• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 1
  • Tagged with
  • 14
  • 14
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nouvelles approximations numériques pour les équations de Stokes et l'équation Level Set

Djenno Ngomanda, Malcom 14 December 2007 (has links) (PDF)
Ce travail de thèse est consacré à deux thèmes de recherche en Calcul Scientifique liés par l'approximation numérique de problèmes en mécanique des fluides. Le premier thème concerne l'approximation numérique des équations de Stokes, modélisant les écoulements de fluides incompressibles à vitesse faible. Ce thème est présent dans plusieurs travaux en Calcum Scientifique. La discrétisation en temps est réalisée à l'aide de la méthode de projection. La discrétisation en espace utilise la méthode des éléments finis hybrides qui permet d'imposer de façon exacte la contrainte d'incompressibilité. Cette approche est originale : la méthode des éléments mixtes hybrides est couplée avec une méthode d'éléments finis standards. L'ordre de convergence des deux méthodes est préservé. Le second thème concerne la mise au point de méthodes numériques de type volumes finis pour la résolution de l'équation Level Set. Ces équations interviennent de manière essentielle dans la résolution des problèmes de propagation d'interfaces. Dans cette partie, nous avons développé une nouvelle méthode d'ordre 2 de type MUSCL pour résoudre le système hyperbolique résultant de l'équation Level Set. Nous illustrons ces propriétés par des applications numériques. En particulier nous avons regardé le cas du problème des deux demi-plans pour lequel notre schéma donne une approximation pour le gradient de la fonction Level Set. Par ailleurs, l'ordre de précision attendu est obtenu avec les normes L1 et Linfini pour des fonctions régulières. Pour finir, il est à noter que notre méthode peut être facilement étendue aux problèmes d'Hamilton-Jacobi du premier et du second ordre
2

Simulation numérique des écoulements de liquides polymères

Joie, Julie 25 November 2010 (has links) (PDF)
Il existe peu de codes commerciaux pour la simulation numérique des écoulements de liquides polymères. Les difficultés proviennent des propriétés intrinsèques des polymères, qui sont des fluides viscoélastiques non-newtoniens. Ceci implique un couplage entre la viscoélasticité du liquide et l'écoulement, couplage quantifié par le nombre de Weissenberg. D'un point de vue numérique, la source du problème est la perte de convergence des algorithmes lorsque ce nombre devient trop élevé. Cette thèse porte sur le développement de schémas numériques robustes pour la simulation de ces écoulements en considérant principalement le modèle de Giesekus. Nous nous sommes d'abord intéressés au problème de Stokes et nous avons fait l'étude d'une méthode de Galerkin discontinue moins coûteuse et plus robuste que la méthode "Interior Penalty" classique. Nous avons fait une analyse a priori et a posteriori et nous avons mis en évidence les relations entre cette méthode dG et les éléments finis non-conformes. Les résultats théoriques obtenus ont été validés numériquement. Par la suite, nous avons considéré le modèle à trois champs de Giesekus. La vitesse et la pression sont approchées par éléments finis non-conformes tandis que l'équation constitutive est traitée à l'aide d'éléments finis discontinus et d'un schéma décentré de type Lesaint-Raviart. L'analyse de ces schémas dans le cas quadrangulaire et triangulaire a été faite pour le problème de Stokes sous-jacent. Ces schémas ont ensuite été implémentés dans la librairie C++ Concha. Nous avons effectué des comparaisons avec des données expérimentales mettant en évidence le bon comportement du modèle de Giesekus mais aussi avec le code commercial Polyflow et une solution semi-analytique afin de valider nos schémas numériques. Nous avons obtenu des simulations réalistes pour des nombres de Weissenberg élevés sur des cas-tests populaires : écoulement autour d'un cylindre, contractions 4:1 et 4:1:4
3

