• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 154
  • 51
  • 22
  • 1
  • 1
  • Tagged with
  • 238
  • 142
  • 60
  • 58
  • 48
  • 37
  • 29
  • 28
  • 24
  • 24
  • 18
  • 18
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Développement de dispositifs moléculaires fonctionnalisés par un sidérophore pour la reconnaissance moléculaire spécifique en diagnostic clinique

Elouarzaki, Kamal 30 June 2010 (has links) (PDF)
Les sidérophores sont des complexants naturels du fer(III), synthétisés et sécrétés par les microorganismes pour s'approvisionner en fer. Chez les bactéries et certaines levures, les sidérophores peuvent être activement transportés à travers la membrane cellulaire via des récepteurs et des protéines de transport à haute activité et spécificité. La synthèse d'un analogue du ferrichrome (sidérophore trihydroxamate) a été récemment été décrite au laboratoire1 et permis de mettre en évidence le transport actif de ce type de sidérophore chez C. albicans. Dans ce contexte, nous avons entrepris d'élaborer des électrodes ou surfaces d'or fonctionnalisées par un sidérophore, et mettant en jeu des monocouches auto-assemblées, dans le but de développer des dispositifs moléculaires pour des applications potentielles en milieu biologique. Un de ces objectifs est d'élaborer un capteur du fer (III) muni d'une détection simple et en temps réel de type électrochimique. D'un point de vue médical, la demande de la part des industries du diagnostic pour commercialiser des capteurs jetables du fer (III) est importante : la finalité étant de doter d'un dispositif mobile pour diagnostiquer un excès ou une carence en fer chez un patient. Actuellement, ce dosage se fait en laboratoire par des techniques colorimétriques non transportables et peu fiables. Par rapport aux méthodes optiques, les systèmes électrochimiques faisant appel aux monocouches auto-assemblées sur surface d'or2 présentent un certain nombre d'avantages tel que la facilité de mise en oeuvre, la rapidité, le faible coût des systèmes finis. Dans ce contexte, ce travail s'articule autour deux axes : la synthèse et l'étude physicochimique des complexes de fer(III)-sidérophore. Dans cette étude, les ligands sont associés à différentes unités électroactives afin de les fixés à la surface de transducteurs physiques. Notre travail de recherche s'est donc développé selon trois étapes :  Le développement d'une ingénierie moléculaire pour synthétiser de nouveaux sidérophores immobilisables ayant des exigences stériques particulières  L'analyse du comportement et/ou de la structure de ces complexes en solution, à partir des mesures de l'UV-Visible et la voltampérométrie cyclique  L'élaboration et caractérisation les matériaux d'électrode par des techniques électrochimiques et piézoélectriques. Au cours de ce travail, nous avons tout d'abord synthétisé deux séries de sidérophores sur lesquels plusieurs substituant ont été greffés. Dans un premier temps, les premières synthèses ont été réalisées par couplage peptidique de la desferrioxamine B à différents esters activés pour obtenir des analogues de la desferrioxamine B dont les propriétés optiques et électrochimiques sont différentes. Dans un deuxième temps, nous avons mis au point une méthode de synthèse qui a permis d'accéder à deux analogues du ferrichrome immobilisables fonctionnalisés par une sonde bithiophènique et une chaine alcanethiol. Ensuite, les propriétés optiques et électrochimiques des ligands obtenus ont été caractérisées et comparées en présence du Fe(III). Enfin, nous avons réalisé une étude préliminaire d'élaboration de monocouche auto-assemblée pour mettre au point les conditions de la post-fonctionnalisation.
112

