Spelling suggestions: "subject:"algebras"" "subject:"álgebra""
211 |
Sobre uma classe de álgebras associadas a duas famílias de grafos orientados / On a class of algebras associated with two families of directed graphsBarboza, Marcelo Bezerra 02 March 2015 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-05-19T11:39:34Z
No. of bitstreams: 2
Dissertação - Marcelo Bezerra Barboza - 2015.pdf: 1031294 bytes, checksum: 1a2c64373fbcf29d38e433509a38f1ab (MD5)
license_rdf: 19874 bytes, checksum: 38cb62ef53e6f513db2fb7e337df6485 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-05-19T11:45:05Z (GMT) No. of bitstreams: 2
Dissertação - Marcelo Bezerra Barboza - 2015.pdf: 1031294 bytes, checksum: 1a2c64373fbcf29d38e433509a38f1ab (MD5)
license_rdf: 19874 bytes, checksum: 38cb62ef53e6f513db2fb7e337df6485 (MD5) / Made available in DSpace on 2015-05-19T11:45:05Z (GMT). No. of bitstreams: 2
Dissertação - Marcelo Bezerra Barboza - 2015.pdf: 1031294 bytes, checksum: 1a2c64373fbcf29d38e433509a38f1ab (MD5)
license_rdf: 19874 bytes, checksum: 38cb62ef53e6f513db2fb7e337df6485 (MD5)
Previous issue date: 2015-03-02 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Given a directed layered graph , we present the algebra A() as a quotient of
the free associative or tensor algebra (with unit, over an arbitrarily fixed field of
scalars), freely generated by the set of edges in . We calculate the Hilbert series
associated with the grading on A() coming from degree in the tensor algebra. We
also calculate the group of automorphisms of A() that preserve the (ascending)
filtration associated with the grading mentioned above. Despite the fact the main
results within this notes remain true for a relatively large class of directed graphs,
we stay close to the ones Dn and Ln, n 3, that is, those consisting, respectively,
on the Hasse diagram of the partially ordered sets of faces in a regular polygon
containing n edges and the power set of {1, . . . , n}. The work teaching us all of the
above is [1], by Colleen Duffy. / Dado um grafo orientado em níveis, apresentamos a álgebra A() como um
quociente da álgebra associativa livre ou tensorial (com unidade, sobre um corpo
de escalares arbitrariamente fixado), livremente gerada pelo conjunto de arestas em
. Calculamos a série de Hilbert associada à graduação em A() proveniente do grau
na álgebra tensorial. Também calculamos o grupo dos automorfismos de A() que
preservam a filtração (crescente) associada à graduação acima mencionada. Apesar
de os resultados principais permanecerem verdadeiros para uma classe relativamente
ampla de grafos orientados, permanecemos próximos a Dn e Ln, n 3, isto
é, aqueles que consistem, respectivamente, no diagrama de Hasse dos conjuntos
parcialmente ordenados das faces de um polígono regular de n lados e no conjunto
das partes de {1, . . . , n}. O trabalho do qual aprendemos todo o acima é [1], por
Collen Duffy.
|
212 |
Reconhecimento polinomial de álgebras cluster de tipo finito / Polynomial recognition of cluster algebras of finite typeDias, Elisângela SIlva 09 September 2015 (has links)
Submitted by Cláudia Bueno (claudiamoura18@gmail.com) on 2015-10-29T19:17:43Z
No. of bitstreams: 2
Tese - Elisângela Silva Dias - 2015.pdf: 1107380 bytes, checksum: e288bc934158fa879639c403bb15ba54 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-11-03T14:30:02Z (GMT) No. of bitstreams: 2
Tese - Elisângela Silva Dias - 2015.pdf: 1107380 bytes, checksum: e288bc934158fa879639c403bb15ba54 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-11-03T14:30:02Z (GMT). No. of bitstreams: 2
Tese - Elisângela Silva Dias - 2015.pdf: 1107380 bytes, checksum: e288bc934158fa879639c403bb15ba54 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2015-09-09 / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / Cluster algebras form a class of commutative algebra, introduced at the beginning of the
millennium by Fomin and Zelevinsky. They are defined constructively from a set of generating
variables (cluster variables) grouped into overlapping subsets (clusters) of fixed
cardinality. Since its inception, the theory of cluster algebras found applications in many
areas of science, specially in mathematics. In this thesis, we study, with computational focus,
the recognition of cluster algebras of finite type. In 2006, Barot, Geiss and Zelevinsky
showed that a cluster algebra is of finite type whether the associated graph is cyclically
oriented, i.e., all chordless cycles of the graph are cyclically oriented, and whether the
