• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 104
  • 43
  • 11
  • Tagged with
  • 153
  • 153
  • 68
  • 52
  • 51
  • 48
  • 38
  • 32
  • 30
  • 30
  • 29
  • 26
  • 26
  • 25
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Modelisation des ecoulements gravitaires catastrophiques par une approche objet dynamique : Erosion - Transport - Depot

Hugot, Alexandre 02 February 2000 (has links) (PDF)
Nous proposons dans cette thèse un modèle mathématique simple adapté à la sédimentation des dépôts gravitaires en eaux profondes. L'écoulement est traité comme un objet géométrique déformable. Les principaux mécanismes physiques pris en compte par le modèle sont : 1. La turbulence ; 2. L'étalement dû aux forces de pressions ; 3. L'incorporation de fluide le long de l'interface suspension-fluide ambiant ; 4. La sédimentation de particules ; 5. L'érosion de particules. Les solutions analytiques asymptotiques du système différentiel non-linéaire montrent la consistance des solutions numériques sur les temps longs. Les tests numériques permettent de quantifier l'impact qualitatif et quantitatif des pramètres physiques du modèle, des conditions initiales et des parmètres de contrôle (pente, granulométrie). Une méthode d'inversion est mise en oeuvre pour l'identification des conditions initiales et/ou des paramètres du modèle. L'inversion partielle (détermination des conditions initiales) appliquée à des modèles réduits expérimentaux montre le bon comportement qualitatif du modèle et cela même hors du domaine de validité strict de ce dernier. L'inversion total (identification des paramètres physiques et détermination des conditions initiales) montre le bon comportement du modèle d'un point de vue quantitatif au niveau des vitesses de l'écoulement et des épaisseurs déposées. La méthode d'inversion est appliquée à l'effondrement de l'aéroport de Nice en 1979 pour tester des scénarios d'écoulement. Contrainte par les ruptures de câbles et/ou les épaisseurs déposées, elle permet, par exemple, d'estimer le volume initial ou les paramètres physiques de l'effondrement (coefficient de friction, nombre de Schmidt turbulent modifié...). Malgré quelques limitations, principalement dues aux simplifications géométriques de l'écoulement, ce modèle simple est un premier pas vers la compréhension quantitative de l'impact des paramètres externes -tel que la nature et la quantité des apports en sédiments, la géométrie du bassin- sur la dynamique des courants turbiditiques et l'organisation des séquences de dépôts résultantes. Grâce à ses faibles temps de calcul sur micro-ordinateur, il est envisageable de simuler des séries d'événements et de former ainsi des séquences de dépôt multi-événementielles. Il peut être utilisé pour reconstruire les processus de sédimentation et les dépôts résultants.
122

Contributions à l'analyse numérique des méthodes quasi-Monte Carlo

Coulibaly, Ibrahim 03 November 1997 (has links) (PDF)
Les méthodes de type quasi-Monte Carlo sont des versions déterministes des méthodes de Monte Carlo. Les nombres aléatoires sont remplacés par des nombres déterministes qui forment des ensembles ou des suites à faible discrepance, ayant une meilleure distribution uniforme. L'erreur d'une méthode quasi-Monte Carlo dépend de la discrepance de la suite utilisée, la discrepance étant une mesure de la déviation par rapport à la distribution uniforme. Dans un premier temps nous nous intéressons à la résolution par des méthodes quasi-Monte Carlo d'équations différentielles pour lesquelles il y a peu de régularité en temps. Ces méthodes consistent à formuler le problème avec un terme intégral pour effectuer ensuite une quadrature quasi-Monte Carlo. Ensuite des méthodes particulaires quasi-Monte Carlo sont proposées pour résoudre les équations cinétiques suivantes : l'équation de Boltzmann linéaire et le modèle de Kac. Enfin, nous nous intéressons à la résolution de l'équation de la diffusion à l'aide de méthodes particulaires utilisant des marches quasi-aléatoires. Ces méthodes comportent trois étapes : un schéma d'Euler en temps, une approximation particulaire et une quadrature quasi-Monte Carlo à l'aide de réseaux-$(0,m,s)$. A chaque pas de temps les particules sont réparties par paquets dans le cas des problèmes multi-dimensionnels ou triées si le problème est uni-dimensionnel. Ceci permet de démontrer la convergence. Les tests numériques montrent pour les méthodes de type quasi-Monte Carlo de meilleurs résultats que ceux fournis par les méthodes de type Monte Carlo.
123