Spectroscopies optiques non linéaires pour l’analyse des interfaces

Peremans, André AP 03 June 2004 (has links)
L'impact de la science des surfaces sur l'évolution de la société se reconnaît par la diversité des matériaux modernes qui sont optimisés pour leurs propriétés de surface telles que l'adhérence, la dureté, la résistance à la corrosion ou la réactivité chimique. Les recherches dans ce domaine requièrent des techniques d'analyse permettant de sonder les atomes et molécules situées à l'extrême surface des matériaux. A cet égard, cette dernière décennie a vu le développement de spectroscopies optiques non linéaires ONL. Basées sur des processus optiques du second ordre, interdits au sein des milieux centro-symétriques, elles présentent l'avantage d'être intrinsèquement sensibles aux interfaces et d'être applicables pour une grande variété d'interfaces: liquide/solide, solide/solide, gaz/liquide, etc. La première technique ONL mise en oeuvre pour l'analyse de surface est la génération du second harmonique (SHG). Utilisant un seul faisceau laser de fréquence fixe, la technique SHG permet de suivre l'évolution d'une propriété de surface telle que la densité de l'adsorbat. Cette technique a évolué vers la spectroscopie SHG résonnante (R-SHG) obtenue en mesurant le rendement de photons SHG en fonction de la fréquence accordable du faisceau laser incident. La R-SHG a permis de réaliser des mesures spectroscopiques des transitions électroniques au sein de films de molécules auto-assemblées ainsi qu'aux surfaces de semi-conducteurs. C'est en 1987 qu’a été démontrée la possibilité de mesurer des spectres vibrationnels d'interface par spectroscopie de génération de fréquence-somme (SFG), en utilisant un faisceau infrarouge accordable et un faisceau visible à fréquence fixe. Finalement, plusieurs études théoriques ont proposé la mise en oeuvre de la spectroscopie SFG à deux couleurs (2C-SFG) qui utilise deux faisceaux lasers accordables indépendamment dans les domaines spectraux de l'infrarouge et du visible. Cette technique, qui combine les avantages de la SHG résonnante avec ceux de la SFG, permet de sonder les transitions électroniques et vibrationnelles et plus particulièrement, leurs couplages. Dans cette thèse, nous présenterons les progrès réalisés dans le domaine de l'optique non linéaire au sein du laboratoire LASMOS. Nous commencerons par poser les bases théoriques de la SFG, qui permettent d'obtenir la signature vibrationnelle et électronique des interfaces ainsi que la détermination de paramètres structuraux. Ensuite, nous présenterons les dispositifs lasers que nous avons développés pour la spectroscopie SFG et les thèmes de recherche abordés avec ces outils. Particulièrement adaptée à l’étude d’interfaces enterrées, nous avons consacré une première partie de nos travaux à l’étude des réactions électrochimiques modèles impliquées dans le développement de piles à combustible. Dans un deuxième temps, nous avons combiné l’utilisation de la spectroscopie infrarouge, de la spectroscopie SFG et des mesures de dynamique vibrationnelle pour étudier les mécanismes de dissipation de l’énergie vibrationnelle au sein de l’adsorbat. Plus récemment, nous avons développé la spectroscopie SFG à 2 couleurs permettant l’étude spécifique de couplages électron-phonon d’interface. Dans une dernière section, nous démontrerons comment la comparaison des spectres SFG expérimentaux et des spectres SFG simulés à partir de calculs ab initio, permet la détermination de la configuration d’adsorption des molécules en phase adsorbée. Suite à ces résultats orientés vers l’étude de problèmes fondamentaux en science des surfaces, nous discuterons l’opportunité d’une nouvelle orientation de recherche au sein du laboratoire qui vise à exploiter la spectroscopie SFG pour le développement de nouveaux capteurs biologiques. ---------------------------------------- L’impact de la science des surfaces sur l’évolution de la société se reconnaît par la diversité des matériaux modernes qui sont optimisés pour leurs propriétés de surface telles que l’adhérence, la dureté, la résistance à la corrosion ou la réactivité chimique. Les recherches dans ce domaine requièrent des techniques d’analyse permettant de sonder les atomes et molécules situés à l’extrême surface des matériaux. A cet égard, cette dernière décennie a vu le développement de spectroscopies optiques non-linéaires. Basées sur des processus optiques du second ordre, interdits au sein des milieux centro-symétriques, elles présentent l’avantage d’être intrinsèquement sensibles aux interfaces et d’être applicables pour une large variété d’interfaces: liquide/solide, solide/solide, gaz/liquide, etc. Dans cette thèse, nous présenterons les progrès réalisés dans le domaine de l’optique non-linéaire au sein du laboratoire LASMOS. Nous commencerons par poser les bases théoriques de la génération de fréquence-somme (SFG) qui permet d’obtenir la signature vibrationnelle et électronique des interfaces ainsi que la détermination de paramètres structuraux. Ensuite, nous présenterons les dispositifs laser que nous avons développés pour la spectroscopie SFG et les thèmes de recherche abordés avec ces outils. Particulièrement adaptée à l’étude d’interfaces enterrées, nous avons consacré une première partie de nos travaux à l’étude des réactions électrochimiques modèles impliquées dans le développement de piles à combustible. Dans un deuxième temps, nous avons combiné l’utilisation de la spectroscopie infrarouge, de la spectroscopie SFG et des mesures de dynamique vibrationnelle pour étudier les mécanismes de dissipation de l’énergie vibrationnelle au sein de l’adsorbat. Plus récemment, nous avons développé la spectroscopie SFG à 2 couleurs permettant l’étude spécifique de couplages électron-phonon d’interface. Dans une dernière section, nous démontrerons comment la comparaison des spectres SFG expérimentaux et des spectres SFG simulés à partir de calculs ab initio, permet la détermination de la configuration d’adsorption des molécules en phase adsorbée. Suite à ces résultats orientés vers l’étude de problèmes fondamentaux en science des surfaces, nous discuterons l’opportunité d’une nouvelle orientation de recherche au sein du laboratoire qui vise à exploiter la spectroscopie SFG pour le développement de nouveaux capteurs biologiques. 