• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 182
  • 158
  • 44
  • 18
  • 18
  • 10
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 524
  • 183
  • 183
  • 65
  • 49
  • 46
  • 43
  • 40
  • 40
  • 39
  • 36
  • 36
  • 35
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

A Role for Calcium-Activated Adenylate Cyclase and Protein Kinase A in the Lens Src Family Kinase and Na,K-ATPase Response to Hyposmotic Stress

Shahidullah, Mohammad, Mandal, Amritlal, Delamere, Nicholas A. 01 September 2017 (has links)
PURPOSE. Na, K-ATPase activity in lens epithelium is subject to control by Src family tyrosine kinases (SFKs). Previously we showed hyposmotic solution causes an SFK-dependent increase in Na, K-ATPase activity in the epithelium. Here we explored the role of cAMP in the signaling mechanism responsible for the SFK and Na, K-ATPase response. METHODS. Intact porcine lenses were exposed to hyposmotic Krebs solution (200 mOsm) then the epithelium was assayed for cAMP, SFK phosphorylation (activation) or Na, K-ATPase activity. RESULTS. An increase of cAMP was observed in the epithelium of lenses exposed to hyposmotic solution. In lenses exposed to hyposmotic solution SFK phosphorylation in the epithelium approximately doubled as did Na, K-ATPase activity and both responses were prevented by H89, a protein kinase A inhibitor. The magnitude of the SFK response to hyposmotic solution was reduced by a TRPV4 antagonist HC067047 added to prevent TRPV4-mediated calcium entry, and by a cytoplasmic Ca2+ chelator BAPTA-AM. The Na, K-ATPase activity response in the epithelium of lenses exposed to hyposmotic solution was abolished by BAPTA-AM. As a direct test of cAMP-dependent SFK activation, intact lenses were exposed to 8-pCPT-cAMP, a cell-permeable cAMP analog. 8-pCPT-cAMP caused robust SFK activation. Using Western blot, two calcium-activated adenylyl cyclases, ADCY3 and ADCY8, were detected in lens epithelium. CONCLUSIONS. Calcium-activated adenylyl cyclases are expressed in the lens epithelium and SFK activation is linked to a rise of cAMP that occurs upon hyposmotic challenge. The findings point to cAMP as a link between TRPV4 channel-mediated calcium entry, SFK activation, and a subsequent increase of Na, K-ATPase activity.
302

Genome-wide survey and molecular characterization of vacuolar-ATPase subunit genes in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae)

