81 |
Variabilitätsmodellierung in Kartographierungs- und Lokalisierungsverfahren / Variability Modelling in Localization and Mapping AlgorithmsWerner, Sebastian 24 July 2015 (has links) (PDF)
In der heutigen Zeit spielt die Automatisierung eine immer bedeutendere Rolle, speziell im Bereich
der Robotik entwickeln sich immer neue Einsatzgebiete, in denen der Mensch durch autonome Fahrzeuge ersetzt wird. Dabei orientiert sich der Großteil der eingesetzten Roboter an Streckenmarkierungen, die in den Einsatzumgebungen installiert sind. Bei diesen Systemen gibt es jedoch einen hohen Installationsaufwand, was die Entwicklung von Robotersystemen, die sich mithilfe ihrer verbauten Sensorik orientieren, vorantreibt. Es existiert zwar eine Vielzahl an Robotern die dafür verwendet werden können. Die Entwicklung der Steuerungssoftware ist aber immer noch Teil der Forschung.
Für die Steuerung wird eine Umgebungskarte benötigt, an der sich der Roboter orientieren kann. Hierfür eignen sich besonders SLAM-Verfahren, die simultanes Lokalisieren und Kartographieren durchführen. Dabei baut der Roboter während seiner Bewegung durch den Raum mithilfe seiner Sensordaten eine Umgebungskarte auf und lokalisiert sich daran, um seine Position auf der Karte exakt zu bestimmen.
Im Laufe dieser Arbeit wurden über 30 verschiedene SLAM Implementierungen bzw. Umsetzungen gefunden die das SLAM Problem lösen. Diese sind jedoch größtenteils an spezielle Systembzw. Umgebungsvoraussetzungen angepasste eigenständige Implementierungen.
Es existiert keine öffentlich zugängliche Übersicht, die einen Vergleich aller bzw. des Großteils der Verfahren, z.B. in Bezug auf ihre Funktionsweise, Systemvoraussetzungen (Sensorik, Roboterplattform), Umgebungsvoraussetzungen (Indoor, Outdoor, ...), Genauigkeit oder Geschwindigkeit, gibt. Viele dieser SLAMs besitzen Implementierungen und Dokumentationen in denen ihre Einsatzgebiete, Testvoraussetzungen oder Weiterentwicklungen im Vergleich zu anderen SLAMVerfahren beschrieben werden, was aber bei der großen Anzahl an Veröffentlichungen das Finden eines passenden SLAM-Verfahrens nicht erleichtert.
Bei einer solchen Menge an SLAM-Verfahren und Implementierungen stellen sich aus softwaretechnologischer Sicht folgende Fragen:
1. Besteht die Möglichkeit einzelne Teile des SLAM wiederzuverwenden?
2. Besteht die Möglichkeit einzelne Teile des SLAM dynamisch auszutauschen?
Mit dieser Arbeit wird das Ziel verfolgt, diese beiden Fragen zu beantworten. Hierfür wird zu Beginn eine Übersicht über alle gefundenen SLAMs aufgebaut um diese in ihren grundlegenden Eigenschaften zu unterscheiden. Aus der Vielzahl von Verfahren werden die rasterbasierten Verfahren, welche Laserscanner bzw. Tiefenbildkamera als Sensorik verwenden, als zu untersuchende Menge ausgewählt. Diese Teilmenge an SLAM-Verfahren wird hinsichtlich ihrer nichtfunktionalen Eigenschaften genauer untersucht und versucht in Komponenten zu unterteilen, welche in mehreren verschiedenen Implementierungen wiederverwendet werden können. Anhand der extrahierten Komponenten soll ein Featurebaum aufgebaut werden, der dem Anwender einen Überblick und die Möglichkeit bereitstellt SLAM-Verfahren nach speziellen Kriterien (Systemvoraussetzungen, Umgebungen, ...) zusammenzusetzen bzw. zur Laufzeit anzupassen. Dafür müssen die verfügbaren SLAM Implementierungen und dazugehörigen Dokumentationen in Bezug auf ihre Gemeinsamkeiten und Unterschiede analysiert werden.