1) Modélisation microscopique des réactions électrochimiques - Réaction d’évolution de l’hydrogène au contact de l’électrode de platine. L’interaction de l’hydrogène avec les électrodes métalliques est impliquée dans de nombreux processus, tels que la diffusion de l’hydrogène, l’effritement des métaux et la réaction d’évolution de l’hydrogène. Ces processus sont à la base de procédés technologiques importants tels que le stockage de l’hydrogène et la conversion efficace de l’énergie chimique en énergie électrique dans les piles à combustible. La difficulté de sonder cette interface par des techniques spectroscopiques linéaires implique que la modélisation microscopique de ces processus repose essentiellement sur des mesures électriques. C’est dans ce cadre que nous avons utilisé la spectroscopie vibrationnelle SFG pour étudier les différentes espèces d’hydrogène adsorbées sur l’électrode de platine. Cette approche expérimentale a permis d’identifier l’intermédiaire de la réaction d’évolution de l’hydrogène, sous la forme d’un di-hydrure en site terminal et de le distinguer de la couche stable de l’hydrogène qui se forme aux faibles potentiels et dont la signature vibrationnelle dépend de l’orientation cristalline de l’électrode. - Décomposition du méthanol La réaction de décomposition du méthanol au contact d’une électrode métallique est une réaction de base pour le développement de piles à combustible utilisant des carburants organiques. Le rendement de conversion est limité par l’accumulation de l’intermédiaire de réaction qu’est le CO, agissant comme poison bloquant les sites actifs du catalyseur. Nous avons donc étudié la décomposition du méthanol au contact d’une électrode de platine en fonction du potentiel électrochimique et pour des variations importantes de la concentration du méthanol (de 0.1 à 0.004 M) dans un électrolyte aqueux de H2SO4 0.05 M. Nous observons un équilibre entre la concentration superficielle du CO et la concentration de méthanol en solution. A faible concentration de méthanol, le CO adopte un site d’adsorption terminal, tandis que, à forte concentration, le CO adopte un site d’adsorption ponté. Le CO reste présent à la surface jusqu’à de faibles valeurs de potentiel proches du déclenchement de la réaction d’évolution de l’hydrogène. 2) Dynamique vibrationnelle aux interfaces: La dissipation de l’énergie vibrationnelle au sein des molécules en phase adsorbée joue un rôle prédominant pour le contrôle de la cinétique des réactions catalysées, et pour l’accommodation de l’énergie cinétique lors de processus de surface comme l’adsorption ou la diffusion. Les couplages entre les degrés de liberté vibrationnels et électroniques sont responsables de la dissipation de l’énergie vibrationnelle rapide observée dans le cas du CO adsorbé sur les métaux. Afin de vérifier les modélisations théoriques des couplages électron-phonon d’interface, il est intéressant d’étudier des systèmes modèles offrant la possibilité de modifier les propriétés électroniques de l’adsorbat. Nous avons donc réalisé des mesures combinées de spectroscopie SFG et d’absorption infrarouge sur des films de C60 et sur la molécule de CO à l’interface électrochimique. Pour ces deux systèmes, les propriétés électroniques peuvent être contrôlées respectivement par dopage aux métaux alcalins ou par modification du potentiel de l’électrode. - Transfert de charge dynamique à l’interface C60/Ag. La haute symétrie du C60 lui confère une structure vibrationnelle simple avec 4 modes actifs en infrarouge et 10 modes Raman. Le caractère conducteur ou isolant du C60 peut être contrôlé par dopage aux métaux alcalins. Nous avons donc réalisé des mesures spectroscopiques sur des films de C60 déposés sur de l’Ag. Nous avons observé une exaltation importante de l’activité infrarouge du mode Raman Ag(2) du C60 pour de faibles valeurs de dopage au potassium. Lorsque le film est saturé en potassium, on observe la disparition du processus de transfert dynamique de charge. Ces observations permettent d’évaluer quantitativement la force de couplage entre la vibration Ag(2) et les orbitales électroniques t1u du C60. - Dynamique vibrationnelle de la molécule de CO à l’interface électrochimique. La molécule de CO est un intermédiaire de réaction dans de nombreux processus électrochimiques, tels que la décomposition d’alcools (méthanol, éthanol, etc ...) dans les piles à combustible. L’interaction entre la molécule de CO et les métaux est donc abondamment étudiée. Le temps de vie très bref (< 2 ps) de la vibration d’élongation du CO est imputé au couplage adiabatique entre la vibration d’élongation et les électrons de conduction du substrat. Afin de confirmer ce modèle, nous avons mesuré le temps de vie de la vibration d’élongation du CO à l’interface électrochimique. Cette configuration expérimentale particulière permet de moduler les propriétés électroniques du CO en contrôlant le potentiel de l’électrode. Cette étude a été menée pour une monocouche de CO adsorbée sur une électrode de platine immergée dans un électrolyte aqueux ou non-aqueux (acétonitrile). Ces deux électrolytes permettent d’obtenir une stabilité de la monocouche de CO, respectivement, sur une plage de potentiel de 0.5 V à 2 V. Malgré la large variation du champ électrique local (5 107 V)(5×107 V/m) que la molécule de CO peut subir, aucune modification significative du temps de vie de la vibration n’est observée, ce qui contraste avec les prédictions des modèles théoriques. Ce résultat peut s’expliquer par une largeur importante (2 eV) de l’orbitale électronique impliquée dans le transfert de charge adiabatique. Cette étude montre néanmoins une évolution différente de l’intensité infrarouge et de la section efficace SFG de la bande du CO en fonction du potentiel. L’étude détaillée des couplages dipôle-dipôle dans le film adsorbé dense permet d’expliquer cet effet, au détriment de l’hypothèse que l’activité Raman de la vibration soit modifiée par le champ électrique de surface. 