Modèles de fronts pour films minces. / Contact line models for thin films

Roux, Marthe 06 December 2012 (has links)
Dans cette thèse, nous souhaitons décrire la dynamique du front d'avancement d'un film mince s'écoulant sur un plan incliné non rugueux. Nous nous intéressons surtout au problème de point triple situé à l'interface entre la paroi solide, le fluide en mouvement et l'air, par exemple lors de l'écoulement d'une goutte sur une surface inclinée. Dans une première partie, nous expliquons pourquoi on peut se ramener aux équations de Stokes et pourquoi le problème résultant est mal posé. Pour y remédier, la condition de non-glissement à la paroi est remplacée par une condition de glissement lorsqu'on est proche du front. Ainsi on réussit à trouver une solution dans H1. Puis nous développons la dynamique de l'écoulement à l'amont du front : un film mince. Cet écoulement peut se modéliser sous la forme d'équations de type Saint-Venant sur la hauteur et le débit. Nous justifions cette construction à partir des équations de Navier-Stokes en utilisant un développement asymptotique en fonction du paramètre onde longue. Dans la zone du front nous résolvons le système de Stokes stationnaire avec glissement au fond par un développement asymptotique en fonction du nombre capillaire. Le front est divisé en une zone interne près du front et une zone externe loin du front, puis les solutions de chaque zone sont soit raccordées directement (angles dynamique et statique égaux), soit raccordées au moyen d'une zone intermédiaire (angles dynamique et statique différents). Cela nous conduit à deux familles de modèles. En réunissant les modèles type Saint-Venant et les différents modèles de front, nous obtenons un modèle de Saint-Venant tenant compte de la dynamique du front. À partir de ce modèle à deux équations nous pouvons écrire un modèle plus simple à une équation sur la hauteur. Ce modèle permet d'étendre les modèles existants avec adhérence à des modèles avec glissement. On peut alors réaliser des simulations numériques combinant un front d'avancement et un film mince / In the present work, we describe the dynamics of a moving contact line for thin films flowing down an inclined plane. Our focus is the problem of triple point located at the interface between the solid wall, the moving fluid and air, for example the spreading of a drop on a plane dry wall (horizontal or inclined) due to gravity and capillarity. In the first part, we explain how we can reduce to the Stokes equations and why the resulting problem is ill-posed. This singularity is removed by permitting the fluid to slip along the wall close to the contact line. Thus we manage to find a solution in H1 constructed by asymptotic expansions. Then we focus on the upstream dynamic of the flow, which is set to a thin film flow. We develop the classical system of Shallow-water equations (Saint-Venant equations) from the full Navier-Stokes system using the classical long-wavelength expansion. We obtain a set coupled equations for the flow depth and the flow-rate. In the neightboorhood of the contact line, we develop an asymptotic expansion of the steady Stokes system with slip at bottom in function of the capillary number. The solution in the vicinity of the contact line is developped in the inner region and the outer region. Then, a direct matching can be done (assuming dynamic and static angles are equals) or using an intermediate region (with different angles). This leads to two different families of models. Bringing together the upstream Shallow-water equations and the contact line models, we write a new Shallow-water model taking into account the dynamic of the moving contact line. Then, we deduce a simplier one-equation model for the film thickness. This model extends existing models with no slip at bottom to models with slip. Direct numerical simulations of the last models are performed, combining a moving contact line and a thin liquid film
4

Analyse théorique et numérique des conditions de glissement pour les fluides et les solides par la méthode de pénalisation