|
82 |
Untersuchungen zum Sekundärmetabolismus mariner Pilze, Naturstoffscreening und Bioprozessoptimierung mit Hilfe eines kontinuierlichen Bioreaktors / Investigations of secondary metabolism of marine fungi, screening of natural products and optimisation of biological processes via continuous bioreactorsGrzeganek, Peter 03 July 2003 (has links)
No description available.
|
83 |
Approaches for the optimisation of double sampling for stratification in repeated forest inventoriesvon Lüpke, Nikolas 26 March 2013 (has links)
Die zweiphasige Stichprobe zur Stratifizierung ist ein effizientes Inventurverfahren, das seine Praxistauglichkeit in verschiedenen Waldinventuren unter Beweis stellen konnte. Dennoch sind weitere Effizienzsteigerungen wünschenswert. In der vorliegenden Arbeit werden verschiedene Ansätze die Effektivität dieses Verfahrens zu steigern separat vorgestellt, in Fallstudien mit Daten der Niedersächsischen Betriebsinventur getestet und diskutiert.
Der erste Ansatz (Kapitel 2) beschäftigt sich mit der Anwendung der zweiphasigen Stichprobe zur Stratifizierung in Wiederholungsinventuren. In einem Zusammengesetzten Schätzer werden Daten eines aktuellen mit Simulationsergebnissen des vorhergehenden Inventurdurchgangs kombiniert. Dabei kann der Stichprobenumfang der aktuellen Inventur verringert werden, während die Daten aller Inventurpunkte des vorherigen Durchgangs für Simulationen genutzt werden. Zwar kann ein solcher Schätzer konstruiert werden, jedoch lässt die Fallstudie darauf schließen, dass keine, oder zumindest keine ausreichende, Effizienzsteigerung erzielt werden kann. Erklärt werden kann dies durch die großen Unterschiede zwischen den aktuellen Inventurergebnissen aus den reduzierten Inventuren und den prognostizierten Volumina aus den Simulationen. Eine Erhöhung der Effizienz dieses Verfahrens könnte nur durch Weiterentwicklungen der Waldwachstumsmodelle möglich werden.
In Wiederholungsinventuren kann jedoch eine höhere Effizienzsteigerung mit einem dreiphasigen Verfahren erreicht werden, das die zweiphasige Stichprobe mit der zwei\-phasigen Regressionsstichprobe kombiniert (Kapitel 3). Mittelwert- und Varianzschätzer, die auf dem sogenannten infinite population approach in der ersten Phase beruhen, werden präsentiert. Genutzt werden dabei die Korrelationen zwischen den aktuellen Inventurergebnissen und den Wachstumssimulationen auf der Basis des vorherigen Inventurdurchgangs. Statt der Simulationsergebnisse können auch einfach die Ergebnisse des vorherigen Inventurdurchgangs zur Berechnung der Korrelationen genutzt werden. Allerdings führt die Nutzung der Simulationsergebnisse als Regressor in den meisten Fällen zu besseren Ergebnissen. Bei verringertem Stichprobenumfang der Folgeinventur und damit einhergehendem Präzisionsverlust, ist die Effizienz des dreiphasigen Verfahrens höher als die des klassischen zweiphasigen Verfahrens. Die Nutzung der Vorinventur in Form eines stratenweisen Regressionsschätzers hat sich damit als erfolgreich und gegenüber dem zusammengesetzten Schätzer als deutlich überlegen gezeigt.
