• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 3
  • Tagged with
  • 38
  • 33
  • 33
  • 28
  • 24
  • 21
  • 20
  • 19
  • 18
  • 16
  • 16
  • 11
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Analyzing How Blended Emotions are Expressed using Machine Learning Methods

Ling, Disen January 2023 (has links)
Blended emotion is a classification of emotional experiences that involve the combination of multiple emotions. Research on the expression of blended emotions allows researchers to understand how different emotions interact and coexist in an individual’s emotional experience. Using machine learning to analyze mixed emotions may indeed bring new insights to the study of blended emotions. This thesis aims to explore blended emotion expression by testing machine learning models (SVM, Decision Tree, and Naive Bayes) trained on the single motion dataset on the blended emotion datasets and vice versa, to analyze the relationship between blended emotions and their constituent emotions. Furthermore, this thesis explores whether there is a dominant emotion in blended emotions and conducts an ablation study to investigate the importance of various facial features within each emotion. The results of testing models’ generalization capabilities propose that blended emotion expressions are highly likely to result from the overlapping combinations of features from their constituent emotions or the combination of some features from one constituent emotion with some from another. Furthermore, based on the dataset used, this thesis also finds that happiness predominated in the blended emotion ’disgust & happiness’. Additionally, an ablation study is conducted to identify the features that have the most significant impact on the accuracy and F1 score of single/pure emotion and blended emotion recognition across various recognition models. / ”Blandade känslor” är en klassificering av känslomässiga upplevelser som innefattar en kombination av flera känslor. Forskning om uttryck av blandade känslor möjliggör för forskare att förstå hur olika känslor interagerar och samexisterar i en individs känslomässiga upplevelse. Användningen av maskininlärning för att analysera blandade känslor kan faktiskt ge nya insikter i studiet av blandade känslor. Denna avhandling syftar till att utforska uttryck av blandade känslor genom att testa maskininlärningsmodeller (SVM, beslutsträd och Naive Bayes) som är tränade på dataset med enskilda känslor på dataset med blandade känslor och vice versa, för att analysera sambandet mellan blandade känslor och deras beståndsdelar. Dessutom utforskar denna avhandling om det finns en dominerande känsla i blandade känslor och genomför en ablationsstudie för att undersöka betydelsen av olika ansiktsdrag inom varje känsla. Resultaten av testning av modellernas generaliseringsförmåga föreslår att uttryck av blandade känslor sannolikt härrör från överlappande kombinationer av drag från deras beståndsdelar eller en kombination av vissa drag från en beståndsdel med vissa från en annan. Vidare, baserat på det använda datasetet, finner denna avhandling också att glädje dominerar i den blandade känslan ’avsky och glädje’. Dessutom genomförs en ablationsstudie för att identifiera de drag som har störst påverkan på noggrannheten och F1-poängen för igenkänning av enskilda/rena känslor och blandade känslor över olika igenkänningsmodeller.
22

Experiments in speaker diarization using speaker vectors / Experiment med talarvektorer för diarisering