Autour de l'évaluation numérique des fonctions D-finies

Mezzarobba, Marc 27 October 2011 (has links) (PDF)
Les fonctions D-finies (ou holonomes) à une variable sont les solutions d'équations différentielles linéaires à coefficients polynomiaux. En calcul formel, il s'est avéré fructueux depuis une vingtaine d'années d'en développer un traitement algorithmique unifié. Cette thèse s'inscrit dans cette optique, et s'intéresse à l'évaluation numérique des fonctions D-finies ainsi qu'à quelques problèmes apparentés. Elle explore trois grandes directions. La première concerne la majoration des coefficients des développements en série de fonctions D-finies. On aboutit à un algorithme de calcul automatique de majorants accompagné d'un résultat de finesse des bornes obtenues. Une seconde direction est la mise en pratique de l'algorithme " bit burst " de Chudnovsky et Chudnovsky pour le prolongement analytique numérique à précision arbitraire des fonctions D-finies. Son implémentation est l'occasion de diverses améliorations techniques. Ici comme pour le calcul de bornes, on s'attache par ailleurs à couvrir le cas des points singuliers réguliers des équations différentielles. Enfin, la dernière partie de la thèse développe une méthode pour calculer une approximation polynomiale de degré imposé d'une fonction D-finie sur un intervalle, via l'étude des développements en série de Tchebycheff de ces fonctions. Toutes les questions sont abordées avec un triple objectif de rigueur (résultats numériques garantis), de généralité (traiter toute la classe des fonctions D-finies) et d'efficacité. Pratiquement tous les algorithmes étudiés s'accompagnent d'implémentations disponibles publiquement.
124

Essays in Mathematical Finance and in the Epistemology of Finance / Essais en Finance Mathématique et en Epistémologie de la Finance

De Scheemaekere, Xavier 19 May 2011 (has links)
The goal of this thesis in finance is to combine the use of advanced mathematical methods with a return to foundational economic issues. In that perspective, I study generalized rational expectations and asset pricing in Chapter 2, and a converse comparison principle for backward stochastic differential equations with jumps in Chapter 3. Since the use of stochastic methods in finance is an interesting and complex issue in itself - if only to clarify the difference between the use of mathematical models in finance and in physics or biology - I also present a philosophical reflection on the interpretation of mathematical models in finance (Chapter 4). In Chapter 5, I conclude the thesis with an essay on the history and interpretation of mathematical probability - to be read while keeping in mind the fundamental role of mathematical probability in financial models.
125

