• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 44
  • 7
  • 4
  • 1
  • 1
  • Tagged with
  • 57
  • 57
  • 31
  • 25
  • 23
  • 20
  • 16
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

沈從文小說死亡審美研究 = Study on death aesthetics of Shen Cong-wen's novels / Study on death aesthetics of Shen Cong-wen's novels

吳笑瑩 January 2011 (has links)
University of Macau / Faculty of Social Sciences and Humanities / Department of Chinese
52

長壽風險對保單責任準備金之影響-以增額型終身壽險為例 / The effect of longevity risk on reserves – based on increasing whole life insurance

陳志岳 Unknown Date (has links)
近年隨著油價、物價上漲所導致的通貨膨脹風險,壽險業者以增額型終身壽險來吸引潛在消費者。另外,由於醫療技術的進步,使得死亡率逐年改善,因此將造成保單在設計時可能將遭受到長壽風險的影響。本篇文章的主要目的即探討長壽風險對於保單責任準備金的影響,並以增額型終身壽險作為本文主要分析標的。首先建構死亡率模型(Lee-Carter模型),用來配適並模擬死亡率,接著探討增額型終身壽險在各保單年度下之現金流量以及責任準備金的提存,進一步再引進不同的死亡率來探討其現金流量分佈情形與責任準備金之提存。本文研究結果發現,在保險公司未採用遞迴方式計算保費時,當繳費期間愈短、複利利率愈高以及投保年齡愈低時,保險公司所面臨之長壽風險愈大,其後在帶入各種不同死亡率模型,發現死亡改善率愈高,保險公司所面臨之長壽風險愈大,而保險公司在提存責任準備金時,並未考慮到死亡改善率的部分,此對保險公司的財務健全將造成隱憂,本文於此部分建議監理機關透過法規(RBC)的制訂,調整準備金提存的係數,以降低長壽風險對保險公司財務之衝擊。 關鍵字:長壽風險、死亡率模型、增額型終身壽險、保單責任準備金、增額準備金、Lee-Carter Model以及RBC制度。 / With the improvement of medical technology, the life expectancy around the world is increasing year by year during the past decade. Therefore, the increasing whole life insurance policy is popular during these years because its benefits are escalating with time and policyholders think they could gain more benefits when they live longer. Like annuity policies, the increasing whole life insurance could also suffer from the longevity risk, which may have enormous impact on the financial statements of insurers. The purpose of this paper is to discuss the impact of longevity risk on reserves, based on increasing whole life insurance policy. First, we construct Lee-Carter model to fit and simulate mortality rate and assume different mortality improvements from the 2002 Taiwan Standard Ordinary Experience Mortality Table (2002TSO) for further comparisons. And then, we construct a simple model to analyze the cash flows of the increasing whole life policies based on the mortality rates we observed. By constructing a simple model and simulation, we find that if the insurance company does not correctly estimate longevity risk, the insurance company will lose money on the increasing whole life policies. In order to mitigate the insufficiency of life insurers for the increasing whole life policies, we try to provide some supervision suggestion from the view of the risk-based capital (RBC) requirements. We calculate the factor of insurance risk (C2) of RBC requirements because this factor represents the surplus needed to provide for excess claims over expected, both from random fluctuations and from inaccurate pricing for future levels of claims. Keywords: longevity risk, increasing whole life insurance policy, Lee-Carter model, risk-based capital (RBC).
53

保險公司因應死亡率風險之避險策略 / Hedging strategy against mortality risk for insurance company

莊晉國, Chuang, Chin Kuo Unknown Date (has links)
本篇論文主要討論在死亡率改善不確定性之下的避險策略。當保險公司負債面的人壽保單是比年金商品來得多的時候,公司會處於死亡率的風險之下。我們假設死亡率和利率都是隨機的情況,部分的死亡率風險可以經由自然避險而消除,而剩下的死亡率風險和利率風險則由零息債券和保單貼現商品來達到最適避險效果。我們考慮mean variance、VaR和CTE當成目標函數時的避險策略,其中在mean variance的最適避險策略可以導出公式解。由數值結果我們可以得知保單貼現的確是死亡率風險的有效避險工具。 / This paper proposes hedging strategies to deal with the uncertainty of mortality improvement. When insurance company has more life insurance contracts than annuities in the liability, it will be under the exposure of mortality risk. We assume both mortality and interest rate risk are stochastic. Part of mortality risk is eliminated by natural hedging and the remaining mortality risk and interest rate risk will be optimally hedged by zero coupon bond and life settlement contract. We consider the hedging strategies with objective functions of mean variance, value at risk and conditional tail expectation. The closed-form optimal hedging formula for mean variance assumption is derived, and the numerical result show the life settlement is indeed a effective hedging instrument against mortality risk.
54

厚尾分配在財務與精算領域之應用 / Applications of Heavy-Tailed distributions in finance and actuarial science