Als weiterer Ansatz wird die Erweiterung der zweisphasigen Stichprobe zur Stratifizierung um eine geclusterte Unterstichprobe zu einem dreiphasigen Design vorgestellt (Kapitel 4). Sowohl für den Ratio-to-Size- als auch für den unverzerrten Ansatz werden entsprechende Mittelwert- und Varianzschätzer präsentiert. Verglichen mit dem zweiphasigen Verfahren, führt dieses dreiphasige Design in der Fallstudie zu keiner Effizienzsteigerung. Gründe hierfür können in der vergleichsweise kleinen Größe der Forstämter und der hohen Stichprobendichte der Niedersächsischen Betriebsinventur gesehen werden. Sinnvolle Anwendungen dieses Verfahrens sind aber möglicherweise unter anderen Erschließungsbedingungen in Großgebieten denkbar.
In einer weiteren Fallstudie wird versucht existierende Probepunkte in Clustern von homogener Größe zusammenzufassen (Kapitel 5). Eine solche Zusammenfassung soll der Optimierung der Wegzeiten bei der Aufnahme von Inventurpunkten dienen. Dazu werden sieben verschiedene Methoden getestet und deren Ergebnisse miteinander verglichen. Durch einen Vergleich mit optimierten Richtwert-Lösungen wird zudem die Qualität dieser Lösungen evaluiert. Es zeigt sich, dass drei Algorithmen des Vehicle Routing Problems gut dazu geeignet sind, Cluster von homogener Größe zu erstellen. Nicht empfohlen werden kann dagegen die Verwendung von drei anderen Cluster-Algorithmen, sowie die Nutzung von Bewirtschaftungseinheiten als Cluster, da diese Methoden zu Clustern von sehr heterogener Größe führen.
|
84 |
Feedback-Driven Data ClusteringHahmann, Martin 28 February 2014 (has links) (PDF)
The acquisition of data and its analysis has become a common yet critical task in many areas of modern economy and research. Unfortunately, the ever-increasing scale of datasets has long outgrown the capacities and abilities humans can muster to extract information from them and gain new knowledge. For this reason, research areas like data mining and knowledge discovery steadily gain importance. The algorithms they provide for the extraction of knowledge are mandatory prerequisites that enable people to analyze large amounts of information. Among the approaches offered by these areas, clustering is one of the most fundamental. By finding groups of similar objects inside the data, it aims to identify meaningful structures that constitute new knowledge. Clustering results are also often used as input for other analysis techniques like classification or forecasting.
As clustering extracts new and unknown knowledge, it obviously has no access to any form of ground truth. For this reason, clustering results have a hypothetical character and must be interpreted with respect to the application domain. This makes clustering very challenging and leads to an extensive and diverse landscape of available algorithms. Most of these are expert tools that are tailored to a single narrowly defined application scenario. Over the years, this specialization has become a major trend that arose to counter the inherent uncertainty of clustering by including as much domain specifics as possible into algorithms. While customized methods often improve result quality, they become more and more complicated to handle and lose versatility. This creates a dilemma especially for amateur users whose numbers are increasing as clustering is applied in more and more domains. While an abundance of tools is offered, guidance is severely lacking and users are left alone with critical tasks like algorithm selection, parameter configuration and the interpretation and adjustment of results.
This thesis aims to solve this dilemma by structuring and integrating the necessary steps of clustering into a guided and feedback-driven process. In doing so, users are provided with a default modus operandi for the application of clustering. Two main components constitute the core of said process: the algorithm management and the visual-interactive interface. Algorithm management handles all aspects of actual clustering creation and the involved methods. It employs a modular approach for algorithm description that allows users to understand, design, and compare clustering techniques with the help of building blocks. In addition, algorithm management offers facilities for the integration of multiple clusterings of the same dataset into an improved solution. New approaches based on ensemble clustering not only allow the utilization of different clustering techniques, but also ease their application by acting as an abstraction layer that unifies individual parameters. Finally, this component provides a multi-level interface that structures all available control options and provides the docking points for user interaction.