Cui, Ming January 2021 (has links)
Speaker Diarization is the task of determining ‘who spoke when?’ in an audio or video recording that contains an unknown amount of speech and also an unknown number of speakers. It has emerged as an increasingly important and dedicated domain of speech research. Initially, it was proposed as a research topic related to automatic speech recognition, where speaker diarization serves as an upstream processing step. Over recent years, however, speaker diarization has become an important key technology for many tasks, such as navigation, retrieval, or higher-level inference on audio data. Our research focuses on the existing speaker diarization algorithms. Particularly, the thesis targets the differences between supervised and unsupervised methods. The aims of this thesis is to check the state-of-the-art algorithms and analyze which algorithm is most suitable for our application scenarios. Its main contributions are (1) an empirical study of speaker diarization algorithms; (2) appropriate corpus data pre-processing; (3) audio embedding network for creating d-vectors; (4) experiments on different algorithms and corpus and comparison of them; (5) a good recommendation for our requirements. The empirical study shows that, for embedding extraction module, due to the neural networks can be trained with big datasets, the diarization performance can be significantly improved by replacing i-vectors with d-vectors. Moreover, the differences between supervised methods and unsupervised methods are mostly in clustering module. The thesis only uses d-vectors as the input of diarization network and selects two main algorithms as compare objects: Spectral Clustering represents unsupervised method and Unbounded Interleaved-state Recurrent Neural Network (UIS-RNN) represents supervised method. / talardiarisering är uppgiften att bestämma ”vem talade när?” i en ljud- eller videoinspelning som innehåller en okänd mängd tal och även ett okänt antal talare. Det har framstått som en allt viktigare och dedikerad domän inom talforskning. Ursprungligen föreslogs det som ett forskningsämne relaterat till automatisk taligenkänning, där talardiarisering fungerar som ett processteg upströms. Under de senaste åren har dock talardiarisering blivit en viktig nyckelteknik för många uppgifter, till exempel navigering, hämtning, eller högre nivå slutledning på ljuddata. Vår forskning fokuserar på de befintliga algoritmerna för talare diarisering. Speciellt riktar sig avhandlingen på skillnaderna mellan övervakade och oövervakade metoder. Syftet med denna avhandling är att kontrollera de mest avancerade algoritmerna och analysera vilken algoritm som passar bäst för våra applikationsscenarier. Dess huvudsakliga bidrag är (1) en empirisk studie av algoritmer för talare diarisering; (2) lämplig förbehandling av corpusdata, (3) ljudinbäddningsnätverk för att skapa d-vektorer; (4) experiment på olika algoritmer och corpus och jämförelse av dem; (5) en bra rekommendation för våra krav. Den empiriska studien visar att för inbäddning av extraktionsmodul, på grund av de neurala nätverkna kan utbildas med stora datamängder, diariseringsprestandan kan förbättras avsevärt genom att ersätta i-vektorer med dvektorer. Dessutom är skillnaderna mellan övervakade metoder och oövervakade metoder mestadels i klustermodulen. Avhandlingen använder endast dvektorer som ingång till diariseringsnätverk och väljer två huvudalgoritmer som jämförobjekt: Spektralkluster representerar oövervakad metod och obegränsat återkommande neuralt nätverk (UIS-RNN) representerar övervakad metod.
23

Style Transfer Paraphrasing for Consistency Training in Sentiment Classification / Stilöverförande parafrasering för textklassificering med consistency training

Casals, Núria January 2021 (has links)
Text data is easy to retrieve but often expensive to classify, which is why labeled textual data is a resource often lacking in quantity. However, the use of labeled data is crucial in supervised tasks such as text classification, but semi-supervised learning algorithms have shown that the use of unlabeled data during training has the potential to improve model performance, even in comparison to a fully supervised setting. One approach to do semi-supervised learning is consistency training, in which the difference between the prediction distribution of an original unlabeled example and its augmented version is minimized. This thesis explores the performance difference between two techniques for augmenting unlabeled data used for detecting sentiment in movie reviews. The study examines whether the use of augmented data through neural style transfer paraphrasing could achieve comparable or better performance than the use of data augmented through back-translation. Five writing styles were used to generate the augmented datasets: Conversational Speech, Romantic Poetry, Shakespeare, Tweets and Bible. The results show that applying neural style transfer paraphrasing as a data augmentation technique for unlabeled examples in a semi-supervised setting does not improve the performance for sentiment classification with any of the styles used in the study. However, the use of style transferred augmented data in the semi-supervised approach generally performs better than using a model trained in a supervised scenario, where orders of magnitude more labeled data are needed and no augmentation is conducted. The study reveals that the experimented semi-supervised approach is superior to the fully supervised setting but worse than the semi-supervised approach using back-translation. / Textdata är lätt att få tag på men dyr att beteckna, vilket är varför annoterad textdata ofta inte finns i stora kvantiteter. Annoterad data är dock av yttersta vikt för övervakad inlärning, exempelvis för textklassificering, men semiövervakade inlärningsalgoritmer har visat att användandet av textdata utan annoteringar har potential att förbättra en inlärningsalgoritms resultat, även i jämförelse med helt övervakade algoritmer. Ett semi-övervakad inlärningsteknik är konsistensträning, där skillnaden mellan inferensen på en oförändrad datapunkt och en förändrar datapunkt minimeras. Denna uppsats utforskar skillnaden i resultat av att använda två olika tekniker för att förändra data som inte är annoterad för att detektera sentiment i filmrecensioner. Studien undersöker huruvida data förändrad via neural stilöverföring kan åstadkomma jämförbara eller bättre resultat i jämförelse med data förändrad genom tillbaka-översättning. Fem olika skrivstilar använda för att generera den förändrade datan: konversationellt tal, romantisk poesi, Shakespeare, Twitter-skrift samt Bibel. Resultaten visar att applicera neural stilöverföring på att förändra ej annoterade exempel för konsistensträning inte förbättrar resultaten i jämförelse med tillbaka-översättning. Semi-övervakad inlärning med stiltransferering presterar dock generellt bättre än en fullt övervakad, jämbördig algoritm som behöver flera magnituder fler annoteringar. Studien visar att den semiövervakade inlärningstekniken är bättre än den fullt övervakade modellen, men sämre än den semi-övervakade tekniken som använder tillbaka-översättning.
24