Dione, Ibrahima 19 April 2018 (has links)
Nous nous intéressons aux équations classiques de Stokes et de l’élasticité linéaire stationnaires, posées dans un domaine [symbol] de frontière [symbol] courbe et régulière, associées à des conditions de glissement et de contact idéal, respectivement. L’approximation par éléments finis de tels problèmes est délicate en raison d’un paradoxe de type Babuška-Sapondžyan : les solutions dans des domaines polygonaux approchant le domaine à frontière courbe et régulière ne convergent pas vers la solution dans le domaine limite. L’objectif de cette thèse est d’explorer l’application de la méthode de pénalisation à ces conditions de glissement dans le but, notamment, de remédier à ce paradoxe. C’est une méthode classique et très répandue en pratique, car elle permet de travailler dans des espaces sans contraintes et d’éviter par exemple l’ajout de nouvelles inconnues comme dans la méthode des multiplicateurs de Lagrange. La première partie de cette thèse est consacrée à l’étude numérique en 2D de différents choix d’éléments finis et, surtout, de différents choix de l’approximation de la normale au bord du domaine. Avec la normale (discontinue) aux domaines polygonaux [symbol] engendrés avec les maillages de [symbol], les solutions par éléments finis ne semblent pas converger vers la solution exacte. En revanche, si on utilise des régularisations de la normale, des éléments finis isoparamétriques de degré 2 en vitesse (déplacement pour l’élasticité) ou une sous-intégration du terme de pénalisation, on observe une convergence, avec des taux optimaux dans certains cas. Dans une seconde partie, nous faisons une analyse théorique (en dimensions 2 et 3) de la convergence. Les estimations a priori obtenues permettent de dire que même avec la normale discontinue aux domaines polygonaux, l’approximation par éléments finis converge vers la solution exacte si le paramètre de pénalisation est choisi convenablement en fonction de la taille des éléments, démontrant ainsi que le paradoxe peut être évité avec la méthode de pénalisation. / We are interested in the classical stationary Stokes and linear elasticity equations posed in a bounded domain [symbol] with a curved and smooth boundary [symbol], associated with slip and ideal contact boundary conditions, respectively. The finite element approximation of such problems can present difficulties because of a Babuška-Sapondžyan’s like paradox: solutions in polygonal domains approaching the smooth domain do not converge to the solution in the limit domain. The objective of this thesis is to explore the application of the penalty method to these slip boundary conditions, in particular in order to overcome this paradox. The penalty method is a classic method widely used in practice because it allows to work in functional spaces without constraints and avoids adding new unknowns like with the Lagrange multiplier method. The first part of this thesis is devoted to the 2D numerical study of different finite elements choices and, most importantly, of different choices of the approximation of the normal vector to the boundary of the domain. With the (discontinuous) normal vector to polygonal domains [symbol] generated with the meshing of [symbol], the finite element solutions do not seem to converge to the exact solution. However, if we use a (continuous) regularization of the normal, isoparametric finite elements of degree 2 for the velocity (or the displacement for elasticity) or a reduced integration of the penalty term, convergence is obtained, with optimal rates in some cases. In a second part, we make a theoretical analysis (in dimensions 2 and 3) of the convergence. The a priori estimates obtained allow to say that even with the (discontinuous) normal vector to polygonal domains, the finite element approximation converges to the exact solution when the penalty parameter is selected appropriately in terms of the size of the elements, showing that the paradox can be circumvented with the penalty method.
5

Analyse de modèles en mécanique des fluides compressibles

Fettah, Amal 18 December 2012 (has links)
Dans cette thèse on s'est intéressé à l'étude de problèmes concernant la théorie des écoulements compressibles. Dans une première partie on a traité le problème de transport instationnaire avec un champ de vitesse peu régulier, on a établi un résultat d'existence en passant à la limite sur des schémas numériques volumes finis avec un choix décentré amont qui garantie la positivité de la masse volumique. Pour le problème de Stokes, le résultat est démontré par deux approches : une approche par schéma numérique et une approche par régularité visqueuse.Dans la première méthode on propose une discrétisation qui combine la méthode des éléments finis et la méthode des volumes finis qui repose sur les espaces Crouzeix-Raviart. Une première difficulté de ce travail est de démontrer les estimations sur la solution discrète, en particulier à cause de la présence de la gravité dans le terme source de l'équation de quantité de mouvement. Le fait de considérer une loi d'état très générale conduit des difficultés supplémentaires en particulier dans le passage à la limite sur cette équation.Dans la deuxième méthode, le résultat d'existence est démontré en utilisant une approximation par viscosité. Ceci consiste essentiellement en deux parties : l'étude du problème de convection diffusion (qui apparait dans le problème régularisé) où on démontre l'existence et l'unicité de solution et en deuxième partie le passage à la limite sur le problème régularisé. / This thesis is concerned with the study of problems relating in the theory of compressible flows . We prove the existence of the considered problems in a first part by passing to the limit on the numerical schemes proposed for the discretisation of these problems. In the second part, the existence result is obtained by passing to the limit on the approximate solutions given by a corresponding regularized problem.The main result is to prove the existence of a solution of the stationnary compressible Stokes problem with a general equation of state.We first prove this result by passing to the limit on the numerical scheme as the mesh size tends to zero. The fact to consider a general E.O.S induces some additional difficulties in particular to get estimates on the discrete solution (which comes also from the presence of the gravity in the momentum equation) and in the passage to the limit on the E.O.S.We also prove the existence result by passing to the limit on a regularized problem. We first treat the convection-diffusion problem (which appears in the regularized problem), we give an existence and uniqueness result, and we then prove estimates on the approwimate solutions and pass to the limit on the regularized problem.
6