Coskun, Basak January 1900 (has links)
Master of Science / Department of Entomology / Kristopher S. Silver / Kun Yan Zhu / The yellow fever mosquito, Aedes aegypti, is a significant vector of several viral diseases, including Zika, dengue fever, yellow fever, and chikungunya. Since vaccines are not currently available for these viruses, control of the disease vectors by using insecticides is the most common practice for preventing disease. As a result, Ae. aegypti has developed resistance against many of the most commonly used insecticides, including organophosphates and pyrethroids. The rise in resistance in vector mosquitoes requires the search for new control strategies, such as RNA interference (RNAi), to manage mosquito populations. Vacuolar H[sup plus]+-ATPase (V-ATPase), a multi-subunit enzyme involved in many cellular processes, including membrane energization, acidification of organelles, and entry of dengue virus into the cytoplasm, is a potential target for RNAi, though little is known about its genetic structure or expression patterns in Ae. aegypti. In this study, I performed genome-wide surveys to identify the genes encoding different subunits of the V-ATPase protein complex, partially characterized the molecular properties and expression patterns of selected V-ATPase subunit genes, and tested the feasibility of using oral-based delivery of nanoparticles formed from double-stranded RNA (dsRNA) and chitosan to suppress the expression of selected V-ATPase subunit genes in Ae. aegypti. My genome-wide surveys revealed that Ae. aegypti V-ATPase consists of 13 different subunits (A, B, C, D, E, F, G, H, a, c, c”, d, e) encoded by 14 genes. Analysis of exon-intron arrangements for each gene demonstrated that each V-ATPase subunit gene has between one (subunit c) and 12 (subunit C) exons, with most genes (11) having 3 to 6 exons. Subsequent phylogenetic analysis of the deduced amino acid sequences of each subunit showed that V-ATPase subunits A, B, C, F, G, H, and a exhibited high levels of conservation among all the examined species, but subunits D, E, c, c”, d, and e showed high conservation only among dipteran species. Analysis of the expression profiles in different tissues and developmental stages of three specific V-ATPase subunits (A, D, and H) showed that whereas the expression of these genes varied between tissues and developmental stages, the patterns of expression of subunits A, D, and H were very similar. The highest mRNA expression level was observed in Malpighian tubules in fourth-instar larvae. Interestingly, expression of subunits A, D, or H in different tissues of adults was highest in male hindgut versus Malpighian tubules in females. Feeding mosquito larvae with chitosan nanoparticles made with dsRNA complementary to subunits A, D, or H resulted in significant suppression of mRNA transcript levels of each of these subunits. Peak suppression of V-ATPase A, D, or H transcripts occurred on the fifth day, where the gene transcript level was suppressed by 66.0, 27.3, or 70.4%, respectively, as compared with those of the control. Additionally, feeding of dsRNA/chitosan nanoparticles targeting subunit D caused mortality starting on day 3, with cumulative larval mortality reaching 14.8% on the sixth day. These results suggest that oral delivery of dsRNA/chitosan nanoparticles can substantially suppress target gene expression in Ae. aegypti larvae. However, increasing RNAi efficiency in targeting V-ATPase subunit genes in mosquito larvae appears to be necessary in order to obtain higher larval mortality using oral delivery of dsRNA/chitosan nanoparticles.
303

Etude biochimique et structurale de deux complexes macromoléculaires à AAA+ ATPases : le protéasome 26S et le réplisome. Mode d’assemblage de la sous-unité Rpt1 du protéasome 26S et rôle secondaire de la sous-unité Mcm2 du réplisome dans le transfert intergénérationnel des histones / Biochemical and structural study of two macromolecular complexes composed of AAA+ ATPases : the 26S proteasome and the replisome