skew-symmetrizable matrix associated has a positive quasi-Cartan companion. At first,
we studied the two topics independently. Related to the first part of the criteria, we developed
an algorithm that lists all chordless cycles (polynomial on the length of those
cycles) and another that checks whether a graph is cyclically oriented and, if so, list all
their chordless cycles (polynomial on the number of vertices). Related to the second part
of the criteria, we developed some theoretical results and we also developed a polynomial
algorithm that checks whether a quasi-Cartan companion matrix is positive. The latter
algorithm is used to prove that the problem of deciding whether a skew-symmetrizable
matrix has a positive quasi-Cartan companion for general graphs is in NP class. We conjecture
that this problem is in NP-complete class.We show that the same problem belongs
to the class of polynomial problems for cyclically oriented graphs and, finally, we show
that deciding whether a cluster algebra is of finite type also belongs to this class. / As álgebras cluster formam uma classe de álgebras comutativas introduzida no início
do milênio por Fomin e Zelevinsky. Elas são definidas de forma construtiva a partir de
um conjunto de variáveis geradoras (variáveis cluster) agrupadas em subconjuntos sobrepostos
(clusters) de cardinalidade fixa. Desde a sua criação, a teoria das álgebras cluster
encontrou aplicações em diversas áreas da matemática e afins. Nesta tese, estudamos,
com foco computacional, o reconhecimento das álgebras cluster de tipo finito. Em 2006,
Barot, Geiss e Zelevinsky mostraram que uma álgebra cluster é de tipo finito se o grafo
associado é ciclicamente orientado, isto é, todos os ciclos sem corda do grafo são ciclicamente
orientados, e se a matriz antissimetrizável associada possui uma companheira
quase-Cartan positiva. Em um primeiro momento, estudamos os dois tópicos de forma
independente. Em relação à primeira parte do critério, elaboramos um algoritmo que lista
todos os ciclos sem corda (polinomial no tamanho destes ciclos) e outro que verifica se
um grafo é ciclicamente orientado e, em caso positivo, lista todos os seus ciclos sem corda
(polinomial na quantidade de vértices). Relacionado à segunda parte do critério, desenvolvemos
alguns resultados teóricos e elaboramos um algoritmo polinomial que verifica
se uma matriz companheira quase-Cartan é positiva. Este último algoritmo é utilizado
para provar que o problema de decidir se uma matriz antissimetrizável tem uma companheira
quase-Cartan positiva para grafos gerais está na classe NP. Conjecturamos que
este problema pertence à classe NP-completa. Mostramos que o mesmo pertence à classe
de problemas polinomiais para grafos ciclicamente orientados e, por fim, mostramos que
decidir se uma álgebra cluster é de tipo finito também pertence a esta classe.
|
213 |
Ação de automorfismos livres de pontos fixos / Zn-graded lie rings with fixed point free automorphismsAraujo, Daniel dos Santos 13 May 2016 (has links)
Submitted by Jaqueline Silva (jtas29@gmail.com) on 2016-09-12T21:09:34Z
No. of bitstreams: 2
Dissertação - Daniel dos Santos Araújo - 2016.pdf: 1529885 bytes, checksum: 8ed172afb4beaab8a7bf1c612425044f (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-09-12T21:09:45Z (GMT) No. of bitstreams: 2
Dissertação - Daniel dos Santos Araújo - 2016.pdf: 1529885 bytes, checksum: 8ed172afb4beaab8a7bf1c612425044f (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-09-12T21:09:45Z (GMT). No. of bitstreams: 2
Dissertação - Daniel dos Santos Araújo - 2016.pdf: 1529885 bytes, checksum: 8ed172afb4beaab8a7bf1c612425044f (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2016-05-13 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / If a Zn-graded Lie ring L admits a fixed point free automorphism of order n, then
L is soluble and the derived length of L is bounded in function only on n. In this
work, we study some results about the derived length of the Zn-graded Lie rings
and in the particular case that n = 6, we also study properties to the nilpotency
class of the lower central series of L. For this, we introduce some basic results of Lie
algebras theory and Lie rings, as well preliminary concepts of modules and tensor
product. Finally, we study a Lie ring associated to a group once many problems in
group theory can be treated by linear methods about Lie algebras and Lie rings. / Um anel de Lie Zn-graduado L, que admite um automorfismo livre de pontos fixos
de ordem n é solúvel e tem comprimento derivado limitado apenas em função de n.