Automated Multimodal Emotion Recognition / Automatiserad multimodal känsloigenkänning

Fernández Carbonell, Marcos January 2020 (has links)
Being able to read and interpret affective states plays a significant role in human society. However, this is difficult in some situations, especially when information is limited to either vocal or visual cues. Many researchers have investigated the so-called basic emotions in a supervised way. This thesis holds the results of a multimodal supervised and unsupervised study of a more realistic number of emotions. To that end, audio and video features are extracted from the GEMEP dataset employing openSMILE and OpenFace, respectively. The supervised approach includes the comparison of multiple solutions and proves that multimodal pipelines can outperform unimodal ones, even with a higher number of affective states. The unsupervised approach embraces a traditional and an exploratory method to find meaningful patterns in the multimodal dataset. It also contains an innovative procedure to better understand the output of clustering techniques. / Att kunna läsa och tolka affektiva tillstånd spelar en viktig roll i det mänskliga samhället. Detta är emellertid svårt i vissa situationer, särskilt när information är begränsad till antingen vokala eller visuella signaler. Många forskare har undersökt de så kallade grundläggande känslorna på ett övervakat sätt. Det här examensarbetet innehåller resultaten från en multimodal övervakad och oövervakad studie av ett mer realistiskt antal känslor. För detta ändamål extraheras ljud- och videoegenskaper från GEMEP-data med openSMILE respektive OpenFace. Det övervakade tillvägagångssättet inkluderar jämförelse av flera lösningar och visar att multimodala pipelines kan överträffa unimodala sådana, även med ett större antal affektiva tillstånd. Den oövervakade metoden omfattar en konservativ och en utforskande metod för att hitta meningsfulla mönster i det multimodala datat. Den innehåller också ett innovativt förfarande för att bättre förstå resultatet av klustringstekniker.
25

Deep Learning for Prediction of Falling Blood Pressure During Surgery : Prediction of Falling Blood Pressure