3) Couplages électron-phonon d’interface étudiés par spectroscopie SFG doublement résonnante. La spectroscopie SFG doublement résonnante, c’est-à-dire utilisant un faisceau laser accordable respectivement dans le domaine du visible et de l’infrarouge, permet l’étude des transitions électroniques et vibrationnelles d’interfaces ainsi que de leurs couplages. Malgré une première proposition théorique de 1994, cette spectroscopie fut démontrée expérimentalement en 2002, simultanément au sein de trois laboratoires, respectivement américain, européen (LASMOS) et japonais. Dans un premier temps, nous avons exploité cette technique pour l’étude des films de molécules auto-assemblées d’alcane thiol sur différents métaux: platine, argent et or. En l’absence de transition électronique au sein de l’adsorbat, cette étude a révélé la nature de la réponse non-linéaire résonnante des métaux. Dans un second temps, nous avons identifié une molécule présentant une transition électronique dans le domaine spectral accessible par le laser visible: la porphyrine. - Spectroscopie SFG doublement-résonnante de films auto-assemblés de dodécane thiol sur différents substrats. Les spectres de SFG des films de dodécanethiol adsorbés sur des surfaces monocristallines d’Ag(111) et de Pt(111) dans le domaine infrarouge de 2800 à 3000 cm-1 montrent une signature vibrationnelle indépendante de la fréquence du faisceau visible entre 450 à 650 nm. Ces mesures démontrent l’absence de couplages électron-phonon au sein de l’adsorbat dans le domaine spectral investigué. Par contre, dans le cas d’un substrat d’Au, on observe une évolution sensible de cette signature, qui doit être attribuée à l’évolution du signal non-résonnant de l’adsorbat en fonction de la fréquence du visible. L’analyse numérique des spectres permet de mettre en évidence une exaltation de la réponse non-linéaire du substrat d’or, qui doit être attribuée à la transition électronique inter-bande s-d de l’or. - Spectroscopie SFG doublement-résonnante d’un film de porphyrine déposé sur du platine. Nous démontrons, dans le cas de la porphyrine alcane thiol déposée sur un substrat de platine, une exaltation importante de la signature SFG des vibrations C-H pour la fréquence du faisceau visible s’approchant de 508 nm, c’est-à-dire une fréquence du faisceau SFG de 435 nm. Cette longueur d’onde correspond à la transition moléculaire - * (bande Soret) spécifique à la porphyrine. La cartographie à deux dimensions du signal SFG, en fonction des fréquences infrarouge et visible, démontre le couplage sélectif de cette transition électronique avec des modes de vibration particuliers des groupements CH de la molécule. 4) Détermination de la conformation des molécules adsorbées par comparaison entre les spectres SFG expérimentaux et simulés par calcul ab initio. La détermination de la conformation d’adsorption des molécules joue un rôle important pour la description microscopique des processus interfaciaux. A cet égard, les règles de sélection particulières de la spectroscopie SFG lui confèrent une sensibilité accrue à l’orientation moléculaire par rapport à la spectroscopie d’absorption-réflexion infrarouge. Nous montrons au cours de ces deux exemples que la comparaison des spectres SFG expérimentaux et calculés par méthode ab initio permet la détermination de l’orientation des molécules adsorbées. - Contrôle in-situ de la croissance de film de nitro-aniline dodécane thiol sur l’or L’évolution de la signature SFG d’un film de nitro-aniline dodécane thiol (p-NAT) lorsqu’un substrat d’or est immergé dans une solution d’éthanol avec 2 µmol de p-NAT démontre une réorientation importante des molécules au cours de la croissance du film. La conformation d’absorption se stabilise lorsque le taux de recouvrement atteint 70%±20% de la couche saturée. La comparaison des spectres SFG expérimentaux avec les spectres calculés par méthode ab initio permet de déterminer la conformation d’adsorption des molécules. - Détermination de la conformation d’adsorption des molécules conjuguées par spectroscopie SFG dans la gamme spectrale correspondant aux modes de déformation du squelette de carbone. Les molécules organiques conjuguées permettent la construction de transistors, diodes ou fils conducteurs de dimensions nanométriques. L’accrochage des molécules organiques sur un substrat métallique joue un rôle prépondérant dans les applications d’électronique moléculaire, et la détermination de la configuration d’absorption est d’une importance capitale pour le contrôle des propriétés de ces dispositifs. L’utilisation de la spectroscopie SFG pour la détermination de l’orientation moléculaire est gênée par le domaine spectral des spectromètres (de 4000 à 1000 cm-1) qui limite leur application à la détection des fonctions chimiques localisées telles que les groupements C-H, C=O etc. Le foisonnement des modes vibrationnels dans ce domaine spectral ne permet pas l’interprétation fiable des spectres dans le cas des larges molécules que sont les composés organiques conjugués. Dans ce dernier chapitre, nous démontrons que la possibilité d’accéder au domaine spectral de 1000 à 500 cm-1 permet de mesurer la signature vibrationnelle des modes de déformation du squelette de carbone. Nous montrons, par deux exemples, le thiophénol et le naphtalène adsorbés sur de l’argent, que les molécules organiques conjuguées présentent une activité SFG importante. Finalement, la comparaison des spectres expérimentaux du thiophénol avec les spectres calculés par méthode ab initio permet la détermination de la conformation d’adsorption de ces molécules complexes. 5) Perspectives : étude et développement de biocapteurs basés sur la spectroscopie SFG. Les biocapteurs reposent sur l’accrochage de molécules biologiques "cibles" sur des molécules "sondes". Ce processus impliquant de faibles concentrations de molécules cibles en milieu aqueux, une méthode permettant d’augmenter la sensibilité de détection in situ est de concentrer les molécules biologiques par adsorption sur une surface. Les techniques d’analyses spécifiques aux interfaces solide/liquide permettent alors de détecter de manière très sensible ces molécules biologiques tout en conservant leur environnement aqueux. La technique de détection la plus répandue est basée sur la mesure du décalage de la résonance plasmon du substrat métallique résultant de l’accroissement de la densité moléculaire du film. On peut espérer augmenter la sélectivité du capteur, c’est-à-dire la possibilité de distinguer la reconnaissance d’une molécule spécifique par rapport à d’autres molécules, à partir de critères spectroscopiques. Néanmoins, les travaux contemporains montrent les limites de la spectroscopie infrarouge, dont la profondeur d’analyse de quelques microns reste de un à trois ordres de grandeur supérieure à la taille des molécules biologiques adsorbées, ce qui implique que le signal de l’adsorbat est masqué par celui de la solution aqueuse. Nous proposons donc d’utiliser la spectroscopie SFG qui présente l’avantage d’être intrinsèquement sensible à l’interface liquide-solide pour l’étude des molécules biologiques. Les règles de sélection de la spectroscopie SFG permettent en effet d’obtenir une sélectivité accrue aux groupements périphériques de ces larges molécules qui sont responsables des processus de reconnaissance. Finalement, la mise en œuvre de techniques de cartographie chimique par spectroscopie SFG ouvre la possibilité de développer une nouvelle génération de biocapteurs massivement parallèles.
113

