• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 1
  • Tagged with
  • 33
  • 33
  • 20
  • 19
  • 12
  • 11
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Familias de conjuntos minimais em sistemas reversiveis

Lima, Maurício Firmino Silva 24 March 2006 (has links)
Orientador: Marco Antonio Teixeira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-05T21:55:10Z (GMT). No. of bitstreams: 1 Lima_MauricioFirminoSilva_D.pdf: 1170094 bytes, checksum: 090e81187787a7a96591621e58ae7742 (MD5) Previous issue date: 2006 / Resumo: Neste trabalho tratamos de famílias a um-parâmetro de campos vetoriais R-reversíveis definidos em uma vizinhança de um ponto de equilíbrio ressonante em R2n. Focalizamos a atenção às 0:p:q-ressonâncias. Inicialmente estudamos a existência/bifurcação de órbitas periódicas simétricas para tais sistemas. A existência e rigidez de famílias de órbitas homoclínicas também são discutidas. Além disso, também analisamos, para n = 3, a rigidez de famílias de Cantor¿ de dois-toros invariantes por meio da Teoria KAM / Abstract: In this work we deal with one parameter families of R-reversible vector fields defined around a resonant equilibrium point in R2n. We focus our attention to 0:p:q resonances. First of all we study the existence/bifurcation of symmetric periodic orbits for such systems. The existence and rigidity of families of homoclinic orbits are also discussed. We also analyze for n = 3 the rigidity of ¿Cantor families¿ of invariant two-torus by means of KAM Theory / Doutorado / Sistemas Dinamicos / Doutor em Matemática
22

Estudo topológico de órbitas periódicas no circuito experimental de Chua / Topological studies of periodic orbits in the experimental Chua's circuit

Dariel Mazzoni Maranhão 19 May 2006 (has links)
Estudamos o comportamento dinâmico de séries temporais experimentais obtidas de um circuito de Chua quando dois parâmetros de controle, $Delta R_1$ e $Delta R_2$, são variados.Investigamos os comportamentos caótico e periódico, analisando as séries temporais ao redor e no interior de duas janelas periódicas presentes no espaço de parâmetros $(Delta R_1,Delta R_2)$ do circuito. Na vizinhança da janela de período três, analisamos como a dinâmica simbólica se altera quando construída em diferentes seções de Poincaré de um mesmo atrator, e investigamos a dimensão dos mapas de retorno, uni ou bidimensional, para diferentes atratores caóticos presentes nessa região do espaço de parâmetros. Ainda nessa vizinhança, empregamos técnicas de caracterização topológica para confirmar a existência de fibras caóticas, que são curvas de codimensão um no espaço de parâmetros onde as propriedades caóticas dos atratores são preservadas.Ao redor da janela de período quatro, investigamos a transição entre os três comportamentos caóticos para os quais construímos os respectivos moldes topológicos. Propusemos também um molde topológico para o regime caótico após a crise por fusão ocorrer no circuito. Finalizando, investigamos as bifurcações e a estrutura topológica das órbitas periódicas que formam as janelas de período três e de período quatro, construindo um espaço de parâmetros topológico, baseado em um mapa bi-modal, para descrever as duas janela periódicas. / We have studied the dynamical behavior of experimental time series obtained from a Chua's circuit by variation of two parameter control, $Delta R_1$ and $Delta R_2$. We investigated the chaotic and periodic behaviors of the circuit, analyzing temporal series around and inside of two periodic windows in the two-parameter space $(Delta R_1,Delta R_2)$. In the period-three window neighborhood, we analyzed how the symbolic dynamics changes when it is built by different Poincaré sections of an attractor, and we studied the dimension of return map, one- or two-dimensional, for many chaotic attractors in this region of the parameter space. In this neighborhood, we also applied topological techniques to confirm the existence of chaotic fibers: codimension one curves where the chaotic properties of the attractors remain unchanged in the two-parameter space.Around the period-four window, we investigated, by template analysis, the transition between three chaotic attractors found in the Chua's circuit. We proposed a template for chaotic regime of the circuit after merge-crisis. Finally, we investigated the bifurcations and topological structure of periodic orbits in period-three and period-four windows and also proposed a topological parameter space, based in a bimodal map model, that describe these two periodic windows.
23

Multiplicidade exata de soluções de equações diferenciais via um método assistido por computador / Computer assisted proof for ordinary differential equations