Modélisation hybride de l'érythropoïèse et des maladies sanguines

Kurbatova, Polina 24 November 2011 (has links) (PDF)
La thèse est consacrée au développement de nouvelles méthodes de modélisations mathématiques en biologie et en médecine, du type "off-lattice" modèles hybrides discret-continus, et de leurs applications à l'hématopoïèse et aux maladies sanguines telles la leucémie et l'anémie. Dans cette approche, les cellules biologiques sont considérées comme des objets discrets alors que les réseaux intracellulaire et extracellulaire sont décrits avec des modèles continus régis par des équations aux dérivées partielles et des équations différentielles ordinaires. Les cellules interagissent mécaniquement et biochimiquement entre elles et avec le milieu environnant. Elles peuvent se diviser, mourir par apoptose ou se différencier. Le comportement des cellules est déterminé par le réseau de régulation intracellulaire et influencé par le contrôle local des cellules voisines ou par la régulation globale d'autres organes. Dans la première partie de la thèse, les modèles hybrides du type "off-lattice" dynamiques sont introduits. Des exemples de modèles, spécifiques aux processus biologiques, qui décrivent au sein de chaque cellule la concurrence entre la prolifération et l'apoptose, la prolifération et la différenciation et entre le cycle cellulaire et de l'état de repos sont étudiés. L'émergence des structures biologiques est étudiée avec les modèles hybrides. L'application à la modélisation des filamente de bactéries est illustrée. Dans le chapitre suivant, les modèle hybrides sont appliqués afin de modéliser l'érythropoïèse ou production de globules rouges dans la moelle osseuse. Le modèle inclut des cellules sanguines immatures appelées progéniteurs érythroïdes, qui peuvent s'auto-renouveler, se différencier ou mourir par apoptose, des cellules plus matures appelées les réticulocytes, qui influent les progéniteurs érythroïdes par le facteur de croissance Fas-ligand, et des macrophages, qui sont présents dans les îlots érythroblastiques in vivo. Les régulations intracellulaire et extracellulaire par les protéines et les facteurs de croissance sont précisées et les rétrocontrôles par les hormones érythropoïétine et glucocorticoïdes sont pris en compte. Le rôle des macrophages pour stabiliser les îlots érythroblastiques est montré. La comparaison des résultats de modélisation avec les expériences sur l'anémie chez les souris est effectuée. Le quatrième chapitre est consacré à la modélisation et au traitement de la leucémie. L'érythroleucémie, un sous-type de leucémie myéloblastique aigüe (LAM), se développe à cause de la différenciation insuffisante des progéniteurs érythroïdes et de leur auto-renouvellement excessif. Un modèle de type "Physiologically Based Pharmacokinetics-Pharmacodynamic" du traitement de la leucémie par AraC et un modèle de traitement chronothérapeutique de la leucémie sont examinés. La comparaison avec les données cliniques sur le nombre de blast dans le sang est effectuée. Le dernier chapitre traite du passage d'un modèle hybride à un modèle continu dans le cas 1D. Un théorème de convergence est prouvé. Les simulations numériques confirment un bon accord entre ces deux approches.
126

Calcul stochastique via régularisation et applications financières

Coviello, Rosanna 11 November 2006 (has links) (PDF)
Dans la première partie de cette thèse nous appliquons le calcul via régularisation à l'étude d'un marché où le processus des prix d'un actif risqué n'est pas une semimartingale mais simplement à variation quadratique finie. Cette condition est réalisée lorsque le prix de l'actif est admis dans la classe A de toutes les stratégies admissibles, et devient réaliste si la condition de non-arbitrage sur l'ensemble de toutes les stratégies simples prévisibles n'est pas plausible. Cette situation est vérifiée, par exemple, lorsque l'agent est un initié ou si A est restreinte.<br />Nous fournissons des exemples de portefeuilles autofinancés et introduisons une notion de A-martingale. Un calcul relatif à celle-ci est développé. La condition de non-arbitrage parmi toutes les stratégies dans A est récupérée si le processus des prix de l'actif risqué est une A-martingale.<br />Nous abordons le problème de la viabilité du marché, de la couverture et de la maximisation de l'utilité de la richesse terminale.<br />La deuxième partie de la thèse est consacrée à l'étude d'une équation différentielle stochastique unidimensionnelle dirigée par une semimartingale mélangée à un processus à variation cubique finie.<br />Nous proposons une méthode qui repose sur une transformation réduisant le coefficient de diffusion à 1.<br />Le développement de la méthode utilisée nous conduit à des résultats significatifs dans l'analyse du calcul via régularisation.<br />En particulier, une formule de type Ito-Wentzell relative aux processus à variation cubique finie est<br />établie et la structure des processus weak-Dirichlet par rapport à la filtration brownienne est clarifiée.<br />Nous démontrons, par une approche similaire, l'existence et l'unicité d'une équation dirigée par un processus hölder-continu dans l'espace. En utilisant une formule d'Ito pour les semimartingales réversibles nous prouvons l'existence d'une solution lorsque le processus dirigeant l'équation est le mouvement brownien et le coefficient de diffusion est juste continu
127

Analyse numérique d'équations aux dérivées aléatoires, applications à l'hydrogéologie