Sur le problème inverse de détection d'obstacles par des méthodes d'optimisation / The inverse problem of obstacle detection via optimization methods

Godoy Campbell, Matias 08 July 2016 (has links)
Cette thèse porte sur l'étude du problème inverse de détection d'obstacle/objet par des méthodes d'optimisation. Ce problème consiste à localiser un objet inconnu oméga situé à l'intérieur d'un domaine borné connu Oméga à l'aide de mesures de bord et plus précisément de données de Cauchy sur une partie Gammaobs de thetaOmega. Nous étudions les cas scalaires et vectoriels pour ce problème en considérant les équations de Laplace et de Stokes. Dans tous les cas, nous nous appuyons sur une résultat d'identifiabilité qui assure qu'il existe un unique obstacle/objet qui correspond à la mesure de bord considérée. La stratégie utilisée dans ce travail est de réduire le problème inverse à la minimisation d'une fonctionnelle coût: la fonctionnelle de Kohn-Vogelius. Cette approche est fréquemment utilisée et permet notamment d'utiliser des méthodes d'optimisation pour des implémentations numériques. Cependant, afin de bien définir la fonctionnelle, cette méthode nécessite de connaître une mesure sur tout le bord extérieur thetaOmega. Ce dernier point nous conduit à étudier le problème de complétion de données qui consiste à retrouver les conditions de bord sur une région inaccessible, i.e. sur thetaOmega\Gammaobs, à partir des données de Cauchy sur la région accessible Gammaobs. Ce problème inverse est également étudié en minimisant une fonctionnelle de type Kohn-Vogelius. La caractère mal posé de ce problème nous amène à régulariser la fonctionnelle via une régularisation de Tikhonov. Nous obtenons plusieurs propriétés théoriques comme des propriétés de convergence, en particulier lorsque les données sont bruitées. En tenant compte de ces résultats théoriques, nous reconstruisons numériquement les données de bord en mettant en oeuvre un algorithme de gradient afin de minimiser la fonctionnelle régularisée. Nous étudions ensuite le problème de détection d'obstacle lorsque seule une mesure de bord partielle est disponible. Nous considérons alors les conditions de bord inaccessibles et l'objet inconnu comme les variables de la fonctionnelle et ainsi, en utilisant des méthodes d'optimisation de forme géométrique, en particulier le gradient de forme de la fonctionnelle de Kohn-Vogelius, nous obtenons la reconstruction numérique de l'inclusion inconnue. Enfin, nous considérons, dans le cas vectoriel bi-dimensionnel, un nouveau degré de liberté en étudiant le cas où le nombre d'objets est inconnu. Ainsi, nous utilisons l'optimisation de forme topologique afin de minimiser la fonctionnelle de Kohn-Vogelius. Nous obtenons le développement asymptotique topologique de la solution des équations de Stokes 2D et caractérisons le gradient topologique de cette fonctionnelle. Nous déterminons alors numériquement le nombre d'obstacles ainsi que leur position. De plus, nous proposons un algorithme qui combine les méthodes d'optimisation de forme topologique et géométrique afin de déterminer numériquement le nombre d'obstacles, leur position ainsi que leur forme. / This PhD thesis is dedicated to the study of the inverse problem of obstacle/object detection using optimization methods. This problem consists in localizing an unknown object omega inside a known bounded domain omega by means of boundary measurements and more precisely by a given Cauchy pair on a part Gammaobs of thetaOmega. We cover the scalar and vector scenarios for this problem considering both the Laplace and the Stokes equations. For both cases, we rely on identifiability result which ensures that there is a unique obstacle/object which corresponds to the considered boundary measurements. The strategy used in this work is to reduce the inverse problem into the minimization of a cost-type functional: the Kohn-Vogelius functional. This kind of approach is widely used and permits to use optimization tools for numerical implementations. However, in order to well-define the functional, this approach needs to assume the knowledge of a measurement on the whole exterior boundary thetaOmega. This last point leads us to first study the data completion problem which consists in recovering the boundary conditions on an inaccessible region, i.e. on thetaOmega\Gammaobs, from the Cauchy data on the accessible region Gammaobs. This inverse problem is also studied through the minimization of a Kohn-Vogelius type functional. The ill-posedness of this problem enforces us to regularize the functional via a Tikhonov regularization. We obtain several theoretical properties as convergence properties, in particular when data is corrupted by noise. Based on these theoretical results, we reconstruct numerically the boundary data by implementing a gradient algorithm in order to minimize the regularized functional. Then we study the obstacle detection problem when only partial boundary measurements are available. We consider the inaccessible boundary conditions and the unknown object as the variables of the functional and then, using geometrical shape optimization tools, in particular the shape gradient of the Kohn-Vogelius functional, we perform the numerical reconstruction of the unknown inclusion. Finally, we consider, into the two dimensional vector case, a new degree of freedom by studying the case when the number of objects is unknown. Hence, we use the topological shape optimization in order to minimize the Kohn-Vogelius functional. We obtain the topological asymptotic expansion of the solution of the 2D Stokes equations and characterize the topological gradient for this functional. Then we determine numerically the number and location of the obstacles. Additionally, we propose a blending algorithm which combines the topological and geometrical shape optimization methods in order to determine numerically the number, location and shape of the objects.
7