Électrodes nanocomposites pour applications en microfluidique

Brun, Mathieu 20 December 2011 (has links) (PDF)
Le travail de thèse présenté dans ce manuscrit s'inscrit dans une dynamique d'intégration de matériaux non conventionnels en systèmes microfluidiques. Il vise à démontrer le potentiel du cPDMS, un matériau nanocomposite formé d'une matrice de polydiméthylsiloxane rendu conducteur par l'ajout de nanoparticules de carbone. Compatible avec les procédés technologiques habituels, le cPDMS peut être structuré dans une large gamme d'épaisseurs et de géométries mais présente surtout l'avantage de pouvoir être collé irréversiblement sur verre, PDMS et silicium. Son intégration est parfaitement étanche, rapide à mettre en oeuvre, et très économique. La première partie du manuscrit est consacrée à la caractérisation de ce matériau. Ses propriétés électriques et de surface, pouvant être critiques pour une utilisation en microfluidique, ont été particulièrement étudiées. Les champs électriques offrant de nombreuses possibilités pour réaliser des fonctions clés en microfluidique (détection, séparation, manipulation de fluides ou de particules), nous avons choisi d'évaluer l'intérêt d'électrodes de cPDMS dans deux types d'applications. Les aspects de détection ont d'abord été mis en évidence à l'aide de mesures électrochimiques. Cette méthode a permis à la fois de caractériser la surface du cPDMS tout en validant son utilisation potentielle pour des applications d'analyses électrochimiques. Dans la dernière partie du manuscrit, le matériau a été testé pour la manipulation de particules à travers l'observation de différents phénomènes électrocinétiques. Ceux-ci ont conduit à la mise au point de dispositifs microfluidiques (intégrant des lectrodes de cPDMS) dédiés à la lyse et à l'électrofusion de cellules.
114

Systèmes hybrides en films de Langmuir et Langmuir-Blodgett

Romualdo Torres, Gemma 21 March 2002 (has links) (PDF)
Ce travail porte sur la formation et la caractérisation de nouveaux systèmes organiques-inorganiques par l'utilisation de films de Langmuir et de la technique de Langmuir-Blodgett. Plusieurs voies ont ainsi été explorées afin d'obtenir des films minces hybrides aux propriétés multiples, en particulier magnétiques. L'utilisation de l'interaction entre monocouches cationiques et des anions présents en sous-phase a ainsi permis l'organisation de différents polyanions inorganiques en structure lamellaire. Cette stratégie a ensuite été généralisée au cas de colloïdes de Bleu de Prusse, composés bimétalliques étendus. Une large étude (de la préparation à la caractérisation) a été consacrée à ces matériaux mixtes Bleu de Prusse-dérivé amphiphile de Ru(bpy)3 2+. Il a été également montré que la cristallisation du Bleu de Prusse et de ses analogues est favorisée en-dessous des films de Langmuir. Finalement, la coordination d'ions dissous en sous-phase avec des molécules amphiphiles à l'interface permet d'élaborer de nouveaux systèmes pouvant former des films LB, ce qui est notamment le cas d'agencements à base de cyanures métalliques.
115