Richet-Tuillière, Nicolas 03 March 2015 (has links)
Les protéines de la famille des AAA+ ATPases sont présentes dans de nombreux complexes moléculaires. Ces protéines sont capables de s’assembler en anneaux héxamériques (homomères ou hétéromères) pour former des moteurs moléculaires. Au cours de ma thèse, je me suis particulièrement intéressé à deux complexes macromoléculaires à AAA+ ATPases présentant un grand intérêt thérapeutique contre différents cancers : la particule régulatrice du protéasome 26S et l’hélicase du réplisome, Mcm2-7. Le protéasome 26S est la principale machinerie moléculaire impliquée dans la dégradation régulée des protéines poly-ubiquitinées tandis que l’hélicase mcm 2-7 est responsable du désappariement des brins de l’ADN chromosomique lors de la réplication de l’ADN. Ces deux complexes comprennent un anneau hétérohéxamérique de sous-unités AAA+ ATPases appelé Rpt1 à Rpt6 dans le cas du protéasome 26S et Mcm2 à Mcm7 dans le cas de l’hélicase mcm2-7. J’ai focalisé mes travaux sur l’étude du rôle du chaperon Hsm3/S5b dans l’assemblage du protéasome 26S d’une part, et le rôle spécifique de la sous-unité Mcm2 dans le transfert intergénérationnel des histones d’autre part. Le chaperon Hsm3/S5b se lie avec la sous-unité Rpt1. L’étude des complexes de levure Hsm3-Rpt1 et humain S5b-Rpt1 par cristallographie aux rayons X m’a permis de proposer que le chaperon d’Hsm3/S5b pourrait jouer un rôle de médiateur entre les sous-unités Rpt1, Rpt2 et Rpn1 lors de l’assemblage de la particule régulatrice. De plus, ce chaperon pourrait jouer également un rôle d’inhibiteur pour l’assemblage entre la particule régulatrice 19S et la particule cœur 20S du protéasome 26S. Certaines sous-unités AAA+ ATPase, telles que celles du réplisome, possèdent des domaines additionnels, leur conférant un rôle secondaire spécifique et indépendant de leur rôle principal de moteur moléculaire. C’est le cas de Mcm2, qui lie les histones H3-H4 par son domaine N-terminal. J’ai mis en évidence et caractériser cette interaction par différentes techniques biophysiques, en particulier la cristallographie aux rayons X, la RMN et le SEC-MALS. Ces résultats m’ont permis de proposer un modèle pour le transfert intergénérationnel des histones dans lequel Mcm2 joue un rôle crucial de chaperon moléculaire des histones directement intégré dans la machinerie de réplication. / AAA+ ATPases are involved in numerous molecular complexes. These proteins form homomeric or heteromeric hexamers and constitute molecular motors. During my Ph. D., I focused my work on two macromolecular complexes composed of AAA+ ATPases: the 26S proteasome regulatory particle and the Mcm2-7 helicase of the replisome. These complexes are implicated in the development of cancers and constitute interesting therapeutic targets. The 26S proteasome is the main machinery responsible for the regulated degradation of poly-ubiquitinated proteins and the helicase Mcm2-7 is responsible for the unwinding of the DNA during replication. These two complexes are composed of a heterohexameric ring of six AAA+ ATPases called Rpt1 to 6 for the 26S proteasome regulatory particle and Mcm2 to 7 for the replisome. I have studied the role of Hsm3/S5b in the assembly mechanism of the proteasome and the specific role of the subunit Mcm2 in the intergenerational transfer of the epigenetic information. X-ray structures of the complexes Hsm3-Rpt1 and S5b-Rpt1 allowed us to elucidate the dual functions of the assembly chaperone Hsm3/S5b which mediates the assembly of the subcomplex Rpt1-Rpt2-Rpn1 during the assembly of the regulatory particle. In addition, hsm3/S5b inhibits the association of a premature regulatory particle onto the core particle and protects the HbYX motif of Rpt1. Other AAA+ ATPases, like the replisome subunits, possess additional domains which confer specific roles. I also studied the interaction between the N-terminal domain of Mcm2 and the tetrameric form of histones H3-H4 by several methods like X-ray crystallography, NMR and SEC-MALS. I propose a model of the intergenerational transfer of histones H3-H4 in which Mcm2 plays a crucial role of molecular histones chaperone directly integrated in the replication machinery.
304

Investigation of the Effect of Changes in Lipid Bilayer Properties on the Activity of the Bacterial Cell Division Regulator Protein MinD

Ayed, Saud January 2012 (has links)
Bacterial cell division requires formation of the cytokinetic cell division septum at the mid-cell position, a process that is determined by three Min proteins; MinC, MinD and MinE. Regulation of cell division by Min proteins occurs via a multi-step process involving interactions between various Min proteins, as well as the membrane. In this cycle, ATP-bound MinD binds to the membrane surface where it can recruit MinC to inhibit formation of the cell division septum. MinE binding to this complex displaces MinC and stimulates ATP hydrolysis, leading to the dissociation of MinD from the membrane. These interactions give rise to a dynamic pattern of Min protein localization that appears to involve a polymeric state that is designed to create a zone that is permissive to cell division at the mid-point of the cell. The interaction between MinD and the membrane is a critical aspect of this cycle, yet the role of the lipid bilayer in MinD activation, localization and polymerization is not well understood. To probe the role of membrane charge and fluidity on MinD activation and polymerization, we developed a kinetic assay of MinE-stimulated MinD ATPase activity. We found that membrane charge is essential for MinD activation and that differences in membrane fluidity give rise to changes in its activity. Moreover, a burst phase was also observed during the first few minutes of reaction, but only on the most fluid anionic lipid tested. To help determine if the observed membrane-dependent changes in MinD activity are linked to any changes in MinD polymer structure, we have begun to develop a method to identify surface exposed regions of MinD through a combination of covalent labeling and mass spectrometry. Optimization of various steps for the assay has been done, and the assay can be applied to the future characterization of MinD polymer structure. Results from this assay, in combination with those from the kinetic measurements described here, will help to improve understanding about how membrane properties modulate MinD ATPase activity, and how this can influence the Min protein oscillation that is required to ensure normal bacterial cell division.
305