Estudamos neste trabalho resultados relacionados ao comprimento derivado do anel
de Lie Zn-graduado L, onde para o caso de n = 6, vemos também um limite para
a classe de nilpotência de um termo da série central inferior de L. Para esse fim,
fazemos um estudo introdutório sobre álgebras de Lie e anéis de Lie, como também
conceitos preliminares sobre módulos e produto tensorial. Apresentamos também
um anel de Lie associado a um grupo, pois muitos problemas em Teoria de Grupos
podem ser tratados via métodos lineares para anéis e álgebras de Lie.
|
214 |
Funções valorização e anéis de valorização de Dubrovin em álgebras simples / Value functions and Dubrovin valuation rings on simple algebrasFerreira, Mauricio de Araujo, 1982- 19 August 2018 (has links)
Orientadores: Antonio José Engler, Adrian Roscoe Wadsworth / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T04:54:44Z (GMT). No. of bitstreams: 1
Ferreira_MauriciodeAraujo_D.pdf: 1468385 bytes, checksum: 5379cb7621a86850c4016ed524805e3f (MD5)
Previous issue date: 2011 / Resumo: Nesta tese estudamos a relação entre duas teorias de valorização não-comutativas: anéis de valorização de Dubrovin e gauges. Os anéis de valorização de Dubrovin foram introduzidos em 1982, como uma generalização para anéis artinianos simples dos anéis de valorização invariantes em álgebras de divisão. Gauges são funções como valorizações, que podem ser definidas não só em álgebra de divisão, mas mais geralmente em álgebras simples e até mesmo semi-simples, de dimensão finita sobre corpos valorizados. Gauges foram introduzidas muito mais recentemente em 2010 por Tignol e Wadsworth. Assim como em valorizações de corpos, podemos definir um anel associado a uma gauge, que chamamos de anel da gauge. Propriedades aritméticas do anel da gauge são estudadas. Mostramos que o anel de uma gauge é sempre uma ordem semi-local integral sobre seu centro. Também descrevemos o anel da gauge com relação a composição de gauges e extensão de escalares. Introduzimos o conceito de gauge minimal em álgebras centrais simples, que são gauges cuja parte de grau zero da álgebra graduada associada tem o menor número possível de componentes simples. Mostramos que o anel de uma gauge minimal coincide com a interseção de uma família de anéis de valorização de Dubrovin, satisfazendo uma propriedade adicional, que foi introduzida por Gräter em 1992, e que é chamada de propriedade da interseção. Reciprocamente, se for dada uma família de anéis de valorização de Dubrovin, satisfazendo a propriedade da interseção, então existe uma gauge minimal associada, assumindo-se que a valorização de centro tem posto finito. O passo fundamental nesse sentido foi obtermos um teorema de existência de gauges minimais em álgebras centrais simples sobre corpos com uma valorização de posto finito. Além disso, generalizamos para álgebras simples, não necessariamente centrais, um resultado de Tignol e Wadsworth que relaciona gauges com certas funções valorização introduzidas por Morandi em 1989 e que estão associadas aos anéis de valorização de Dubrovin integrais sobre o centro. Como consequência desse último resultado, obtivemos um teorema de existência de gauges em álgebras semi-simples de dimensão finita sobre um corpo com uma valorização de posto 1 / Abstract: In this thesis work we study the connection between two theories of noncommutative valuation: Dubrovin valuation rings and gauges. Dubrovin valuation rings were introduced in 1982 as a generalization of invariant valuation rings to Artinian simple rings. Gauges are valuation-like maps that can be defined not only on division algebras, but more generally, on finite-dimensional semisimple algebras over valued fields. Gauges were introduced much more recently in 2010 by Tignol and Wadsworth. Just as for valuations on fields, we can define a ring associated to a gauge, which we call gauge ring. Arithmetic properties of the gauge ring are studied. We show that the gauge ring is always a semi-local order integral over its center. We also describe the gauge ring with respect to composition of gauges and scalar extension. We introduce the concept of minimal gauge on central simple algebras, which are gauges that the degree zero part of the associated graded ring has the least number of simple components. We show that the ring of a minimal gauge is an intersection of a family of Dubrovin valuation rings having the intersection property. The intersection property was introduced by Gräter in 1992. We also proved that if we start with a family of Dubrovin valuation rings having the intersection property, then there exist a minimal gauge associated, assuming that the valuation of the center has finite rank. In this direction, our main result is an existence theorem of minimal gauges on central simple algebra over a field with a finite rank valuation. We also generalize for simple algebras, non-necessarily central, a result of Tignol and Wadsworth which relate gauges with certain value functions introduced by Morandi in 1989. This value functions are associated to Dubrovin valuation rings integral over its center. As a consequence of this last result, we obtain an existence theorem of gauges on finite dimensional semisimple algebras over a field with a rank one valuation / Doutorado / Matematica / Doutor em Matemática