Charrier, Julia 12 July 2011 (has links) (PDF)
Ce travail présente quelques résultats concernant des méthodes numériques déterministes et probabilistes pour des équations aux dérivées partielles à coefficients aléatoires, avec des applications à l'hydrogéologie. On s'intéresse tout d'abord à l'équation d'écoulement dans un milieu poreux en régime stationnaire avec un coefficient de perméabilité lognormal homogène, incluant le cas d'une fonction de covariance peu régulière. On établit des estimations aux sens fort et faible de l'erreur commise sur la solution en tronquant le développement de Karhunen-Loève du coefficient. Puis on établit des estimations d'erreurs éléments finis dont on déduit une extension de l'estimation d'erreur existante pour la méthode de collocation stochastique, ainsi qu'une estimation d'erreur pour une méthode de Monte-Carlo multi-niveaux. On s'intéresse enfin au couplage de l'équation d'écoulement considérée précédemment avec une équation d'advection-diffusion, dans le cas d'incertitudes importantes et d'une faible longueur de corrélation. On propose l'analyse numérique d'une méthode numérique pour calculer la vitesse moyenne à laquelle la zone contaminée par un polluant s'étend. Il s'agit d'une méthode de Monte-Carlo combinant une méthode d'élements finis pour l'équation d'écoulement et un schéma d'Euler pour l'équation différentielle stochastique associée à l'équation d'advection-diffusion, vue comme une équation de Fokker-Planck.
128

Applications de la théorie des erreurs par formes de Dirichlet

Scotti, Simone 16 October 2008 (has links) (PDF)
Cette thèse est consacrée à l'étude des applications de la théorie des erreurs par formes de Dirichlet. Notre travail se divise en trois parties. La première analyse les modèles gouvernés par une équation différentielle stochastique. Après un court chapitre technique, un modèle innovant pour les carnets d'ordres est proposé. Nous considérons que le spread bid-ask n'est pas un défaut, mais plutôt une propriété intrinsèque du marché. L'incertitude est porté par le mouvement Brownien qui conduit l'actif. Nous montrons que l'évolution des spread peut être évalué grâce à des formules fermés et nous étudions l'impact de l'incertitude du sous-jacent sur les produits dérivés. En suite, nous introduisons le modèle PBS pour le pricing des options européennes. L'idée novatrice est de distinguer la volatilité du marché par rapport au paramètre utilisé par les traders pour se couvrir. Nous assumons la première constante, alors que le deuxième devient une estimation subjective et erronée de la première. Nous prouvons que ce modèle prévoit un spread bid-ask et un smile de volatilité. Les propriétés plus intéressantes de ce modèle sont l'existence de formules fermés pour le pricing, l'impact de la dérive du sous-jacent et une efficace stratégie de calibration. La seconde partie s'intéresse aux modèles décrit par une équation aux dérivées partielles. Les cas linéaire et non-linéaire sont analysés séparément. Dans le premier nous montrons des relations intéressantes entre la théorie des erreurs et celui des ondelettes. Dans le cas non-linéaire nous étudions la sensibilité des solutions à l'aide de la théorie des erreurs. Sauf dans le cas d'une solution exacte, il y a deux approches possibles: On peut d'abord discrétiser l'EDP et étudier la sensibilité du problème discrétisé, soit démontrer que les sensibilités théoriques vérifient des EDP. Les deux cas sont étudiés, et nous prouvons que les sharp et le biais sont solutions d'EDP linéaires dépendantes de la solution de l'EDP originaire et nous proposons des algorithmes pour évaluer numériquement les sensibilités. Enfin, la troisième partie est dédiée aux équations stochastiques aux dérivées partielles. Notre analyse se divise en deux chapitres. D'abord nous étudions la transmission de l'incertitude, présente dans la condition initiale, à la solution de l'EDPS. En suite, nous analysons l'impact d'une perturbation dans les termes fonctionnelles de l'EDPS et dans le coefficient de la fonction de Green associée. Dans le deux cas, nous prouvons que le sharp et le biais sont solutions de deux EDPS linéaires dépendantes de la solution de l'EDPS originaire.
129

Etude d'un système d'équations différentielles stochastiques : Le cliquet de Muller