Zandpour, Navid January 2022 (has links)
Perioperative hypotension corresponds to critically low blood pressure events during the pre, intra and postoperative periods. It is a common side effect of general anaesthesia and is strongly associated with an increased risk of postoperative complications, such as acute kidney injury, myocardial injury and in the worst case death. Early treatment of hypotension, preferably even before onset, is crucial in order to reduce the risk and severity of its associated complications. This work explores methods for predicting the onset of hypotension which could serve as a warning mechanism for clinicians managing the patient’s hemodynamics. More specifically, we present methods using only the arterial blood pressure curve to predict two different definitions of hypotension. The presented methods are based on a Convolutional Neural Network (CNN) trained on data from patients undergoing high-risk surgery. The experimental results show that our network can predict hypotension with 70% sensitivity and 80% specificity 5 minutes before onset. The prediction performance is then quickly reduced for longer prediction times, resulting in 60% sensitivity and 80% specificity 15 minutes before onset. / Perioperativ hypotension motsvarar perioder av kritiskt lågt blodtryck före, under och efter operation. Det är en vanlig bieffekt av generell anestesi och är starkt associerad med ökat risk av postoperativa komplikationer, så som akut leverskada, myokardskada och i värsta fall dödsfall. Tidig behandling av hypotension, helst innan perioden börjar, är avgörande för att minska risken och allvarlighetsgraden av postoperativa komplikationer. Det här arbetet utforskar metoder för att förutspå perioder av hypotension, vilket skulle kunna används för att varna vårdpersonal som ansvarar för patientens hemodynamiska övervakning. Mer specifikt så presenteras metoder som endast använder artärblodtryck för att förutspå två olika definitioner av hypotension. Metoderna som presenteras är baserade på ett Convolutional Neural Network (CNN) som tränats på data från patienter som genomgår högriskoperation. De experementella resultaten visar att våran modell kan förutspå hypotension med 70% sensitivitet och 80% specificitet 5 minuter i förväg. Förmågan att förutspå hypotension avtar sedan snabbt för längre prediktionstider, vilket resulterar i 60% sensitivitet och 80% specificitet 15 minuter i förväg.
26

Federated Online Learning with Streaming Data for Intrusion Detection Systems : Comparing Federated and Centralized Learning Methods in Online and Offline Settings

Arvidsson, Victor January 2024 (has links)
Background. With increased pressure from both regulatory bodies and end-users, interest in privacy preserving machine learning methods have increased among companies and researchers in the last few years. One of the main areas of research regarding this is federated learning. Further, with the current situation in the world, interest in cybersecurity is also at an all time high, where intrusion detection systems are one component of interest. With anomaly-based intrusion detection systems using machine learning methods, it is desirable that these can adapt automatically over time as the network patterns change, resulting in online learning being highly relevant for this application. Previous research has studied offline federated intrusion detection systems. However, there have been very little work performed in the study of online federated learning for intrusion detection systems. Objectives. The objective of this thesis is to evaluate the performance of online federated machine learning methods for intrusion detection systems. Furthermore, the thesis will study the performance relationship between offline and online models for both centralized and federated learning, in order to draw conclusions about the ability to extrapolate from results between the different types of models. Methods. This thesis uses a quasi-experiment to evaluate two different types of models, Naive Bayes and Semi-supervised Federated Learning on Evolving Data Streams (SFLEDS), on three different datasets, NSL-KDD, UNSW-NB15, and CIC-IDS2017. For each model, four variants are implemented: centralized offline, centralized online, federated offline and federated online, and in the federated setting the models are evaluated with 20, 30, and 40 clients. Results. The results show that the best performing model in general is the federated online SFLEDS. They also highlight an important problem with using imbalanced datasets without proper care for data preprocessing and model design. Finally, the results show that there are no general relationships between offline and online models that hold in both the centralized and federated settings in terms of prediction performance. Conclusions. The main conclusion of the thesis is that online federated learning has a lot of potential for the application of intrusion detection systems, but more research is required to find the optimal models and parameters that result in satisfactory performance. / Bakgrund. Med ökat tryck från både tillsynsorgan och slutanvändare har intresset för integritetsbevarande maskininlärning ökat hos företag och forskare under de senaste åren. Ett av huvudområdena där det forskas om detta är inom federerad inlärning. Vidare, med det nuvarande läget i världen är intresset för cybersäkerhet högre än någonsin, där bland annat intrångsdetekteringssystem är av intresse. Med avvikelsebaserade intrångsdetekteringssystem som använder sig av maskininlärning så är det önskvärt att dessa automatiskt kan anpassa sig över tid när nätverksmönster förändras, vilket resulterar i att online maskininlärning är högst relevant för området. Tidigare forskning har studerat federerade offline intrångsdetekteringssystem, men det finns väldigt lite forskning gällande federerad online maskininlärning för intrångsdetekteringssystem. Syfte. Syftet med det här arbetet är att utvärdera prestandan av federerad online maskininlärning för intrångsdetekteringssystem. Vidare kommer det här arbetet att studera prestandaförhållandet mellan offline och online modeller för både centraliserad och federerad inlärning, för att kunna dra slutsatser om förmågan att extrapolera resultat mellan olika typer av modeller. \newline\textbf{Metod.} Det här arbetet använder sig av ett kvasiexperiment för att utvärdera två olika modeller, Naive Bayes och Semi-supervised Federated Learning on Evolving Data Streams (SFLEDS), på tre olika dataset, NSL-KDD, UNSW-NB15 och CIC-IDS2017. För varje modell implementeras fyra varianter: centraliserad offline, centraliserad online, federerad offline och federerad online. De federerade modellerna utvärderas med 20, 30 och 40 klienter. Resultat. Resultaten visar att den generellt bästa modellen är online SFLEDS. De belyser även ett viktigt problem med att använda obalanserade dataset utan tillräcklig hänsyn till förbearbetning av datan och modelldesign. Slutligen visar resultaten att det inte finns något generellt samband mellan offline och online modeller som stämmer för både centraliserad och federerad inlärning när det gäller modellprestanda. Slutsatser. Den huvudsakliga slutsatsen från arbetet är att federerad online maskininlärning har stor potential för intrångsdetekteringssystem, men mer forskning krävs för att hitta den bästa modellen och de bästa parametrarna för att nå ett tillfredsställande resultat.
27