Détection d'un objet immergé dans un fluide

Caubet, Fabien 29 June 2012 (has links) (PDF)
Cette thèse s'inscrit dans le domaine des mathématiques appelé optimisation de formes. Plus précisément, nous étudions ici un problème inverse de type détection à l'aide du calcul de forme et de l'analyse asymptotique : l'objectif est de localiser un objet immergé dans un fluide visqueux, incompressible et stationnaire. Les questions principales qui ont motivé ce travail sont les suivantes : peut-on détecter un objet immergé dans un fluide à partir d'une mesure effectuée à la surface du fluide ? Peut-on reconstruire numériquement cet objet, i.e. approcher sa position et sa forme, à partir de cette mesure ? Peut-on connaître le nombre d'objets présents dans le fluide en utilisant cette mesure ? Pour répondre à ces questions, le problème inverse est analysé comme un problème d'optimisation en minimisant une fonctionnelle coût, la variable étant la forme inconnue. Deux différentes approches sont considérées dans ce travail : l'optimisation géométrique (à l'aide des dérivées de forme et du gradient de forme) et l'optimisation topologique (à l'aide d'un développement asymptotique et du "gradient" topologique). Dans un premier temps, un cadre mathématique est mis en place pour démontrer l'existence des dérivées de forme d'ordre un et deux pour les problèmes de détection d'inclusions. Le problème inverse considéré est ensuite analysé à l'aide de l'optimisation géométrique de forme : un résultat d'identifiabilité est montré, le gradient de forme de plusieurs types de fonctionnelles de forme est caractérisé et l'instabilité de ce problème inverse est enfin démontrée. Ces résultats théoriques sont alors utilisés pour reconstruire numériquement des objets immergés dans un fluide à l'aide d'un algorithme de gradient régularisé par une méthode de projection. Enfin, la localisation de petites inclusions dans un fluide est étudiée à l'aide de l'optimisation topologique pour une fonctionnelle de forme de Kohn-Vogelius. L'expression théorique de la dérivée topologique est finalement utilisée pour déterminer numériquement le nombre et la localisation de petits obstacles immergés dans un fluide à l'aide d'un algorithme de gradient topologique. Les limites effectives de cette approche sont explorées : la pénétration reste faible dans ce problème stationnaire.
8