Audiffren, Julien 16 December 2011 (has links)
Le cliquet de Muller est un modèle mathématiques illustrant l'accumulation de mutations délétères dans une population asexuée. L'idée principale est que l'absence de recombinaison oblige les enfants à avoir au moins autant de mutations nocives que leurs parents, et au bout d'un certain temps, le nombre minimum de mutations délétères de la population, qui est donc un processus croissant, augmente : on dit alors que le cliquet clique. Le modèle du cliquet de Muller qui est étudié dans cette thèse est un système infini d'équations différentielles stochastiques de Fleming-Viot couplées. On montre dans une première partie d'abord que le cliquet s'actionne en temps fini p.s., puis que l'espérance du temps mis pour cliquer est également finie. On utilise pour cela des comparaisons d'équations stochastiques et des changements de temps. Dans une deuxième partie, on démontre que ce modèle est équivalent à un modèle du look-down modifié auquel on a ajouté des mutations et des morts. Puis dans la troisième partie on généralise le résultat de la deuxième à un cadre plus large de systèmes d'équations différentielles stochastiques. / Muller's Ratchet is a model from evolutionary theory describing the accumulation of deleterious mutations in asexually reproducing population. The lack of recombination implies that children have all the deleterious mutations of his parent. The minimal number of deleterious mutations carried in the population is an non-decreasing process, and if it increases we say that the Muller's ratchet clicks. The model studied in this thesis is an infinite system of stochastic differential equations. In the first chapter, we first prove that the ratchet clicks in finite time a.s., then that the clicking time has finite expectation. For this we use comparison arguments and time changes. In the second chapter, we prove that this model is equivalent to a modified look-down model with mutation and selection. In the third chapter we generalize the results of chapter 2 to a more general model.
130

Instruments de la famille des flûtes : analyse des transitions entre régimes / Analysis of regime transitions in flute-like instruments

Terrien, Soizic 10 December 2014 (has links)
La diversité des régimes des instruments de la famille des flûtes a été mise en évidence à de nombreuses reprises : régimes statiques, périodiques, ou non périodiques. Cependant, de nombreux aspects de la dynamique de ces instruments demeurent mal compris. Pour les musiciens comme pour les facteurs d'instruments, les transitions entre régimes revêtent une importance particulière : d'une part elles correspondent à des changements de notes, et d'autre part la production d'un régime donné est conditionnée par les paramètres de facture (liés à la fabrication de l'instrument), et de contrôle (ajustés en permanence par l'instrumentiste). On s'attache dans ce document à caractériser les transitions entre régimes dans les flûtes, en lien avec des problématiques de facture et de jeu. Différentes approches sont mises en place. Des approches expérimentales d'une part, avec des mesures sur musicien et sur bouche artificielle. Par ailleurs, un modèle physique de l'instrument - un système dynamique à retard de type neutre - est étudié, par intégration temporelle d'une part, mais également par collocation orthogonale et continuation, donnant ainsi accès aux diagrammes de bifurcations.Croiser les résultats de ces différentes approches permet de mieux appréhender différents phénomènes : hystérésis associée aux changements de régime, ou mécanisme d'apparition des régimes non périodiques. L'influence de paramètres de facture et de contrôle est également étudiée : le rôle majeur de la géométrie interne du canal des flûtes à bec est mis en évidence, et l'influence de la dynamique de la pression dans la bouche du musicien sur les seuils de changement de régimes est caractérisée. / Various studies have highlighted the diversity of regimes in flute-like instruments : static, periodic or non periodic regimes. However, some aspects of their dynamics remain poorly understood. Both for flute players and makers, transitions between regimes are particularly important : on the one hand, they correspond to a change of the note played, and on the other hand, production of a given regime is determined by parameters related to making and to playing of the instrument. In this document, we are interested in caracteristics of regime change in flute-like instruments, in relation with making and playing issues.Different approches are considered. First, experimental methods, with measurement on both musician and an artificial mouth. On the other hand, a physical model of the instrument - a system of delay differential equations of neutral type - is studied, through time-domain integration, and using orthogonal collocation coupled to numerical continuation. This last approach provides access to bifurcation diagrams.Considering results of these different methods, it becomes possible to better understand different experimental phenomena, such as regime change and associated hysteresis, or production mechanisms of non periodic regimes. Influence of different parameters is further studied : the crucial importance of the channel geometry in recorders is highlighted, and the influence of the mouth pressure dynamics on regime change thresholds is analysed.

Page generated in 0.1427 seconds