Classifying and Comparing Latent Space Representation of Unstructured Log Data. / Klassificering och jämförelse av latenta rymdrepresentationer av ostrukturerad loggdata.

Sharma, Bharat January 2021 (has links)
This thesis explores and compares various methods for producing vector representation of unstructured log data. Ericsson wanted to investigate machine learning methods to analyze logs produced by their systems to reduce the cost and effort required for manual log analysis. Four NLP methods were used to produce vector embeddings for logs: Doc2Vec, DAN, XLNet, and RoBERTa. Also, a Random forest classifier was used to classify those embeddings. The experiments were performed on three different datasets and the results showed that the performance of the models varied based on the dataset being used. The results also show that in the case of log data, fine-tuning makes the transformer models computationally heavy and the performance gain is very low. RoBERTa without fine-tuning produced optimal vector representations for the first and third datasets used whereas DAN had better performance for the second dataset. The study also concluded that the NLP models were able to better understand and classify the third dataset as it contained more plain text information as contrasted against more technical and less human readable datasets. / I den här uppsatsen undersöks och jämförs olika metoder för att skapa vektorrepresentationer av ostrukturerad loggdata. Ericsson vill undersöka om det är möjligt att använda tekniker inom maskininlärning för att analysera loggdata som produceras av deras nuvarande system och på så sätt underlätta och minska kostnaderna för manuell logganalys. Fyra olika språkteknologier undersöks för att skapa vektorrepresentationer av loggdata: Doc2vec, DAN, XLNet and RoBERTa. Dessutom används en Random Forest klassificerare för att klassificera vektorrepresentationerna. Experimenten utfördes på tre olika datamängder och resultaten visade att modellernas prestanda varierade baserat på datauppsättningen som används. Resultaten visar också att finjustering av transformatormodeller gör dem beräkningskrävande och prestandavinsten är liten.. RoBERTa utan finjustering producerade optimala vektorrepresentationer för de första och tredje dataset som användes, medan DAN hade bättre prestanda för det andra datasetet. Studien visar också att språkmodellerna kunde klassificera det tredje datasetet bättre då det innehöll mer information i klartext jämfört med mer tekniska och mindre lättlästa dataseten.
28

Developing Automated Cell Segmentation Models Intended for MERFISH Analysis of the Cardiac Tissue by Deploying Supervised Machine Learning Algorithms / Utveckling av automatiserade cellsegmenteringsmodeller avsedda för MERFISH-analys av hjärtvävnad genom användning av övervakade maskininlärningsalgoritmer