Prado, Mário César Monteiro do 15 May 2019 (has links)
Neste trabalho, apresentamos um método computacional rigoroso para a demonstração de existência de órbitas periódicas de alguns sistemas de equações diferenciais ordinárias com campo autônomo do tipo polinomial. Mostraremos que o problema de encontrar órbitas periódicas para esses sistemas de equações é equivalente a buscar por raízes de certas funções definidas no espaço de Banach das sequências com decaimento algébrico. O método pode ser dividido em duas etapas. Na primeira, buscamos numericamente por soluções periódicas aproximadas. Na segunda, mostraremos a existência de uma órbita periódica numa vizinhança da curva encontrada numericamente. O rigor das verificações computacionais é garantido pelo uso de aritimética intervalar. / In this work, we present a rigorous computational method for proving the existence of periodic orbits of some systems of ordinary differential equations with autonomous vector field of polynomial type. We show that the problem of finding periodic orbits for these systems is equivalent to check for roots of certain functions defined in the Banach space of sequences with algebraic decay. The method can be divided into two steps. First, we seek, numerically, to approximated periodic solutions. Then, we show the existence of a periodic orbit in a neighborhood of the curve numerically found in the previous stage. The accuracy of the computational verifications is guaranteed by the use of interval arithmetic.
24

Demonstrações assistidas por computador para equações diferenciais ordinárias / Computer assisted proof for ordinary differential equations

Prado, Mário César Monteiro do 23 February 2015 (has links)
Neste trabalho, apresentamos um método computacional rigoroso para a demonstração de existência de órbitas periódicas de alguns sistemas de equações diferenciais ordinárias com campo autônomo do tipo polinomial. Mostraremos que o problema de encontrar órbitas periódicas para esses sistemas de equações é equivalente a buscar por raízes de certas funções definidas no espaço de Banach das sequências com decaimento algébrico. O método pode ser dividido em duas etapas. Na primeira, buscamos numericamente por soluções periódicas aproximadas. Na segunda, mostraremos a existência de uma órbita periódica numa vizinhança da curva encontrada numericamente. O rigor das verificações computacionais é garantido pelo uso de aritimética intervalar. / In this work, we present a rigorous computational method for proving the existence of periodic orbits of some systems of ordinary differential equations with autonomous vector field of polynomial type. We show that the problem of finding periodic orbits for these systems is equivalent to check for roots of certain functions defined in the Banach space of sequences with algebraic decay. The method can be divided into two steps. First, we seek, numerically, to approximated periodic solutions. Then, we show the existence of a periodic orbit in a neighborhood of the curve numerically found in the previous stage. The accuracy of the computational verifications is guaranteed by the use of interval arithmetic.
25

Sobre fluxos de Reeb tri-dimensionais: existência implicada de órbitas periódicas e uma caracterização dinâmica do toro sólido. / On three-dimensional Reeb flows: implied existence of periodic orbits and a dynamical characterization of the solid torus

Silva, André Vanderlinde da 29 October 2014 (has links)
Neste trabalho, estudamos a dinâmica de Reeb associada a uma forma de contato $\\lambda$ definida numa 3-variedade compacta e conexa M. Assumimos que $\\lambda$ é tight e a primeira classe de Chern da estrutura de contato $\\xi=\\ker\\lambda$ se anula sobre $\\pi_2(M)$. No nosso primeiro resultado, supomos que M é fechada e existe uma órbita fechada L do fluxo de Reeb que é um p-nó trivial com número de auto-enlaçamento $-1/p$. Supomos, além disso, que o número de rotação transversal da p-ésima iterada de L é estritamente menor do que 1. Nestas condições, provamos que existe uma órbita fechada (de Reeb) contrátil geometricamente distinta de L e não-enlaçada em L cujo número de rotação transversal é 1. Apresentamos também uma versão deste resultado para o caso em que M é uma 3-variedade cujo bordo é difeomorfo a um toro e invariante pelo fluxo de Reeb e não existem órbitas fechadas contidas no bordo. Nosso segundo resultado é uma caracterização dinâmica do toro sólido. Seja $\\lambda$ uma forma de contato não-degenerada definida em uma 3-variedade M cujo bordo é difeomorfo a um toro e invariante pelo fluxo de Reeb. Se o fluxo de Reeb satisfaz certas hipóteses de torção sobre o bordo, então ou existe uma órbita fechada contrátil com índice de Conley-Zehnder 2 ou M é folheada por discos transversais ao campo de Reeb. Neste último caso, M é difeomorfa a um toro sólido e existe uma órbita fechada não-contrátil em M que é ponto fixo da aplicação de retorno induzida pela folheação. / In this work, we study the Reeb dynamics associated to a tight contact form $\\lambda$ defined on a compact, connected 3-manifold M. Suppose that the first Chern class of $\\xi=\\ker\\lambda$ vanish on $\\pi_2(M)$. In our first result, we assume that M is closed and there exists a closed Reeb orbit L which is a p-unknotted, has self-linking number $-1/p$ and the transverse rotation number of the p-th iterate of L is less than 1. Under these conditions, we verify that there exists a contractible closed Reeb orbit which is geometrically distinct from L and not linked to L with transverse rotation number 1. We also prove a version of this result when M is a compact 3-manifold M whose boundary is diffeomorphic to a torus and invariant by the flow and, moreover, there does not exist closed Reeb orbits on the boundary. Our second result is a dynamical characterization of the solid torus. We assume that $\\lambda$ is a contact form on a compact 3-manifold M whose boundary is diffeomorphic to a torus. Under the hypothesis of $\\lambda$ being non-degenerate, if the flow is tangent to $\\partial M$ and satisfies some twist conditions on the boundary, then either there exists a contractible closed Reeb orbit which has Conley-Zehnder index 2 or M is foliated by disks transverse to the Reeb flow. In this last case, we see that M is diffeomorphic to a solid torus and there exists a non-contractible closed Reeb orbit M which is a fixed point of the return map induced by the foliation.
26

