité des sytèmes. L’architecture obtenue permet une stimulation biphasique adaptative résultant en un faible courant équivalent de fuite (moins d’un nano Ampère). Afin d’aboutir à un stimulateur multi-application, un travail préliminaire de modélisation de l’impédance de l’électrode, l’élément de charge du circuit de stimulation, a été mené. Une méthode de mesure et d’identification d’un modèle non-linéaire est détaillée, basée sur une approche par multi-modèles et fractionnaire.L’approche multi-application est ensuite mise en oeuvre, basée sur un effet d’échelle pour le dimensionnement des stimulateurs. Cet effet d’échelle lie la géométrie de l’électrode, le nombre de canaux requis par application et les niveaux de courant mis en jeu : cet effet permet de proposer une architecture de circuit multi-application. Un circuit intégré démontrant la faisabilité d’un tel système a été conçu, fabriqué et testé avec succès. Un système de stimulation multi-application basé sur ce circuit a été conçu, permettant de nouvelles recherches sur les quatre contextes physiopathologiques présentés.Enfin, un critère de mérite dédié à la stimulation est proposé. Ce critère prend en compte l’efficacité énergétique et l’équilibrage des charges afin d’évaluer le degré d’optimisation d’un circuit ou d’un système. Un tel critère de mérite est un concept novateur qui devrait permettre une optimisation rationnelle des architectures de stimulation. / Electrical stimulation of neural tissues is a widely used technique for both neuroscience explorations and innovative medical devices. This work is a contribution to the design of electrical stimulation circuits and systems. Stimulators are part of the experimental setup in several multi-disciplinary projects conducted at IMS (groupElibio), presented in this document : STN-Oscillations(French ANR 08-MNPS-036), studyingDeep Brain Stimulationmecha-nisms (DBS), HYRENE(French ANR 2010-Blan-031601), aimed at developing a hybrid system couplingartificial and biological neural networks to restore locomotion after spinal cord lesion, BRAINBOW(European Project FP7-ICT-2011-C), working on designing a neuro-prosthesis capable of restoring lost communication between neuronal circuits, CENAVEX(French ANR and American NSH AN13-NEUIC-0001-01), proposing a noveldesign for a closed-loop system for respiration control. This thesis integrates the specificities of each context and considers global therapeuticapplication issues, with the aim of proposing an original, global approach to designing thearchitecture of a multi-application stimulator.First, in order to evaluate the constraints related to ourin vivoandin vitrocontexts, anembedded stimulator for chronic DBS experiments in rodents was developed and successfullyimplantedin vivo. This design was optimized for power management during long-term experi-ments. The stimulator characteristics were assessed with behavioural tests on a rat population.Then a second, specific stimulator was designed usingField Programmable Analog Arraysforaccurate charge balancing, as well as to fulfil strong constraints to ensure tissue integrity. Theproposed charge-sensing architecture produced adaptive biphasic stimulation with sub-nanoampere DC-equivalent current.With a view to a global approach to stimulator design, an accurate model of the electrodeimpedance was built, to represent the concrete load of a stimulator. A measurement protocolbased on biphasic current-controlled solicitations and a modelling procedure relying on anoriginal fractional multi-model are described.The first step in this multi-application design approach was to investigate an electrical sizingscale effect. This involves electrode geometry, the number of channels per application, and theimplied current levels. A proof-of-concept ASIC was designed and successfully tested. A boardfor adaptive stimulation was then able to be deployed in the ongoing research projects.Finally, a dedicated Figure of Merit is proposed for stimulation. This criterion takes energyefficiency and charge balancing into account to quantify the degree of optimization of a circuitor system. This Figure of Merit is a novel concept that facilitates rational optimization ofstimulation architectures.

Page generated in 0.0664 seconds