Rune, Julia January 2023 (has links)
Följande studie behandlar utvecklandet av automatiserade cellsegmenteringsmodeller med avsikt att identifiera gränser mellan celler i hjärtvävnad. Syftet är att möjliggöra analys av data genererad från multiplexed error-robust in situ hybridization (MERFISH). MERFISH är en spatial transcriptomics-teknik som till skillnad från exempelvis single-cell RNA sequencing (ScRNA-seq) och single molecule fluorescence in situ hybridization (smFISH), möjliggör profilering av hundratals RNA-sekvenser hos enskilda celler utan att förlora dess rumsliga kontext. I Kosuri laboratoriet på Salk Institute of Biological Studies i San Diego tillämpas MERFISH på mushjärtan. Syftet är att få en djupare insikt i hur celler är organiserade i friska hjärtan, och hur denna struktur ändras i och med åldring och sjukdom. Att extrahera meningsfull information från MERFISH medför dock en betydande utmaning - en exakt cellsegmentering. Studien bidrar följaktligen till utvecklandet av segmenteringsmodeller för att kringgå de utmaningar som står i vägen för all efterföljande analys. Då klassiska segmenteringsalgoritmer är otillräckliga för att segmentera den komplexa vävnad som hjärtat utgörs av, tillämpades några av dagens mest avancerade och framstående maskininlärningsalgoritmer inom fältet, kallade Cellpose och Omnipose. Givet den täta och heterogena hjärtvävnaden, som härstammar från en bred distribution av celltyper och geometrier, utvecklades två separata modeller; en för att täcka både mindre celler och kardiomyocyter skurna på tvärsnittet; och en för att enbart segmentera kardiomyocyter skurna i longitudinell riktning. Den förstnämnda modellen utvecklades och tränades i Cellpose, och uppnådde en träffsäkerhet på 91.2%. Modellen för longitudinella kardiomyocyter utvecklades istället både i Cellpose och Omnipose för att utvärdera vilket nätverk som är bäst lämpat för ändamålet. Ingen av nätverken lyckades uppnå en tillräckligt hög träffsäkerhet för att vara applicerbar, och är därmed i behov av fortsatt träning. Modellen genererad i Omnipose bedöms dock vara mest lovande, givet dess mer heltäckande segmentering. Ytterligare utvecklingsområden för framtiden innefattar segmentering av celler i fibros-täta regioner, samt att utveckla en 3D-segmentering av hela hjärtat för att uppnå en mer komplett MERFISH-analys. Sammanfattningsvis har de genererade segmenteringsmodellerna banat väg för möjliggörandet av en rigorös MERFISH-analys av hjärtat. Genom att avslöja några av de strukturella och funktionella orsakerna till hjärtsvikt på en cellulär nivå, kan vi således på sikt bidra till utvecklingen av mer effektiva terapeutiska strategier. / The following study delves into the development of automated cell segmentation models, with the intention of identifying boundaries between cells in the cardiac tissue for analysing spatial transcriptomics data. Addressing the limitations of alternative techniques like single-cell RNA sequencing (ScRNA-seq) and single molecule fluorescence in situ hybridization (smFISH), the study underscores the innovative use of multiplexed error-robust fluorescence in situ hybridization (MERFISH) deployed by the Kosuri Lab at Salk Institute for Biological Studies. This advanced imaging-based technique allows for a single-cell transcriptome profiling of hundreds of different transcripts while retaining the spatial context of the tissue. The technique can accordingly reveal how the organization of cells within a healthy heart is altered during disease. However, the extraction of meaningful data from MERFISH poses a significant challenge - accurate cell segmentation. This thesis therefore presents the development of a robust model for cell boundary identification within cardiac tissue, leveraging some of the advanced supervised machine learning algorithms in the field, named Cellpose and Omnipose. Due to the dense and highly heterogeneous tissue- stemming from a wide distribution of cell types and shapes- two separate models had to be developed; one that covers the smaller cells and the cross-sectioned cardiomyocytes, and correspondingly one to cover the longitudinal cardiomyocytes. The cross-section model was successfully developed to achieve an accuracy of 91.2%, whereas the longitudinal model still needs further improvements before being implemented. The thesis acknowledges potential areas for improvement, emphasizing the need to further improve the segmentation of longitudinal cardiomyocytes, tackle the challenges with segmenting cells within fibrotic regions of the diseased heart, as well as achieving a precise 3D cell segmentation. Nonetheless, the generated models have paved the way towards enabling efficient downstream MERFISH analysis to ultimately understand the structural and functional dynamics of heart failure at a cellular level, aiding the development of more effective therapeutic strategies.
29