Sobre fluxos de Reeb tri-dimensionais: existência implicada de órbitas periódicas e uma caracterização dinâmica do toro sólido. / On three-dimensional Reeb flows: implied existence of periodic orbits and a dynamical characterization of the solid torus

André Vanderlinde da Silva 29 October 2014 (has links)
Neste trabalho, estudamos a dinâmica de Reeb associada a uma forma de contato $\\lambda$ definida numa 3-variedade compacta e conexa M. Assumimos que $\\lambda$ é tight e a primeira classe de Chern da estrutura de contato $\\xi=\\ker\\lambda$ se anula sobre $\\pi_2(M)$. No nosso primeiro resultado, supomos que M é fechada e existe uma órbita fechada L do fluxo de Reeb que é um p-nó trivial com número de auto-enlaçamento $-1/p$. Supomos, além disso, que o número de rotação transversal da p-ésima iterada de L é estritamente menor do que 1. Nestas condições, provamos que existe uma órbita fechada (de Reeb) contrátil geometricamente distinta de L e não-enlaçada em L cujo número de rotação transversal é 1. Apresentamos também uma versão deste resultado para o caso em que M é uma 3-variedade cujo bordo é difeomorfo a um toro e invariante pelo fluxo de Reeb e não existem órbitas fechadas contidas no bordo. Nosso segundo resultado é uma caracterização dinâmica do toro sólido. Seja $\\lambda$ uma forma de contato não-degenerada definida em uma 3-variedade M cujo bordo é difeomorfo a um toro e invariante pelo fluxo de Reeb. Se o fluxo de Reeb satisfaz certas hipóteses de torção sobre o bordo, então ou existe uma órbita fechada contrátil com índice de Conley-Zehnder 2 ou M é folheada por discos transversais ao campo de Reeb. Neste último caso, M é difeomorfa a um toro sólido e existe uma órbita fechada não-contrátil em M que é ponto fixo da aplicação de retorno induzida pela folheação. / In this work, we study the Reeb dynamics associated to a tight contact form $\\lambda$ defined on a compact, connected 3-manifold M. Suppose that the first Chern class of $\\xi=\\ker\\lambda$ vanish on $\\pi_2(M)$. In our first result, we assume that M is closed and there exists a closed Reeb orbit L which is a p-unknotted, has self-linking number $-1/p$ and the transverse rotation number of the p-th iterate of L is less than 1. Under these conditions, we verify that there exists a contractible closed Reeb orbit which is geometrically distinct from L and not linked to L with transverse rotation number 1. We also prove a version of this result when M is a compact 3-manifold M whose boundary is diffeomorphic to a torus and invariant by the flow and, moreover, there does not exist closed Reeb orbits on the boundary. Our second result is a dynamical characterization of the solid torus. We assume that $\\lambda$ is a contact form on a compact 3-manifold M whose boundary is diffeomorphic to a torus. Under the hypothesis of $\\lambda$ being non-degenerate, if the flow is tangent to $\\partial M$ and satisfies some twist conditions on the boundary, then either there exists a contractible closed Reeb orbit which has Conley-Zehnder index 2 or M is foliated by disks transverse to the Reeb flow. In this last case, we see that M is diffeomorphic to a solid torus and there exists a non-contractible closed Reeb orbit M which is a fixed point of the return map induced by the foliation.
27