|
215 |
Identidades polinomiais em álgebras matriciais sobre a álgebra de Grassmann / Polynomial identities in matrix algebras over the Grassmann algebraMello, Thiago Castilho de, 1984- 19 August 2018 (has links)
Orientador: Plamen Emilov Kochloukov / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T21:39:41Z (GMT). No. of bitstreams: 1
Mello_ThiagoCastilhode_D.pdf: 1364753 bytes, checksum: 66955ce4a4c6b84e5c6dcc1a414f3f24 (MD5)
Previous issue date: 2012 / Resumo: Nesta tese estudamos a álgebra genérica de M1;1 em dois geradores sobre um corpo infinito de característica diferente de 2. Descrevemos o centro desta álgebra e provamos que este é a soma direta do corpo com um ideal nilpotente da álgebra. Como consequência mostramos que este centro contém elementos não escalares, respondendo a uma pergunta feita por Berele. Em característica zero, estudamos também as identidades polinomiais de tal álgebra genérica e exibimos uma base finita para seu T-ideal, utilizando a descrição do seu centro e os resultados de Popov sobre as identidades de M1;1 em característica zero. Segue que tal base é formada pelos polin^omios [x1; x2][x3; x4][x5; x6], [[x1; x2][x3; x4]; x5] e s4, a identidade polinomial standard de grau 4. Por fim, utilizando ideias e resultados de Nikolaev sobre as identidades em duas variáveis de M2(K) em característica zero, mostramos que todas as identidades polinomiais em duas variáveis de M1;1 são consequências das identidades [[x1; x2]2; x1] e [x1; x2]³ / Abstract: In this thesis, we study the generic algebra of M1;1 in two generators over an infinite field of characteristic different from 2. We describe the centre of this algebra and prove that this centre is a direct sum of the field and a nilpotent ideal of the algebra. As a consequence, we show that such centre contains nonscalar elements and thus we answer a question posed by Berele. In characteristic zero we also study the identities of this generic algebra and find a finite basis for its ideal of identities using the description of its centre and the results of Popov, about the identities of M1;1 in characteristic zero. It follows that such a basis is formed by the polynomials [x1; x2][x3; x4][x5; x6], [[x1; x2][x3; x4]; x5] and by s4, the standard identity of degree four. Finally, using ideas and results of Nikolaev about the identities in two variables of M2(K) in characteristic zero, we show that the polynomial identities in two variables of M1;1 follow from [[x1; x2]2; x1] and [x1; x2]³ / Doutorado / Matematica / Doutor em Matemática
|
216 |
Graduações e identidades graduadas para álgebras de matrizes / Gradings and graded identities for matrix algebraReis, Júlio César dos, 1979- 20 August 2018 (has links)
Orientador: Plamen Emilov Kochloukov / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-20T11:39:36Z (GMT). No. of bitstreams: 1
Reis_JulioCesardos_D.pdf: 2452563 bytes, checksum: 63f8b1d463a36f74d57c1d71769dc9ae (MD5)
Previous issue date: 2012 / Resumo: Na presente tese, fornecemos bases das identidades polinomiais graduadas de...Observação: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital / Abstract: In this PhD thesis we give bases of the graded polynomial identities of...Note: The complete abstract is available with the full electronic document / Doutorado / Matematica / Doutor em Matemática
|
217 |
Relações de dispersão deformadas na cosmologia inflacionária / Dispersion relations in inflationary cosmologyUlisses Diego Almeida Santos Machado 24 September 2012 (has links)
Relação de dispersão é outro nome para a função Hamiltoniana, cujo conhecimento especica completamente a dinâmica de um sistema no formalismo da mecânica classica. Sua escolha está intimamente vinculada às simetrias do sistema e, no contexto cosmologico aqui apresentado, com as simetrias locais obedecidas pelas leis fsicas. Mais ainda, a contribuição da materia na dinâmica cosmologica reflete a escolha do grupo local de simetrias das leis fsicas. Por outro lado, o problema fundamental da cosmologia pode ser definido como a construção de um modelo de evolução temporal de estados que, sob as hipoteses mais simples sobre estados iniciais (digamos, que demande a menor quantidade de informação possível para serem enunciadas), prediga o estado atual observado. O paradigma inacionario é atualmente a ideia que melhor cumpre