Enhancing Deep Active Learning Using Selective Self-Training For Image Classification

Panagiota Mastoropoulou, Emmeleia January 2019 (has links)
A high quality and large scale training data-set is an important guarantee to teach an ideal classifier for image classification. Manually constructing a training data- set  with  appropriate  labels  is  an  expensive  and  time  consuming  task.    Active learning techniques have been used to improved the existing models by reducing the  number  of  required  annotations.    The  present  work  aims  to  investigate the  way  to  build  a  model  for  identifying  and  utilizing  potential  informative and  representativeness  unlabeled  samples.    To  this  end,  two  approaches  for deep image classification using active learning are proposed, implemented and evaluated.  The two versions of active leaning for deep image classification differ in  the  input  space  exploration  so  as  to  investigate  how  classifier  performance varies  when  automatic  labelization  on  the  high  confidence  unlabeled  samples is  performed.    Active  learning  heuristics  based  on  uncertainty  measurements on low confidence predicted samples,  a pseudo-labelization technique to boost active  learning  by  reducing  the  number  of  human  interactions  and  knowledge transferring  form  pre-trained  models,  are  proposed  and  combined  into  our methodology.  The experimental results on two benchmark image classification data-sets  verify  the  effectiveness  of  the  proposed  methodology.    In  addition, a  new  pool-based  active  learning  query  strategy  is  proposed.     Dealing  with retraining-based algorithms we define a ”forgetting event” to have occurred when an  individual  training  example  transitions  the  maximum  predicted  probability class over the course of retraining. We integrated the new approach with the semi- supervised learning method in order to tackle the above challenges and observedgood performance against existing methods. / En  högkvalitativ  och  storskalig  träningsdataset  är  en  viktig  garanti  för  att  bli en  idealisk  klassificerare  för  bildklassificering.     Att  manuellt  konstruera  en träningsdatasats  med  lämpliga  etiketter  är  en  dyr  och  tidskrävande  uppgift. Aktiv  inlärningstekniker  har  använts  för  att  förbättra  de  befintliga  modellerna genom att minska antalet nödvändiga annoteringar. Det nuvarande arbetet syftar till  att  undersöka  sättet  att  bygga  en  modell  för  att  identifiera  och  använda potentiella informativa och representativa omärkta prover.   För detta ändamål föreslås, genomförs och genomförs två metoder för djup bildklassificering med aktivt  lärande  utvärderas.      De  två  versionerna  av  aktivt  lärande  för  djup bildklassificering  skiljer  sig  åt  i  undersökningen  av  ingångsutrymmet  för  att undersöka hur klassificeringsprestanda varierar när automatisk märkning på de omärkta  proverna  med  hög  konfidens  utförs.   Aktiv  lärande  heuristik  baserad på  osäkerhetsmätningar  på  förutsagda  prover  med  låg  konfidens,  en  pseudo- märkningsteknik för att öka aktivt lärande genom att minska antalet mänskliga interaktioner  och  kunskapsöverföring  av  förutbildade  modeller,  föreslås  och kombineras   i   vår   metod.      Experimentella   resultat   på   två   riktmärken   för bildklassificering datauppsättningar verifierar effektiviteten hos den föreslagna metodiken.   Dessutom föreslås en ny poolbaserad aktiv inlärningsfrågestrategi. När  vi  använder  omskolningsbaserade  algoritmer  definierar  vi  en  ”glömmer händelse” som skulle ha inträffat när ett individuellt träningsexempel överskrider den maximala förutsagda sannolikhetsklassen under omskolningsprocessen.  Vi integrerade den nya metoden med den semi-övervakad inlärning för att hanteraovanstående utmaningar och observeras bra prestanda mot befintliga metoder.
30

Analyzing Radial Basis Function Neural Networks for predicting anomalies in Intrusion Detection Systems / Utvärdera prestanda av radiella basfunktionsnätverk för intrångsdetekteringssystem