Ciclos limite para a equação de Abel generalizada / Limit cycles for generalized Abel equation

Belisário, Hugo Leonardo da Silva 30 October 2009 (has links)
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2014-08-06T10:24:20Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) ciclos_limites_para_a_equacao_de_abel_generalizada.pdf: 641062 bytes, checksum: e4be39606562d4f6805c21c2cceb451c (MD5) / Made available in DSpace on 2014-08-06T10:24:20Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) ciclos_limites_para_a_equacao_de_abel_generalizada.pdf: 641062 bytes, checksum: e4be39606562d4f6805c21c2cceb451c (MD5) Previous issue date: 2009-10-30 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work we conducted a study on the equations of the type dx dt = nå i=0 ai(t)xi; (A) where ai 2 C1, i = 0; ;n and 0 t 1. An equation of the form (A) is called a generalized Abel equation. Our study refers to the problem proposed by C. Pugh: There is a natural number N depending only on n, such that the equation (A) has at most N limit cycles? Initially we study the problem of C. Pugh for n = 1 and n = 2, for which the equation (A) has at most one and two limit cycles, respectively. For n = 3, A. Lins Neto shows that if a3(t) does not change sign on [0;1], then the equation (A) has at most three limit cycles. Also A. Lins Neto shows that, given a natural number l, it is possible to construct an equation of the form (A) with n = 3 that has at least l limit cycles. Still for n = 3, A. Gasull and J. Llibre study the problem of C. Pugh considering that a2(t) does not change sign on [0;1], and M. J. Alvarez, A. Gasull and H. Giacomini also study the problem of C. Pugh considering that there are real numbers a and b such that aa3(t)+ba2(t) does not change sign on [0;1] and a1(t) = a0(t) = 0. Besides this, we study some more general results studied by A. Gasull and A. Guillamon. / Neste trabalho realizamos um estudo sobre as equações do tipo dx dt = nå i=0 ai(t)xi; (A) onde ai 2 C1, i = 0; ;n e 0 t 1. Uma equação da forma (A) é denominada equação de Abel generalizada. Nosso estudo se refere ao problema proposto por C. Pugh: existe um número natural N dependendo apenas de n, tal que a equação (A) possui no máximo N ciclos limites? Inicialmente estudamos o problema de C. Pugh para n=1 e n=2, para os quais a equação (A) possui, no máximo, um e dois ciclos limite, respectivamente. Para n = 3, A. Lins Neto mostra que, se a3(t) não muda de sinal em [0;1], então a equação (A) possui no máximo três ciclos limite. Além disso A. Lins Neto mostra que, dado um número natural l, é possível construir uma equação da forma (A) com n = 3 que possui no mínimo l ciclos limites. Ainda para n = 3, A. Gasull e J. Llibre estudam o problema de C. Pugh considerando que a2(t) não muda de sinal em [0;1], e M. J. Álvarez, A. Gasull e H. Giacomini também estudam o problema de C. Pugh considerando que existem números reais a e b tais que aa3(t)+ba2(t) não muda de sinal em [0;1] e a1(t) = a0(t) = 0. Além destes resultados, estudamos alguns resultados mais gerais estudados por A. Gasull e A. Guillamon.
28

Existência e estabilidade de órbitas periódicas da Equação de Van der Pol-Mathieu / Existence and stability of periodic orbits of van der Pol-Mathieu equation

Pereira, Franciele Alves da Silveira Gonzaga 28 February 2012 (has links)
In this work some existence and stability results of periodic orbits of van der Pol-Mathieu Equation are studied. By using the Averaging Theorem we are able to prove, under mild conditions, the existence of two asymptotically stable periodic orbits of this equation. Moreover, the existence of invariant quadrics can be settled in plane phase of this equation. / Neste trabalho alguns resultados sobre existência e estabilidade de soluções periódicas da equação de van der Pol-Mathieu são estudados. Por meio do Teorema da Média é provado, sob condições adequadas, que esta equação possui duas órbitas periódicas assintóticamente estáveis. Além disso é obtida a existência de cônicas invariantes no plano de fase desta equação. / Mestre em Matemática
29

Sistemas dinamicos em espaços metricos fuzzy : aplicações em biomatematica / Dynamical systems in fuzzy metric spaces : applications in biomathematics