The visual-interactive interface supports users during result interpretation and adjustment. For this, the defining characteristics of a clustering are communicated via a hybrid visualization. In contrast to traditional data-driven visualizations that tend to become overloaded and unusable with increasing volume/dimensionality of data, this novel approach communicates the abstract aspects of cluster composition and relations between clusters. This aspect orientation allows the use of easy-to-understand visual components and makes the visualization immune to scale related effects of the underlying data. This visual communication is attuned to a compact and universally valid set of high-level feedback that allows the modification of clustering results. Instead of technical parameters that indirectly cause changes in the whole clustering by influencing its creation process, users can employ simple commands like merge or split to directly adjust clusters.
The orchestrated cooperation of these two main components creates a modus operandi, in which clusterings are no longer created and disposed as a whole until a satisfying result is obtained. Instead, users apply the feedback-driven process to iteratively refine an initial solution. Performance and usability of the proposed approach were evaluated with a user study. Its results show that the feedback-driven process enabled amateur users to easily create satisfying clustering results even from different and not optimal starting situations.
|
85 |
An Evolutionary Approach to Adaptive Image Analysis for Retrieving and Long-term Monitoring Historical Land Use from Spatiotemporally Heterogeneous Map SourcesHerold, Hendrik 31 March 2016 (has links) (PDF)
Land use changes have become a major contributor to the anthropogenic global change. The ongoing dispersion and concentration of the human species, being at their orders unprecedented, have indisputably altered Earth’s surface and atmosphere. The effects are so salient and irreversible that a new geological epoch, following the interglacial Holocene, has been announced: the Anthropocene. While its onset is by some scholars dated back to the Neolithic revolution, it is commonly referred to the late 18th century. The rapid development since the industrial revolution and its implications gave rise to an increasing awareness of the extensive anthropogenic land change and led to an urgent need for sustainable strategies for land use and land management. By preserving of landscape and settlement patterns at discrete points in time, archival geospatial data sources such as remote sensing imagery and historical geotopographic maps, in particular, could give evidence of the dynamic land use change during this crucial period.
In this context, this thesis set out to explore the potentials of retrospective geoinformation for monitoring, communicating, modeling and eventually understanding the complex and gradually evolving processes of land cover and land use change. Currently, large amounts of geospatial data sources such as archival maps are being worldwide made online accessible by libraries and national mapping agencies. Despite their abundance and relevance, the usage of historical land use and land cover information in research is still often hindered by the laborious visual interpretation, limiting the temporal and spatial coverage of studies. Thus, the core of the thesis is dedicated to the computational acquisition of geoinformation from archival map sources by means of digital image analysis. Based on a comprehensive review of literature as well as the data and proposed algorithms, two major challenges for long-term retrospective information acquisition and change detection were identified: first, the diversity of geographical entity representations over space and time, and second, the uncertainty inherent to both the data source itself and its utilization for land change detection.
To address the former challenge, image segmentation is considered a global non-linear optimization problem. The segmentation methods and parameters are adjusted using a metaheuristic, evolutionary approach. For preserving adaptability in high level image analysis, a hybrid model- and data-driven strategy, combining a knowledge-based and a neural net classifier, is recommended. To address the second challenge, a probabilistic object- and field-based change detection approach for modeling the positional, thematic, and temporal uncertainty adherent to both data and processing, is developed. Experimental results indicate the suitability of the methodology in support of land change monitoring. In conclusion, potentials of application and directions for further research are given.