Kamat, Sai Shyamsunder January 2019 (has links)
In the 21st century, information is the new currency. With the omnipresence of devices connected to the internet, humanity can instantly avail any information. However, there are certain are cybercrime groups which steal the information. An Intrusion Detection System (IDS) monitors a network for suspicious activities and alerts its owner about an undesired intrusion. These commercial IDS’es react after detecting intrusion attempts. With the cyber attacks becoming increasingly complex, it is expensive to wait for the attacks to happen and respond later. It is crucial for network owners to employ IDS’es that preemptively differentiate a harmless data request from a malicious one. Machine Learning (ML) can solve this problem by recognizing patterns in internet traffic to predict the behaviour of network users. This project studies how effectively Radial Basis Function Neural Network (RBFN) with Deep Learning Architecture can impact intrusion detection. On the basis of the existing framework, it asks how well can an RBFN predict malicious intrusive attempts, especially when compared to contemporary detection practices.Here, an RBFN is a multi-layered neural network model that uses a radial basis function to transform input traffic data. Once transformed, it is possible to separate the various traffic data points using a single straight line in extradimensional space. The outcome of the project indicates that the proposed method is severely affected by limitations. E.g. the model needs to be fine tuned over several trials to achieve a desired accuracy. The results of the implementation show that RBFN is accurate at predicting various cyber attacks such as web attacks, infiltrations, brute force, SSH etc, and normal internet behaviour on an average 80% of the time. Other algorithms in identical testbed are more than 90% accurate. Despite the lower accuracy, RBFN model is more than 94% accurate at recording specific kinds of attacks such as Port Scans and BotNet malware. One possible solution is to restrict this model to predict only malware attacks and use different machine learning algorithm for other attacks. / I det 21: a århundradet är information den nya valutan. Med allnärvaro av enheter anslutna till internet har mänskligheten tillgång till information inom ett ögonblick. Det finns dock vissa grupper som använder metoder för att stjäla information för personlig vinst via internet. Ett intrångsdetekteringssystem (IDS) övervakar ett nätverk för misstänkta aktiviteter och varnar dess ägare om ett oönskat intrång skett. Kommersiella IDS reagerar efter detekteringen av ett intrångsförsök. Angreppen blir alltmer komplexa och det kan vara dyrt att vänta på att attackerna ska ske för att reagera senare. Det är avgörande för nätverksägare att använda IDS:er som på ett förebyggande sätt kan skilja på oskadlig dataanvändning från skadlig. Maskininlärning kan lösa detta problem. Den kan analysera all befintliga data om internettrafik, känna igen mönster och förutse användarnas beteende. Detta projekt syftar till att studera hur effektivt Radial Basis Function Neural Networks (RBFN) med Djupinlärnings arkitektur kan påverka intrångsdetektering. Från detta perspektiv ställs frågan hur väl en RBFN kan förutsäga skadliga intrångsförsök, särskilt i jämförelse med befintliga detektionsmetoder.Här är RBFN definierad som en flera-lagers neuralt nätverksmodell som använder en radiell grundfunktion för att omvandla data till linjärt separerbar. Efter en undersökning av modern litteratur och lokalisering av ett namngivet dataset användes kvantitativ forskningsmetodik med prestanda indikatorer för att utvärdera RBFN: s prestanda. En Random Forest Classifier algorithm användes också för jämförelse. Resultaten erhölls efter en serie finjusteringar av parametrar på modellerna. Resultaten visar att RBFN är korrekt när den förutsäger avvikande internetbeteende i genomsnitt 80% av tiden. Andra algoritmer i litteraturen beskrivs som mer än 90% korrekta. Den föreslagna RBFN-modellen är emellertid mycket exakt när man registrerar specifika typer av attacker som Port Scans och BotNet malware. Resultatet av projektet visar att den föreslagna metoden är allvarligt påverkad av begränsningar. T.ex. så behöver modellen finjusteras över flera försök för att uppnå önskad noggrannhet. En möjlig lösning är att begränsa denna modell till att endast förutsäga malware-attacker och använda andra maskininlärnings-algoritmer för andra attacker.

Page generated in 0.0407 seconds