Modèles de fronts pour films minces

Roux, Marthe 06 December 2012 (has links) (PDF)
Dans cette thèse, nous souhaitons décrire la dynamique du front d'avancement d'un film mince s'écoulant sur un plan incliné non rugueux. Nous nous intéressons surtout au problème de point triple situé à l'interface entre la paroi solide, le fluide en mouvement et l'air, par exemple lors de l'écoulement d'une goutte sur une surface inclinée. Dans une première partie, nous expliquons pourquoi on peut se ramener aux équations de Stokes et pourquoi le problème résultant est mal posé. Pour y remédier, la condition de non-glissement à la paroi est remplacée par une condition de glissement lorsqu'on est proche du front. Ainsi on réussit à trouver une solution dans H1. Puis nous développons la dynamique de l'écoulement à l'amont du front : un film mince. Cet écoulement peut se modéliser sous la forme d'équations de type Saint-Venant sur la hauteur et le débit. Nous justifions cette construction à partir des équations de Navier-Stokes en utilisant un développement asymptotique en fonction du paramètre onde longue. Dans la zone du front nous résolvons le système de Stokes stationnaire avec glissement au fond par un développement asymptotique en fonction du nombre capillaire. Le front est divisé en une zone interne près du front et une zone externe loin du front, puis les solutions de chaque zone sont soit raccordées directement (angles dynamique et statique égaux), soit raccordées au moyen d'une zone intermédiaire (angles dynamique et statique différents). Cela nous conduit à deux familles de modèles. En réunissant les modèles type Saint-Venant et les différents modèles de front, nous obtenons un modèle de Saint-Venant tenant compte de la dynamique du front. À partir de ce modèle à deux équations nous pouvons écrire un modèle plus simple à une équation sur la hauteur. Ce modèle permet d'étendre les modèles existants avec adhérence à des modèles avec glissement. On peut alors réaliser des simulations numériques combinant un front d'avancement et un film mince.
9

Modeling of multiphase flows / Modélisation des fluides multiphasiques

Mecherbet, Amina 30 September 2019 (has links)
Dans cette thèse, nous nous intéressons à la modélisation et l'analyse mathématique de certains problèmes liés aux écoulements en suspension.Le premier chapitre concerne la justification du modèle de type transport-Stokes pour la sédimentation de particules sphériques dans un fluide de Stokes où l'inertie des particules est négligée et leur rotation est prise en compte. Ce travail est une extension des résultats antérieurs pour un ensemble plus général de configurations de particules.Le deuxième chapitre concerne la sédimentation d'une distribution d'amas de paires de particules dans un fluide de Stokes. Le modèle dérivé est une équation de transport-Stokes décrivant l'évolution de la position et l'orientation des amas. Nous nous intéressons par la suite au cas où l'orientation des amas est initialement corrélée aux positions. Un résultat d'existence locale et d'unicité pour le modèle dérivé est présenté.Dans le troisième chapitre, nous nous intéressons à la dérivation d'un modèle de type fluide-cinétique pour l'évolution d'un aérosol dans les voies respiratoires. Ce modèle prend en compte la variation du rayon des particules et leur température due à l'échange d'humidité entre l'aérosol et l'air ambiant. Les équations décrivant le mouvement de l'aérosol est une équation de type Vlasov-Navier Stokes couplée avec des équations d'advection diffusion pour l'évolution de la température et la vapeur d'eau dans l'air ambiant.Le dernier chapitre traite de l'analyse mathématique de l'équation de transport-Stokes dérivée au premier chapitre. Nous présentons un résultat d'existence et d'unicité globale pour des densités initiales de type $L^1 cap L^infty$ ayant un moment d'ordre un fini. Nous nous intéressons ensuite à des densités initiales de type fonction caractéristique d'une gouttelette et montrons un résultat d'existence locale et d'unicité d'une paramétrisation régulière de la surface de la gouttelette. Enfin nous présentons des simulations numériques montrant l'aspect instable de la gouttelette. / This thesis is devoted to the modelling and mathematical analysis of some aspects of suspension flows.The first chapter concerns the justification of the transport-Stokes equation describing the sedimentation of spherical rigid particles in a Stokes flow where particles rotation is taken into account and inertia is neglected. This work is an extension of former results for a more general set of particles configurations.The second chapter is dedicated to the sedimentation of clusters of particle pairs in a Stokes flow. The derived model is a transport-Stokes equation describing the time evolution of the position and orientation of the cluster. We also investigate the case where the orientation of the cluster is initially correlated to its position. A local existence and uniqueness result for the limit model is provided.In the third chapter, we propose a coupled fluid-kinetic model taking into accountthe radius growth of aerosol particles due to humidity in the respiratorysystem. We aim to numerically investigate the impact of hygroscopic effects onthe particle behaviour. The air flow is described by the incompressibleNavier-Stokes equations, and the aerosol by a Vlasov-type equation involving the air humidity and temperature, both quantities satisfying a convection-diffusion equation with a source term.The last chapter is dedicated to the analysis of the transport-Stokes equation derived in the first chapter. First we present a global existence and uniqueness result for $L^1cap L^infty$ initial densities with finite first moment. Secondly, we consider the case where the initial data is the characteristic function of a droplet. We present a local existence and uniqueness result for a regular parametrization of the droplet surface. Finally, we provide some numerical computations that show the regularity breakup of the droplet.
10