|
86 |
Ein Beitrag zur Nutzbarmachung Genetischer Algorithmen für die optimale Steuerung und Planung eines flexiblen StadtschnellbahnbetriebesAlbrecht, Thomas 04 May 2005 (has links)
The work deals with two problems of mass rapid transit system operation: The development of flexible timetables and the realisation of flexible timetables. In both cases, genetic algorithms are used. In the process of (flexible) timetabling in suburban railways, a transport offer perfectly adapted to demand is searched for (temporal and spatial adaptation of demand as well as adaptation of capacity of the trains). After determination of the number of train runs per line and hour and their capacity, optimal departure times have to be found (with a precision of a minute down to 10 s), which fulfil criterias of the passengers (short waiting times) as well as of the operator (small number of vehicles needed). Two different codings for use with genetic algorithms have therefore been developed. They are tested on several case studies of the Dresden suburban railway network, assuming different degrees of flexibilisation. In the process of realising a flexible timetable, transitions between train headways as well as running time and dwell time reserves (margins in the order of a few seconds) are slightly modified in order to coordinate braking and accelerating trains and thereby reduce energy costs of a system of trains. Genetic algorithms can be applied for this problem as well, the proposed methods are tested on several case studies (S-Bahn Berlin, Metro Lille). / Die Arbeit behandelt zwei Probleme der Betriebsplanung von Stadtschnellbahnen: Die Erstellung flexibler Fahrpläne und die Umsetzung flexibler Fahrpläne. In beiden Fällen werden zur Lösung Genetische Algorithmen verwendet. Bei der Ermittlung flexibler Fahrpläne von S-Bahnen wird ein bestmöglich an die Verkehrsnachfrage angepasstes Verkehrsangebot gesucht (zeitlich, räumlich und bezüglich der Kapazität der einzelnen Züge angepasst). Nach stundenfeiner Festlegung der Fahrtenhäufigkeiten und Kapazitäten der einzelnen, sich überlagernden Linien werden deren Abfahrtszeiten gesucht (mit einer Genauigkeit von Minuten bis etwa 10 s), so dass sowohl die Wünsche der Fahrgäste nach gleichmäßigen Zugfolgezeiten als auch Betreiberwünsche (geringe Fahrzeuganzahl) erfüllt werden. Hierzu werden zwei verschiedene Kodierungen für die Verwendung mit Genetischen Algorithmen vorgestellt und das geschaffene Verfahren an verschiedenen Flexibilisierungsszenarien für die S-Bahn Dresden erprobt. Bei der Umsetzung flexibler Fahrpläne, die sich im Bereich weniger Sekunden abspielt, werden Übergänge zwischen Zugfolgezeiten, Fahr- und Haltezeitreserven geringfügig modifiziert, so dass durch bestmögliche Koordination von Anfahr- und Bremsvorgängen eines Systems von Zügen die Energiekosten minimal werden. Methodisch werden wiederum Genetische Algorithmen verwendet, die Erprobung des Verfahrens erfolgt anhand von Linien der S-Bahn Berlin und der Metro in Lille.
|
87 |
Approximate Distributed Set Reconciliation with Defined AccuracyKruber, Nico 24 April 2020 (has links)
Mit aktuell vorhandenen Mitteln ist es schwierig, objektiv approximative Algorithmen zum Mengenabgleich gegenüberzustellen und zu vergleichen. Jeder Algorithmus kann durch unterschiedliche Wahl seiner jeweiligen Parameter an ein gegebenes Szenario angepasst werden und so zum Beispiel Bandbreiten- oder CPU-optimiert werden. Änderungen an den Parametern gehen jedoch meistens auch mit Änderungen an der Genauigkeit bei der Erkennung von Differenzen in den teilnehmenden Mengen einher und behindern somit objektive Vergleiche, die auf derselben Genauigkeit basieren.
In dieser Arbeit wird eine Methodik entwickelt, die einen fairen Vergleich von approximativen Algorithmen zum Mengenabgleich erlaubt. Dabei wird eine feste Zielgenauigkeit definiert und im Weiteren alle die Genauigkeit beeinflussenden Parameter entsprechend gesetzt. Diese Methode ist universell genug, um für eine breite Masse an Algorithmen eingesetzt zu werden. In der Arbeit wird sie auf zwei triviale hashbasierte Algorithmen, einem basierend auf Bloom Filtern und einem basierend auf Merkle Trees angewandt, um dies zu untermauern. Im Vergleich zu vorherigen Arbeiten zu Merkle Trees wird vorgeschlagen, die Größe der Hashsummen dynamisch im Baum zu wählen und so den Bandbreitenbedarf an die gewünschte Zielgenauigkeit anzupassen. Dabei entsteht eine neue Variante des Mengenabgleichs mit Merkle Trees, bei der sich erstmalig die Genauigkeit konfigurieren lässt. Eine umfassende Evaluation eines jeden der vier unter dem Genauigkeitsmodell angepassten Algorithmen bestätigt die Anwendbarkeit der entwickelten Methodik und nimmt eine Neubewertung dieser Algorithmen vor.