劉議謙, Liu, I Chien Unknown Date (has links)
本篇論文將厚尾分配(Heavy-Tailed Distribution)應用在財務及保險精算上。本研究主要有三個部分:第一部份是用厚尾分配來重新建構Lee-Carter模型(1992),發現改良後的Lee-Carter模型其配適與預測效果都較準確。第二部分是將厚尾分配建構於具有世代因子(Cohort Factor)的Renshaw and Haberman模型(2006)中,其配適及預測效果皆有顯著改善,此外,針對英格蘭及威爾斯(England and Wales)訂價長壽交換(Longevity Swaps),結果顯示此模型可以支付較少的長壽交換之保費以及避免低估損失準備金。第三部分是財務上的應用,利用Schmidt等人(2006)提出的多元仿射廣義雙曲線分配(Multivariate Affine Generalized Hyperbolic Distributions; MAGH)於Boyle等人(2003)提出的低偏差網狀法(Low Discrepancy Mesh; LDM)來定價多維度的百慕達選擇權。理論上,LDM法的數值會高於Longstaff and Schwartz(2001)提出的最小平方法(Least Square Method; LSM)的數值,而數值分析結果皆一致顯示此性質,藉由此特性,我們可知道多維度之百慕達選擇權的真值落於此範圍之間。 / The thesis focus on the application of heavy-tailed distributions in finance and actuarial science. We provide three applications in this thesis. The first application is that we refine the Lee-Carter model (1992) with heavy-tailed distributions. The results show that the Lee-Carter model with heavy-tailed distributions provide better fitting and prediction. The second application is that we also model the error term of Renshaw and Haberman model (2006) using heavy-tailed distributions and provide an iterative fitting algorithm to generate maximum likelihood estimates under the Cox regression model. Using the RH model with non-Gaussian innovations can pay lower premiums of longevity swaps and avoid the underestimation of loss reserves for England and Wales. The third application is that we use multivariate affine generalized hyperbolic (MAGH) distributions introduced by Schmidt et al. (2006) and low discrepancy mesh (LDM) method introduced by Boyle et al. (2003), to show how to price multidimensional Bermudan derivatives. In addition, the LDM estimates are higher than the corresponding estimates from the Least Square Method (LSM) of Longstaff and Schwartz (2001). This is consistent with the property that the LDM estimate is high bias while the LSM estimate is low bias. This property also ensures that the true option value will lie between these two bounds.
55

中國戶籍制度改革背景下的積分制研究 :以深圳市農民工積分制入戶政策為例

康小惠 January 2018 (has links)
University of Macau / Faculty of Social Sciences. / Department of Government and Public Administration
56

壽險公司責任準備金涉險值之估計 / The Estimation of Value at Risk for the Reserve of Life/Health Insurance Company

詹志清, Chihching Chan Unknown Date (has links)
中文摘要 在本文中,我們依據模擬的風險因子變動,包括死亡率風險,利率風險,解約率風險以及模型的參數風險,來估計第一個保單年度的期末責任準備金之涉險值 (Value at Risk)。本文中,雖僅計算生死合險保單的準備金之涉險值,但是本文所提供的方法以及計算過程可以很容易的應用到其它險種,甚至配合資產面的考量來計算保險公司盈餘(Surplus)的涉險值,進而作為清償能力的監測系統。 本文的特點包括下列幾項:第一,本文提供了一個不同於傳統短期間(Short Horizon)的涉險值計算方式,來估計壽險商品的保單責任準備金(Policy Reserve)的涉險值。第二,本文利用生命表來估計死亡率風險所造成的涉險值。第三,我們利用隨機利率模型來捕捉隨機利率對於責任準備金涉險值的影響。第四,我們考慮解約率對於責任準備金涉險值的影響,值得注意的是,在我們的解約率模型中,引入的利率對於解約率的影響。第五,本文亦考慮風險因子模型當中的參數風險對於涉險值的影響。最後,我們利用無母數方法計算出涉險值的信賴區間,而信賴區間的估計在模擬過程當中尤其重要,因為它可以用來決定模擬次數的多寡。 本文包含六節:第一節為導論。第二節為計算死亡率風險的責任準備金涉險值。第三節是計算加上利率風險後責任準備金涉險值的變化。第四節則為加上解約率後對涉險值的影響。第五節為計算涉險值的信賴區間。第六節是我們的結論以及後續研究的方向探討。 本文包含六節:第一節為導論。第二節為計算死亡率風險的責任準備金涉險值。第三節是計算加上利率風險後責任準備金涉險值的變化。第四節則為加上解約率後對涉險值的影響。第五節為計算涉險值的信賴區間。第六節是我們的結論以及後續研究的方向探討。 / ABSTRACT In this paper, we estimate the VAR of life insurer's terminal reserve of the first policy year by the simulated risk factors, including mortality risk, interest rate risk, lapse rate risk, and estimation risks, of future twenty years. We found that the difference between the VAR under the mortality risk and the interest rate risk is very large because interest rate is a stochastic process but not mortality rate. Thus, the dispersion of interest rate is more then mortality rate. In addition, the VAR will reduce a lot after adding the impact of lapses because the duration of the reserve reduced. If we neglect the impact of lapses to VAR, we will overestimate the VAR significantly. The features of this paper are as follows. First, we provide an approach to measure the VAR of a life insurer's reserve, and it is rather different from traditional VAR with short horizons. Second, we use mortality table to estimate the VAR of a life insurer's reserve. Third, we use stochastic interest rate model to capture the effect of random interest rate to the VAR of a life insurer's reserve. Fourth, we relate the future cash outflows to interest rate and produce a reasonable estimator of VAR. Fifth, we consider the effect of estimation errors to the VAR of a life insurer's reserve. Last, we calculate the confidence interval of the VAR estimates of the policy reserves. This paper consists of six sections. The first section is an introduction. In the second section, we present the method used to estimate the variance of the mortality rate and then estimate the VAR of reserves from these variances. In the third section, we explore how to use stochastic interest rate model to estimate the reserve's VAR and the VAR associated with the parameter risk of the interest rate model. In the fourth section, we analyze the contribution of the lapse rate risk and the parameter risk of the lapse rate model to the reserve's VAR. We also analyze the relative significance of the interest rate risk, the lapse rate risk, and the mortality rate risk in terms of their marginal contributions to the VAR of an insurer's reserves in this section. In the fifth section, we calculate the confidence intervals of the VAR estimates discussed in the previous sections. The last section is the conclusion section containing our conclusions and discussions about potential future researches.
57