esta denição, uma vez que prediz que uma grande variedade de condições iniciais leva a aspectos fundamentais do universo observado. Contudo, os mecanismos usuais de realização da inflação sofrem de problemas conceituais. O ponto de vista deste trabalho e que a realização convencional da inflação, isto é, atraves dos campos escalares minimamente acoplados, é a formulação localmente relativisticamente invariante da inflação. A maneira de incluir quebras e deformações da estrutura de simetrias locais na cosmologia é não única e está associado ao chamado problema trans Planckiano da inflação. Analogamente, a motivação conceitual para incluir esse tipo de modicação tampouco é unica. Dependendo do esquema de realização, a versão localmente não relativstica da mesma pode apresentar graves diculdades de conciliação com observações atuais, ou apresentar vantagens conceituais em relacão ao modelo padrão de inflacão, enquanto em conformidade com observações cosmológicas. Da maneira como foi posto o problema fundamental da cosmologia, a escolha das simetrias locais influi na regra de evolução dos estados. O conceito de simetrias encontra sua formulação independente de teorias físicas no formalismo da teoria de grupos, mas consideraremos uma extensão da ideia, de aplicabilidade mais geral, a teoria das algebras de Hopf que, de certo modo, trata das simetrias de estruturas algebricas. Esta extensão é útil inclusive no trato de simetrias dos espacos não comutativos, uma das principais propostas fsicas que em última analise afeta a estrutura de simetrias locais do espaco-tempo. A expressão simetrias locais, por si só, não diz muito sem a consideração de regras de realização. Essas regras dependem da estrutura matematica das observaveis da teoria. Sob hipoteses muito gerais, que não especicam uma teoria em particular, é possível mostrar, não como um teorema matematico formal, mas como uma hipotese tecnicamente bem motivada, que existem apenas dois tipos de teorias fsicas: as classicas e as quânticas. Trabalharemos sob essas hipoteses, as quais se formulam algebricamente assumindo a estrutura de C*-álgebra para as observaveis físicas, outra motivação para o uso das álgebras de Hopf para descrição das simetrias da natureza. / Dispersion relation is another name for the Hamiltonian function whose knowledge completely specifies the dynamics in the formalism of classical mechanics. Its choice is intimately related to the symmetries of the system, and, in the cosmological context here exposed, with the local space-time symmetries obeyed by physical laws. For the other side, the fundamental problem of cosmology can be defined as a construction of a time evolution model of states which, under simplest possible hypothesis concerning initial conditions (say, which demands the minimal amount of information to be specified), predicts the present observed state. The inflationary paradigm is currently the idea which better accomplishes this definition, since it predicts that a great variety of initial conditions lead to essential aspects of observed universe. The usual mechanisms of inflation suffer, however, with conceptual problems. The point of view of this work is that the usual realization of inflation based on weakly coupled scalar fields is the local relativistic invariant realization. The way of including breaks and deformations of the local space-time symmetries is not unique and it is associated to the so called Trans-Planckian problem of inflation. Analogously, the motivation to include this kind of modification is neither unique. Depending of the scheme of realization, the locally non-relativistic version may lead to serious difficulties in conciliation with observations, or to conceptual advantages over standard formulations while in accordance with observational data. In the way that was proposed the fundamental problem of cosmology, the choice of local symmetries affects the rule of evolution of states. The concept of symmetry finds its formulation independently of physical theories in the group theory formalism, but we will consider an extension of the idea, with wider applicability, the theory of Hopf algebras, which is about symmetries of algebraic structures. That extension is also useful to deal with symmetries of non-commutative spaces, one of the main physical proposals that affects the structure of space-time symmetries. The expression, local symmetries, by itself, does not say too much without considering realization rules. Those rules depend on mathematical structure of observables in the theory. Under very general hypothesis that do not specify a particular theory, it is possible to show, not as a formal mathematical theorem, but as a technically well motivated hypothesis, that only two types of physical theories do exist: The classical ones and the quantum ones. We are going to work under those hypothesis, which can be algebraically formulated assuming a C*-algebra structure for physical observables, another motivation for the use of algebraic structures like Hopf algebras for the description of nature\'s symmetries