Die vorliegenden Ergebnisse erlauben die Auswahl eines effizienten Algorithmus für unterschiedliche praktische Szenarien basierend auf einer gewünschten Zielgenauigkeit. Die präsentierte Methodik zur Bestimmung passender Parameter, um für unterschiedliche Algorithmen die gleiche Genauigkeit zu erreichen, kann auch auf weitere Algorithmen zum Mengenabgleich angewandt werden und erlaubt eine objektive, allgemeingültige Einordnung ihrer Leistung unter verschiedenen Metriken. Der in der Arbeit entstandene neue approximative Mengenabgleich mit Merkle Trees erweitert die Anwendbarkeit von Merkle Trees und wirft ein neues Licht auf dessen Effektivität. / The objective comparison of approximate versioned set reconciliation algorithms is challenging. Each algorithm's behaviour can be tuned for a given use case, e.g. low bandwidth or computational overhead, using different sets of parameters. Changes of these parameters, however, often also influence the algorithm's accuracy in recognising differences between participating sets and thus hinder objective comparisons based on the same level of accuracy.
We develop a method to fairly compare approximate set reconciliation algorithms by enforcing a fixed accuracy and deriving accuracy-influencing parameters accordingly. We show this method's universal applicability by adopting two trivial hash-based algorithms as well as set reconciliation with Bloom filters and Merkle trees. Compared to previous research on Merkle trees, we propose to use dynamic hash sizes to align the transfer overhead with the desired accuracy and create a new Merkle tree reconciliation algorithm with an adjustable accuracy target. An extensive evaluation of each algorithm under this accuracy model verifies its feasibility and ranks these four algorithms.
Our results allow to easily choose an efficient algorithm for practical set reconciliation tasks based on the required level of accuracy. Our way to find configuration parameters for different, yet equally accurate, algorithms can also be adopted to other set reconciliation algorithms and allows to rate their respective performance in an objective manner. The resultant new approximate Merkle tree reconciliation broadens the applicability of Merkle trees and sheds some new light on its effectiveness.
|
88 |
Profillinie 6: Modellierung, Simulation, Hochleistungsrechnen:Rehm, Wolfgang, Hofmann, Bernd, Meyer, Arnd, Steinhorst, Peter, Weinelt, Wilfried, Rünger, Gudula, Platzer, Bernd, Urbaneck, Thorsten, Lorenz, Mario, Thießen, Friedrich, Kroha, Petr, Benner, Peter, Radons, Günter, Seeger, Steffen, Auer, Alexander A., Schreiber, Michael, John, Klaus Dieter, Radehaus, Christian, Farschtschi, Abbas, Baumgartl, Robert, Mehlan, Torsten, Heinrich, Bernd 11 November 2005 (has links)
An der TU Chemnitz haben sich seit über zwei Jahrzehnten die Gebiete der rechnergestützten Wissenschaften (Computational Science) sowie des parallelen und verteilten Hochleistungsrechnens mit zunehmender Verzahnung entwickelt. Die Koordinierung und Bündelung entsprechender Forschungsarbeiten in der Profillinie 6 “Modellierung, Simulation, Hochleistungsrechnen” wird es ermöglichen, im internationalen Wettbewerb des Wissens mitzuhalten.