ETUDE DU COMPORTEMENT ELECTROCHIMIQUE DE COMPOSES POLYFONCTIONNELS ET DE DERIVES COMPORTANT UN GROUPEMENT XANTHATE

Pulicani, Jean-Pierre 06 June 2013 (has links) (PDF)
L'électrosynthèse est présentée de manière détaillée en insistant particulièrement sur les espèces réactives électrogénérées et sur leurs interactions (ainsi que celles du substrat) avec les constituants du milieu (solvant, ions de l'électrolyte, matériau d'électrode). En effet, ceux-ci peuvent influer fortement sur la régiosélectivité lors du traitement de dérivés polyfonctionnels. Cette approche a été appliquée : a) à des molécules d'origine naturelle comportant différents groupements carbonylés (Ch.3), b) à des composés porteurs d'un groupe xanthate (Ch.4 à 8). - Sur les premiers substrats (a), il est confirmé que le cation de l'électrolyte joue un rôle prépondérant sur la régiosélectivité dans les réductions cathodiques. Toutefois, il n'a pas été possible de préciser les rôles respectifs du solvant et du cation. Il semble aussi que l'anion puisse influer sur la réactivité du cation. Dans le même temps, il a été réalisé et testé une gamme de réacteurs à compartiments séparés de différentes tailles (de 1 à 50 ml), bien adaptée à l'utilisation d'électrodes solides (Ch.2). - Avec les seconds substrats (b), nous présentons nos approches par voie électrochimique sur 3 types de réactions : introduction d'un groupe xanthate, son élimination, l'initiation de l'addition radicalaire. - Les essais de synthèse de xanthates par électrogénération de radicaux tertiaires en présence de bis-xanthate ont échoué, ce composé étant trop réductible et oxydable dans les conditions de Kolbe (Ch.5). - La réduction cathodique des xanthates a donné de bons rendements, mais uniquement sur les dérivés de l'acétophénone. Les oxydations anodiques n'ont pas abouti à la cyclisation en tétralone (Ch.6). - L'initiation de la réaction d'addition radicalaire sur une oléfine par transfert de groupe a échoué par réduction cathodique d'un iodure d'alkyle. Cependant, nous avons mis en évidence une nouvelle réaction en opérant sur des cathodes à forte activité électrocatalytique (Ag, Au, Pd). Elle consiste en une addition sur un xanthate du radical issu de l'iodoacétate d'éthyle suivi d'une cyclisation (Ch.7). Il a été aussi conçu et testé des systèmes à relais électriques pour inverser la polarité des électrodes afin de les décaper lorsque l'adsorption (ou le greffage) de radicaux inhibait le passage du courant. - Par contre, la réaction d'initiation a donné un résultat encourageant par oxydation anodique d'acide malonique partiellement neutralisé. Mais les rendements doivent encore être améliorés (final : 45 % ; intermédiaire corrigé : 75 %) (Ch.8).
116

Etude d'un capteur de gaz sensible au monoxyde de carbone et aux oxydes d'azote élaboré à base d'alumine bêta

Pupier, Christophe 29 March 1999 (has links) (PDF)
Ce travail concerne le développement d'un capteur potentiométrique de gaz permettant la détection sélective du monoxyde de carbone à haute température et du dioxyde d'azote à basse température, destiné au contrôle des émissions automobiles. Le capteur est constitué de deux électrodes, une d'or, l'autre de platine, déposées sur la même face d'un électrolyte solide élaboré à base d'alumine bêta et traité par le dioxyde de soufre, l'ensemble étant plongé dans une même atmosphère de mesure. Une partie de l'étude consiste à caractériser le procédé d'élaboration de l'élément sensible élaboré sous forme de couche épaisse par la technique de sérigraphie. La seconde partie concerne une étude des phénomènes à l'origine du potentiel mesure aux bornes de notre dispositif à partir de l'observation des réponses obtenues sous oxygène. Nous proposerons alors un modèle basé sur l'adsorption compétitive de deux espèces oxygène sur les électrodes métalliques dont une sera considérée comme instable et sur un effet capacitif à l'interphase électrode métallique - électrolyte solide. La différence de potentiel aux bornes du capteur, mesurée en présence de gaz réducteur ou oxydant, est alors représentative de la différence des activités catalytiques propres à chacun des métaux et donc de leur aptitude à consommer ou produire cet espèce à leur surface. Les réponses obtenues à partir de la simulation mathématique du potentiel nous ont donné des résultats satisfaisants, capable de reproduire le comportement du capteur sous air et pour différentes concentrations de monoxyde de carbone ou de dioxyde d'azote dilués dans l'air, dans une grande gamme de températures.
117

Instabilités interfaciales morphologiques. Étude de l'évolution morphologique d'une électrode de cuivre soumise à une réaction électrochimique.

Jutard, Jérôme 01 July 1993 (has links) (PDF)
L'étude de l'évolution morphologique d'une surface de cuivre plongée dans un électrolyte liquide et soumise à une dissolution anodique a été abordée selon les trois angles suivants. La modélisation du problème et sa résolution analytique simplifiée ont permis d'introduire un outil de caractérisation et prédiction des instabilités morphologiques globales en fonction des constantes cinétiques associées a l'évolution du système. Un modèle numérique a permis de préciser les rôles respectifs de la réaction d'interface, de la diffusion en phase liquide et de certains paramètres comme le rayon de courbure. Enfin, l'évolution de la forme de l'interface cuivre-électrolyte a été caractérisée par microrugosimétrie à différentes échéances de temps pour des expériences de dissolution menées dans des conditions électrochimiques contrôlées. Si les résultats expérimentaux obtenus ont permis de valider globalement la démarche analytique, les résultats numériques ont montré qu'elle ne pouvait pas rendre compte de toute la complexité des comportements observes. Ainsi, il apparait que la simulation numérique peut constituer une aide précieuse pour la description des aspects morphologiques de l'évolution d'un système
118

Complexes superstructurés mixtes Ru/Fe et Ru/Co à ligands polypyridinyles multitopiques : synthèses, caractérisations, propriétés rédox et photorédox.