Développement d'une méthode d'éléments finis multi-échelles pour les écoulements incompressibles dans un milieu hétérogène / Development of a multiscale finite element method for incompressible flows in heterogeneous media

Feng, Qingqing 20 September 2019 (has links)
Le cœur d'un réacteur nucléaire est un milieu très hétérogène encombré de nombreux obstacles solides et les phénomènes thermohydrauliques à l'échelle macroscopique sont directement impactés par les phénomènes locaux. Toutefois les ressources informatiques actuelles ne suffisent pas à effectuer des simulations numériques directes d'un cœur complet avec la précision souhaitée. Cette thèse est consacré au développement de méthodes d'éléments finis multi-échelles (MsFEMs) pour simuler les écoulements incompressibles dans un milieu hétérogène avec un coût de calcul raisonnable. Les équations de Navier-Stokes sont approchées sur un maillage grossier par une méthode de Galerkin stabilisé, dans laquelle les fonctions de base sont solutions de problèmes locaux sur des maillages fins prenant précisément en compte la géométrie locale. Ces problèmes locaux sont définis par les équations de Stokes ou d'Oseen avec des conditions aux limites ou des termes sources appropriés. On propose plusieurs méthodes pour améliorer la précision des MsFEMs, en enrichissant l'espace des fonctions de base locales. Notamment, on propose des MsFEMs d'ordre élevée dans lesquelles ces conditions aux limites et termes sources sont choisis dans des espaces de polynômes dont on peut faire varier le degré. Les simulations numériques montrent que les MsFEMs d'ordre élevés améliorent significativement la précision de la solution. Une chaîne de simulation multi-échelle est construite pour simuler des écoulements dans des milieux hétérogènes de dimension deux et trois. / The nuclear reactor core is a highly heterogeneous medium crowded with numerous solid obstacles and macroscopic thermohydraulic phenomena are directly affected by localized phenomena. However, modern computing resources are not powerful enough to carry out direct numerical simulations of the full core with the desired accuracy. This thesis is devoted to the development of Multiscale Finite Element Methods (MsFEMs) to simulate incompressible flows in heterogeneous media with reasonable computational costs. Navier-Stokes equations are approximated on the coarse mesh by a stabilized Galerkin method, where basis functions are solutions of local problems on fine meshes by taking precisely local geometries into account. Local problems are defined by Stokes or Oseen equations with appropriate boundary conditions and source terms. We propose several methods to improve the accuracy of MsFEMs, by enriching the approximation space of basis functions. In particular, we propose high-order MsFEMs where boundary conditions and source terms are chosen in spaces of polynomials whose degrees can vary. Numerical simulations show that high-order MsFEMs improve significantly the accuracy of the solution. A multiscale simulation chain is constructed to simulate successfully flows in two- and three-dimensional heterogeneous media.

Page generated in 0.1225 seconds