|
218 |
Algumas aplicações de combinatória infinita a espaços de funções contínuas / Some aplications of infinite combinatorics to continuous functions spacesFernández, Juan Francisco Camasca 06 April 2017 (has links)
O principal objetivo deste trabalho é estudar diversas aplicações de combinatória infinita em espaços de funções contínuas, definidas em espaços compactos Hausdorff. Usando combinatória infinita para uma álgebra de Boole, por meio da dualidade de Stone, obtemos um espaço compacto Hausdorff. Com certas propriedades na álgebra de Boole é possível analisar propriedades analíticas no espaço de funções contínuas definidas em tal espaço. Especificamente, analisamos a propriedade de Grothendieck. Também analisamos a relação entre o espaço de funções contínuas e o espaço compacto Hausdorff sobre o qual é definido. Apresentamos um resultado que permite obter diversos resultados conhecidos de uma maneira uniforme (só usando fatos de topologia e teoria de conjuntos), dotando o espaço de funções contínuas de uma ordem peculiar. Finalmente, estudamos um pouco de jogos topológicos mediante diversos exemplos. / The main purpose of this work is to study some infinite combinatorics applications in spaces of continuous functions, defined in Hausdorff compact spaces. Using infinite combinatorics in Boolean algebras, through Stone duality, we obtain a compact Hausdorff space. With certain properties in Boolean algebras it is possible to analyze analytic properties in the space of continuous functions defined in such space. Specifically, we analyze the Grothendieck property. We also analyze the relationship between the space of continuous functions and the compact Hausdorff space on which it is defined. We present a result that allows to obtain several known results in a uniform way (only using facts of topology and set theory), giving the space of continuous functions a peculiar order. Finally, we study some topological games through several examples.
|
219 |
Aspectos estruturais e dinâmicos da correspondência AdS/CFT: Uma abordagem rigorosa / Structural and Dynamical Aspects of the AdS/CFT Correspondence: a Rigorous ApproachRibeiro, Pedro Lauridsen 26 September 2007 (has links)
Elaboramos um estudo detalhado de alguns aspectos d(e uma versão d)a correspondência AdS/CFT, conjeturada por Maldacena e Witten, entre teorias quânticas de campo num fundo gravitacional dado por um espaço-tempo assintoticamente anti-de Sitter (AAdS), e teorias quânticas de campos conformalmente covariantes no infinito conforme (no sentido de Penrose) deste espaço-tempo, aspectos estes: (a) independentes d(o par d)e modelos específicos em Teoria Quântica de Campos, e (b) suscetíveis a uma reformulação em moldes matematicamente rigorosos. Adotamos como ponto de partida o teorema demonstrado por Rehren no contexto da Física Quântica Local (também conhecida como Teoria Quântica de Campos Algébrica) em espaços-tempos anti-de Sitter (AdS), denominado holografia algébrica ou dualidade de Rehren. O corpo do presente trabalho consiste em estender o resultado de Rehren para uma classe razoavelmente geral de espaços-tempos AAdS d-dimensionais (d>3), escrutinar como as propriedades desta extensão são enfraquecidas e/ou modificadas em relação ao espaço-tempo AdS, e como efeitos gravitacionais não-triviais se manifestam na teoria quântica no infinito conforme. Dentre os resultados obtidos, citamos: condições razoavelmente gerais sobre geodésicas nulas no interior (cuja plausibilidade justificamos por meio de resultados de rigidez geométrica) não só garantem que a nossa generalização é geometricamente consistente com causalidade, como também permite uma reconstrução ``holográfica\'\' da topologia do interior na ausência de horizontes e singularidades; a implementação das simetrias conformes na fronteira, que associamos explicitamente a uma família de isometrias assintóticas do interior construída de maneira intrínseca, ocorre num caráter puramente assintótico e é atingida dinamicamente por um processo de retorno ao equilíbrio, mediante condições de contorno adequadas no infinito; efeitos gravitacionais podem eventualmente causar obstruções à reconstrução da teoria quântica no interior, ou por torná-la trivial em regiões suficientemente pequenas ou devido à existência de múltiplos vácuos inequivalentes, que por sua vez levam à existência de excitações solitônicas localizadas ao redor de paredes de domínio no interior, similares a D-branas. As demonstrações fazem uso extensivo de geometria Lorentziana global. A linguagem empregada para as