Lombard, Jean 07 November 2007 (has links) (PDF)
Ce mémoire est consacré à la synthèse, à la caractérisation et à l'étude des propriétés électrochimiques et photophysiques dans l'acétonitrile de complexes hétérobimétalliques comportant des unités photosensibles du type ruthénium(II)-tris-bipyridine reliées de manière covalente à une unité polypyridinique de fer (II) ou de cobalt (II), dans le but d'étudier les transferts d'électrons photoinduits dans de telles architectures.<br />A l'aide de ligands bis-bipyridine, une série de complexes tétranucléaires formés d'une unité centrale FeII-tris-bipyridine reliée à trois unités RuII-tris-bipyridine par une chaîne alkyle de longueur variable, a été obtenue. L'examen de leurs propriétés photophysiques met en évidence un transfert d'énergie partiel, intramoléculaire, de l'état excité des unités, RuII*, vers l'unité centrale FeII. Ce transfert d'énergie est court-circuité en présence d'un accepteur d'électron irréversible externe par un processus de transfert d'électron, qui conduit à la formation d'espèces RuIII capables d'oxyder la sous-unité FeII. En utilisant un ligand hétéroditopique de type bipyridine–terpyridine, de nouveaux complexes trinucléaires comportant une unité centrale FeII ou CoII bis-terpyridine reliée à deux unités RuII-tris-bipyridine ont également été synthétisés. L'utilisation de ce type de ligand confère à ces complexes une structure plus linéaire. Dans le cas du complexe de FeII, le transfert d'énergie purement intramoléculaire peut également être court-circuité par un transfert d'électron en présence d'un accepteur irréversible conduisant à l'oxydation quantitative de la sous-unité FeII. Dans le cas du complexe de cobalt, le cycle photocatalytique envisagé implique la photogénération de l'espèce RuIII via un transfert d'électron entre RuII* et l'unité CoIII (préalablement générée par voie électrochimique) qui joue le rôle d'accepteur d'électron. Toutefois cette réaction catalytique est relativement lente car le donneur d'électron utilisé pour régénérer le RuII ne possède par une irréversibilité suffisante pour concurrencer la réaction retour, c'est-à-dire la réoxydation de CoII par RuIII.<br />Enfin, l'étude de polymères de coordination électro-et photo-activables de RuII et FeII a été abordée. Ce type de polymères dérive des complexes trinucléaires de RuII et de FeII. Ils sont obtenus sous forme soluble grâce à l'utilisation de ligands hétéroditopique de type bipyridine-bis-terpyridine, dont la partie bipyridine est complexée par le RuII, tandis que l'ajout de Fe2+ permet la formation du polymère par auto-assemblage. Comme pour les complexes de FeII et de RuII de dimensions finies, l'oxydation photoinduite de l'unité FeII est possible bien que son efficacité dépende de la nature du pont entre la bipyridine et les terpyridines. De plus, ces polymères ont pu être adsorbés sous forme de films minces électroactifs à la surface d'une électrode (élaboration d'électrodes modifiées) par une technique simple d'électrodéposition.
119

Influence de la cristallochimie des argiles sur le potentiel redox du fer structural

Hadi, Jebril 17 December 2012 (has links) (PDF)
Le fer joue un rôle majeur dans un grand nombre de processus biogéochimiques impliquant des transferts d'électrons, c'est-à-dire des réactions redox. Les argiles forment une famille de minéraux ubiquitaires, dont certains membres contiennent du fer au sein de leur structure. La structure des argiles confère à ce fer structural (Festr) des propriétés redox spécifiques. Celles-ci font l'objet d'un nombre croissant d'études, portant sur divers domaines de recherche, allant des études agronomiques sur l'accessibilité des nutriments dans les sols ou sur la maturation de la matière organique, aux études sur la rétention des métaux lourds ou des radioéléments dans des barrières argileuses. L'étude des propriétés redox du Festr demeure toutefois un challenge scientifique. La structure cristallographique des argiles conditionne les propriétés redox du Festr, mais les transformations redox du Festr ont également en retour un impact sur cette structure. Les propriétés structurales de l'argile et la manière dont elles évoluent au cours des processus redox sont ainsi influencées par l'histoire redox de l'argile, c'est-à-dire l'étendue et le nombre de cycles redox qu'elle a pu subir. Etant donnés le nombre et la complexité des mécanismes mis en jeu, et étant donné la variété des structures argileuses, les travaux de cette thèse se sont focalisés sur le groupe particulier des smectites dioctaédriques, plus précisément sur les membres ferrugineux que sont les nontronites, et sur l'impact de la réduction de leur Festr sur leurs propriétés structurales. Le mécanisme de réduction étudié est lui-même restreint à la réduction par de puissants agents réducteurs chimiques de type dithionite. En parallèle à un travail de revue critique de l'abondante littérature disponible sur cet aspect spécifique, des travaux expérimentaux ont été conduits et plusieurs approches théoriques ont été discutées et développées pour conduire à un modèle structural des propriétés redox du Festr et de leur relations avec la structure smectitique. De nouvelles mesures de charge négatives du feuillet argileux en fonction du niveau de réduction, réalisées au cours de cette thèse, indiquent clairement que, contrairement au comportement précédemment supposé, la charge structurale du feuillet n'augmente pas de façon monotone avec la réduction du Festr , mais est marquée par une chute significative à partir d'un niveau de réduction donné. Le domaine de réduction d'une nontronite est ainsi divisé en deux domaines : le premier est marqué par une augmentation de la charge négative et des changements structuraux réversibles ; le second est caractérisé par une chute de la charge négative et des transformations structurales moins ou non réversibles. Les efforts de modélisation réalisés durant cette thèse se sont restreints à la première phase de réduction, c'est-à-dire la phase réversible. Un premier modèle empirique permet de modéliser l'évolution de la CEC de nontronites à partir de leur formule structurale (qui donne la composition et la charge) et d'un paramètre empirique qui est commun à une série de nontronites pour lesquelles des données sont disponibles. Dans un second temps, un algorithme mimant la progression de la réduction du fer structural a été mis au point, permettant de lier l'évolution de la charge négative d'un type particulier de nontronites (pauvre en fer tétraédrique) à ce paramètre empirique, au mécanisme de réduction lui-même, ainsi qu'aux propriétés structurales de l'échantillon et à la manière dont ces propriétés évoluent au cours de la réduction. L'ensemble de ces informations a ensuite été traduit dans un modèle thermodynamique de réduction des argiles, permettant d'identifier les données nécessaires (disponibles et à acquérir) à l'établissement d'un modèle contraint par les informations structurales.
120