Cecconello, Moiseis dos Santos 15 August 2018 (has links)
Orientadores: Rodney Carlos Bassanezi, Adilson Jose Vieira Brandão / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-15T01:52:00Z (GMT). No. of bitstreams: 1 Cecconello_MoiseisdosSantos_D.pdf: 62393038 bytes, checksum: b7f0d1f9138d8e787749532bf661d026 (MD5) Previous issue date: 2010 / Resumo: Neste trabalho desenvolvemos ferramentas de análise qualitativa para sistemas dinâmicos definidos sobre o espaço formado pelos conjuntos fuzzy com a níveis compactos e não vazios. São propostas condições para existência de pontos de equilíbrio para o fluxo fuzzy cuja função de pertinência é sobrejetiva, generalizando alguns resultados já conhecidos. Os fluxos fuzzy considerados aqui são determinados pela extensão de Zadeh aplicada em soluções de equações diferenciais autônomas. São obtidos também condições para a existência de pontos e órbitas periódicas para o fluxo fuzzy. Em particular, demonstramos um teorema tipo Poincaré-Bendixson para tais fluxos gerados por equações autônomas bidimensionais. A análise qualitativa desenvolvida é aplicada em sistemas dinâmicos fuzzy provenientes de modelos significativos da Biomatemática. / Abstract: In this work we develop some tools for qualitative analysis of dynamical systems defined on the metric space of fuzzy sets with compact and nonempty a cuts. Conditions are offered for the existence of equilibrium points for the flow whose fuzzy membership function is surjective, generalizing some results already known. Fuzzy flows considered here are determined by Zadeh's extension applied in solutions of autonomous differential equations. We also obtained conditions for the existence of periodic points and periodic orbits for the fuzzy flow. In particular, we demonstrate a theorem like Poincaré-Bendixson for such flows generated by two-dimensional autonomous equations. The qualitative analysis results are applied to fuzzy dynamic systems from meaningful models of Biomathematics. / Doutorado / Biomatematica / Doutor em Matemática Aplicada
30

Campos descontínuos com chaveamento no Rn / Relay systems in Rn

Silva , Tharsis Souza 13 May 2016 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2016-09-09T12:27:04Z No. of bitstreams: 2 Tese - Tharsis Souza Silva - 2016.pdf: 3242823 bytes, checksum: 4cdf7de6c7ba7cfe6f4fc07cc9501592 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-09-09T12:27:26Z (GMT) No. of bitstreams: 2 Tese - Tharsis Souza Silva - 2016.pdf: 3242823 bytes, checksum: 4cdf7de6c7ba7cfe6f4fc07cc9501592 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-09-09T12:27:26Z (GMT). No. of bitstreams: 2 Tese - Tharsis Souza Silva - 2016.pdf: 3242823 bytes, checksum: 4cdf7de6c7ba7cfe6f4fc07cc9501592 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-05-13 / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / In this work we _rstly study a relay system X on the Rn that, under certain conditions, it has a one parameter family of 1-periodic orbits that arises in the origin and increase inde_nitely. We study yet another relay system class X_, that it is formed from the initial relay system by aditions of nilpotent parameters that, under certain conditions, it has the same result of the previous, and yet family of periodic orbits that arises in the origin and ends in a loop, or family that bifurcate of a loop and arise inde_nitelly. Furthermore the periodic solutions are explicitely given by Euler polynomials. Finally we study a third order di_erential equation with relay looking for periodic orbits of di_erent degrre of di_erentiability and this is done by the associated vector _eld with jump. / Neste trabalho estudamos primeiramente um campo vetorial descontínuo com chaveamento X atuando no Rn que, sob certas condições, possui uma família a um parâmetro de órbitas 1-periódicas que surge na origem e cresce indenidamente. Estudamos também uma classe de campos vetoriais descontínuos com chaveamento (relay systems) X, que se diferencía do campo inicial pela adição de parâmetros i;j de forma linear Nilpotente que, sob certas condições, possui o mesmo resultado que o caso anterior, e ainda famílias que surgem na origem e termina em um Laço ou mesmo que bifurcam de um laço e crescem indenidamente. Além disso as soluções periódicas são dadas explicitamente através dos polinômios de Euler. Ainda estudamos uma equação diferencial de terceira ordem com chaveamento a m de buscar órbitas periódicas de diferentes graus de diferenciabilidade e esse estudo é feito através do campo vetorial associado com impulso.

Page generated in 0.0744 seconds