teorias quânticas relevantes para nossa generalização da dualidade de Rehren segue a formulação funtorial de Brunetti, Fredenhagen e Verch para a Física Quântica Local, estendida posteriormente por Sommer para incorporar condições de contorno. / We elaborate a detailed study of certain aspects of (a version of) the AdS/CFT correspondence, conjectured by Maldacena and Witten, between quantum field theories in a gravitational background given by an asymptotically anti-de Sitter (AAdS) spacetime, and conformally covariant quantum field theories in the latter\'s conformal infinity (in the sense of Penrose), aspects such that: (a) are independent from (the pair of) specific models in Quantum Field Theory, and (b) susceptible to a recast in a mathematically rigorous mould. We adopt as a starting point the theorem demonstrated by Rehren in the context of Local Quantum Physics (also known as Algebraic Quantum Field Theory) in anti-de Sitter (AdS) spacetimes, called algebraic holography or Rehren duality. The main body of the present work consists in extending Rehren\'s result to a reasonably general class of d-dimensional AAdS spacetimes (d>3), scrutinizing how the properties of such an extension are weakened and/or modified as compared to AdS spacetime, and probing how non-trivial gravitational effects manifest themselves in the conformal infinity\'s quantum theory. Among the obtained results, we quote: not only does the imposition of reasonably general conditions on bulk null geodesics (whose plausibility we justify through geometrical rigidity techniques) guarantee that our generalization is geometrically consistent with causality, but it also allows a ``holographic\'\' reconstruction of the bulk topology in the absence of horizons and singularities; the implementation of conformal symmetries in the boundary, which we explicitly associate to an intrinsically constructed family of bulk asymptotic isometries, have a purely asymptotic character and is dynamically attained through a process of return to equilibrium, given suitable boundary conditions at infinity; gravitational effects may cause obstructions to the reconstruction of the bulk quantum theory, either by making the latter trivial in sufficiently small regions or due to the existence of multiple inequivalent vacua, which on their turn lead to the existence of solitonic excitations localized around domain walls, similar to D-branes. The proofs make extensive use of global Lorentzian geometry. The language employed for the quantum theories relevant for our generalization of Rehren duality follows the functorial formulation of Local Quantum Physics due to Brunetti, Fredenhagen and Verch, extended afterwards by Sommer in order to incorporate boundary conditions. (An English translation of the full text can be found at arXiv:0712.0401)
|
220 |
Algumas aplicações de combinatória infinita a espaços de funções contínuas / Some aplications of infinite combinatorics to continuous functions spacesJuan Francisco Camasca Fernández 06 April 2017 (has links)
O principal objetivo deste trabalho é estudar diversas aplicações de combinatória infinita em espaços de funções contínuas, definidas em espaços compactos Hausdorff. Usando combinatória infinita para uma álgebra de Boole, por meio da dualidade de Stone, obtemos um espaço compacto Hausdorff. Com certas propriedades na álgebra de Boole é possível analisar propriedades analíticas no espaço de funções contínuas definidas em tal espaço. Especificamente, analisamos a propriedade de Grothendieck. Também analisamos a relação entre o espaço de funções contínuas e o espaço compacto Hausdorff sobre o qual é definido. Apresentamos um resultado que permite obter diversos resultados conhecidos de uma maneira uniforme (só usando fatos de topologia e teoria de conjuntos), dotando o espaço de funções contínuas de uma ordem peculiar. Finalmente, estudamos um pouco de jogos topológicos mediante diversos exemplos. / The main purpose of this work is to study some infinite combinatorics applications in spaces of continuous functions, defined in Hausdorff compact spaces. Using infinite combinatorics in Boolean algebras, through Stone duality, we obtain a compact Hausdorff space. With certain properties in Boolean algebras it is possible to analyze analytic properties in the space of continuous functions defined in such space. Specifically, we analyze the Grothendieck property. We also analyze the relationship between the space of continuous functions and the compact Hausdorff space on which it is defined. We present a result that allows to obtain several known results in a uniform way (only using facts of topology and set theory), giving the space of continuous functions a peculiar order. Finally, we study some topological games through several examples.
|
Page generated in 0.029 seconds