Développement de composés conjugués en étoile de première génération incluant des liens azométhines et études électrochimiques et photophysiques

Skalski, Thomas 08 1900 (has links)
Les matériaux conjugués sont de nos jours très utilisés dans de nombreuses applications ainsi qu’en recherche. L’enchainement des liaisons π-σ-π permet la délocalisation des électrons et d’obtenir différentes propriétés comme la conduction, la fluorescence, la chélation, etc. Ainsi, de nombreux dispositifs utilisent ces caractéristiques en vue d’obtenir de nouveaux matériaux révolutionnaires comme les cellules solaires, les transistors à effet de champs, les dispositifs électrochromiques, etc.. Les dispositifs électrochromiques font partie des dispositifs en vogue. Ils sont capables de changer de couleur selon le potentiel électrique appliqué. Ils se distinguent par la simplicité du mode de conception et ils ne nécessitent pas de fonctionner dans des conditions drastiques comme une atmosphère contrôlée. Ces dispositifs sont actuellement utilisés et commercialisés comme fenêtre intelligente, camouflage, papier électronique et carte de visite personnalisée pour n’en nommer que quelques-uns. Deux propriétés sont essentielles pour que des composés puissent être utilisés dans ces familles de dispositifs : la réversibilité à l’oxydation et la stabilité à l’air et à la lumière. Dans le groupe de recherche du professeur W.G. Skene, l’axe principal de recherche est basé sur la conception de nouveaux matériaux conducteurs comportant des liaisons azométhines. Les principaux matériaux étudiés sont des dérivés de thiophènes et de fluorènes. De précédents résultats ont montré que plusieurs produits issus de la réaction de condensation entre les dérivés du 2,5-diaminothiophène et de thiophènes diformylés menaient à des produits possédant d’excellentes propriétés photophysiques et électrochimiques. C’est en partant de ces résultats encourageants qu’il a été choisi de synthétiser une nouvelle famille de produits avec un nouveau substrat fonctionnalisé. Ce dernier possède d’excellentes propriétés électrochimiques et photophysiques : la triphénylamine. Deux familles de produits ont été synthétisées qui possèdent toutes comme cœur une triphénylamine. Cette dernière a été modifiée de façon à créer une, deux ou trois liaisons azométhines avec différents thiophènes. Deux dérivés du thiophène ont été choisis afin d’étudier l’influence des groupements donneurs et accepteurs sur ces nouveaux types de composés encore jamais étudiés. Les résultats des différentes synthèses et analyses ont été effectués par RMN, spectrométrie de masse, spectrométrie d’absorbance UV-Visible, fluorescence et voltampérométrie cyclique sont rapportées dans le présent recueil. / Conjugated materials are been used in many applications and fundamental research, owing in part to their high degree of conjugation. They further have opto-electronic properties that are compatible for use as conjugated materials in many devices including solar cells, organic field effect transistors, organic light emitting diodes and electrochromic devices. The latter are of particular interest because their colors that can be changed when a potential is applied. The advantage of these color switching materials compared to other opto-electronic devices is their simple fabrication that can be done under ambient conditions. Electrochromic devices have found many consumer applications including mirrors, tunable windows, camouflage and electronic paper, to name a few examples. The focus of our research group is the preparation of new conjugated materials based on azomethine. Previous efforts from the group demonstrated that azomethines having the required properties for use in electrochromic devices (electrochemical reversibility and air stability) were possible when using a 2,5-diaminothiophene derivative as a building block. It was also demonstrated that color tuning of both the neutral and oxidized states was possible when coupling 2,5-diaminothiophene with various heterocyclic arylaldehydes. Despite the many examples of azomethines studied in our group, fundamental structure-property relationships of these conjugated materials are still not understood. The objective of this thesis was therefore to prepare to new conjugated azomethines from triarylamine aldehydes. The objective was also to examine the opto-electronic properties of these novel azomethines, including the effect of the degree of conjugation and type of triphenylamine aldehyde precursor on the absorbance, electrochemical properties, and fluorescence.

Page generated in 0.059 seconds