家事事件中訴訟及非訟法理之適用 / The Application of Civil Procedure and Non-Contentious Procedure in Taiwan Family Act.

白承育 Unknown Date (has links)
我國家事事件法於2012年6月1日施行,新法基於家事事件妥適、迅速解決,與統合處理並促進程序經濟,以平衡家事事件當事人間實體利益與程序利益等目的,將向來適用關於家事事件所適用之法律,包括民事訴訟法、非訟事件法等法律,統合於一部法典,並將家事事件依各該事件之訟爭性強弱程度、當事人或利害關係人對程序標的所享有之處分權限範圍、需求法院職權裁量以迅速裁判程度之不同等要素區分為甲、乙、丙、丁、戊及家事事件法第3條第6項之其他應由家事法院處理之事件等六種事件類型,惟該事件類型區分之方式並無法妥適說明其與家事事件法、民事訴訟法等程序法間適用之關係,且亦無法適切回應各該家事事件所依據之民法親屬編及繼承編中,關於立法者已就實體法規範所設立之價值判斷。   本文自訴訟程序及非訟程序、訴訟事件及非訟事件間之異同及區別論,認為事件分類與各該事件應如何適用程序法理係屬二事,尤於家事事件所牽涉者係實體法與程序法、財產法與身分法交錯適用之領域,基於家事事件之特殊性與複雜性,更應有依各該不同事件類型而有適用不同程序法理之可能,始足以回應關於實體法上之價值判斷,故應放棄向來訴訟與非訟事件之區分概念,而應依各該家事事件之本質(實體法價值)量身打造其所應適用之程序法理(程序法規範)。藉由探討向來架構程序法理之重要原則,如處分權主義與職權主義、辯論主義與職權探知主義、嚴格證明與自由證明、直接審理與間接審理及公開審理與不公開審理等,此類程序原則如何在各該家事事件中妥適適用,且基於實體法觀察之立場,各該程序原則亦應有其適用之界限,而與向來以財產紛爭為對象所建構之民事訴訟程序法理應有所不同。   因現行家事事件法分類結果,將使實體法與程序法規範間有所扞格,且導致程序法理適用上之疑義,是以本文以為於家事事件應類型化程序法理適用,依各該家事事件之種類,先回歸各該事件實體法規範之體系與價值為何,再思考程序法理上應如何設計,始足以妥適回應各該家事事件之實體法上價值判斷。而基於類型化程序法理適用肯定論之前提下,本文以為,關於家事事件應如何適用程序法理,應各別自各該家事事件之實體法依據尋求其解釋適用之依據,亦即,基於家事事件之特殊性,各該事件程序應適用之程序法理尚未能均一而論,而自各該事件所適用之原則,大別可區分為應適用訴訟法理事件、應原則適用訴訟法理輔以非訟法理事件、應原則適用非訟法理輔以訴訟法理事件及應適用非訟法理事件等類型,而本文於第五章中亦就各家事事件應如何適用程序法理,亦按照各該事件類型名稱加以分類,並分別詳論各該家事事件應如何適用處分權主義或職權主義、辯論主義或職權探知主義、嚴格證明或自由證明、直接審理或間接審理及是否採取公開審理主義。

Page generated in 0.0151 seconds