|
89 |
Simulation Optimisation: Approaches, Examples, and ExperiencesKöchel, Peter 22 April 2009 (has links)
Simulation based optimisation or simulation optimisation is an important field in stochastic optimisation. The present report introduces into that problem area. We distinguish between the non-recursive and recursive approaches of simulation optimisation. For the non-recursive approach we consider three methods, the retrospective, SPO-, and the RS-methods. With the help of a simple inventory problem we discuss the advantages and disadvantages of these methods. As a recursive method we consider in the second part of our report the coupling of simulation with Genetic Algorithms. As an application example we take a complex multi-location inventory model with lateral transshipments. From our experiences with such optimisation problems we finally formulate some principles, which may be relevant in simulation optimisation.
|
90 |
Feedback-Driven Data ClusteringHahmann, Martin 28 October 2013 (has links)
The acquisition of data and its analysis has become a common yet critical task in many areas of modern economy and research. Unfortunately, the ever-increasing scale of datasets has long outgrown the capacities and abilities humans can muster to extract information from them and gain new knowledge. For this reason, research areas like data mining and knowledge discovery steadily gain importance. The algorithms they provide for the extraction of knowledge are mandatory prerequisites that enable people to analyze large amounts of information. Among the approaches offered by these areas, clustering is one of the most fundamental. By finding groups of similar objects inside the data, it aims to identify meaningful structures that constitute new knowledge. Clustering results are also often used as input for other analysis techniques like classification or forecasting.
As clustering extracts new and unknown knowledge, it obviously has no access to any form of ground truth. For this reason, clustering results have a hypothetical character and must be interpreted with respect to the application domain. This makes clustering very challenging and leads to an extensive and diverse landscape of available algorithms. Most of these are expert tools that are tailored to a single narrowly defined application scenario. Over the years, this specialization has become a major trend that arose to counter the inherent uncertainty of clustering by including as much domain specifics as possible into algorithms. While customized methods often improve result quality, they become more and more complicated to handle and lose versatility. This creates a dilemma especially for amateur users whose numbers are increasing as clustering is applied in more and more domains. While an abundance of tools is offered, guidance is severely lacking and users are left alone with critical tasks like algorithm selection, parameter configuration and the interpretation and adjustment of results.
This thesis aims to solve this dilemma by structuring and integrating the necessary steps of clustering into a guided and feedback-driven process. In doing so, users are provided with a default modus operandi for the application of clustering. Two main components constitute the core of said process: the algorithm management and the visual-interactive interface. Algorithm management handles all aspects of actual clustering creation and the involved methods. It employs a modular approach for algorithm description that allows users to understand, design, and compare clustering techniques with the help of building blocks. In addition, algorithm management offers facilities for the integration of multiple clusterings of the same dataset into an improved solution. New approaches based on ensemble clustering not only allow the utilization of different clustering techniques, but also ease their application by acting as an abstraction layer that unifies individual parameters. Finally, this component provides a multi-level interface that structures all available control options and provides the docking points for user interaction.
The visual-interactive interface supports users during result interpretation and adjustment. For this, the defining characteristics of a clustering are communicated via a hybrid visualization. In contrast to traditional data-driven visualizations that tend to become overloaded and unusable with increasing volume/dimensionality of data, this novel approach communicates the abstract aspects of cluster composition and relations between clusters. This aspect orientation allows the use of easy-to-understand visual components and makes the visualization immune to scale related effects of the underlying data. This visual communication is attuned to a compact and universally valid set of high-level feedback that allows the modification of clustering results. Instead of technical parameters that indirectly cause changes in the whole clustering by influencing its creation process, users can employ simple commands like merge or split to directly adjust clusters.
The orchestrated cooperation of these two main components creates a modus operandi, in which clusterings are no longer created and disposed as a whole until a satisfying result is obtained. Instead, users apply the feedback-driven process to iteratively refine an initial solution. Performance and usability of the proposed approach were evaluated with a user study. Its results show that the feedback-driven process enabled amateur users to easily create satisfying clustering results even from different and not optimal starting situations.
|
Page generated in 0.0495 seconds