The Roles of the Na+/K+-ATPase, NKCC, and K+ Channels in the Regulation Local Sweating and Cutaneous Blood Flow During Exercise in Humans in vivo

Louie, Jeffrey January 2016 (has links)
Na+/K+-ATPase has been shown to regulate the sweating and cutaneous vascular responses during exercise; however, similar studies have not been conducted to assess the roles of the Na-K-2Cl cotransporter (NKCC) and K+ channels. Additionally, it remains to be determined if these mechanisms underpinning the heat loss responses differ with exercise intensity. Eleven young (24±4 years) males performed three 30-min semi-recumbent cycling bouts at low (30% VO2peak), moderate (50% VO2peak), and high (70% VO2peak) intensity exercise, respectively, each separated by 20-min recovery periods. Using intradermal microdialysis, four forearm skin sites were continuously perfused with either: 1) lactated Ringer solution (Control), 2) 6 mᴍ ouabain (Na+/K+-ATPase inhibitor), 3) 10 mᴍ bumetanide (NKCC inhibitor), or 4) 50 mᴍ BaCl2 (non-specific K+ channel inhibitor); sites at which we assessed local sweat rate (LSR) and cutaneous vascular conductance (CVC). Inhibition of Na+/K+-ATPase attenuated LSR compared to Control during the moderate and high intensity exercise bouts (both P˂0.01), whereas attenuations with NKCC and K+ channel inhibition were only apparent during the high intensity exercise bout (both P≤0.05). Na+/K+-ATPase inhibition augmented CVC during all exercise intensities (all P˂0.01), whereas CVC was greater with NKCC inhibition during the low intensity exercise only (P˂0.01) and attenuated with K+ channel inhibition during the moderate and high intensity exercise conditions (both P˂0.01). We show that Na+/K+-ATPase, NKCC and K+ channels all contribute to the regulation of sweating and cutaneous blood flow but their influence is dependent on the intensity of exercise.
306

The Potential of Modulating Na+ K+ Atpase Pumps and Katp Channels in the Development of a New Therapy to Treat Hyperkalemic Periodic Paralysis

Ammar, Tarek January 2017 (has links)
Hyperkalemic periodic paralysis (HyperKPP) is characterized by myotonic discharges and weakness/paralysis. It is a channelopathy that is caused by mutation in the SCN4A gene that encodes for the skeletal muscle Na+ channel isoform (Nav1.4) α-subunit. Limb muscles are severely affected while breathing musculature is rarely affected even though diaphragm expresses the Nav1.4 channel. The objective of this study was to investigate the mechanism(s) that render the HyperKPP diaphragm asymptomatic in order to find a novel long lasting therapeutic approach, to treat HyperKPP symptoms. A HyperKPP mouse model carrying the M1592V mutation was used because it has a similar phenotype to that of patients carrying the same mutation. HyperKPP diaphragm, the limb muscles soleus and EDL all had a higher tetrodotoxin (TTX) sensitive Na+ influx than wild type (WT), but only the soleus and EDL had a depolarized resting potential, lower force and greater K+-induced force loss when compared to WT. The lack of a membrane depolarization in HyperKPP diaphragm was because of greater electrogenic contribution of the Na+ K+ ATPase pump compared to WT while such increase was not observed in EDL and soleus. HyperKPP diaphragm also had greater action potential amplitude than EDL and soleus possibly because of higher Na+ K+ ATPase pump maintaining a low [Na+]i. An inhibition of PKA, but not of PKC, increased the sensitivity of the HyperKPP diaphragm to the K+-induced force depression. So, HyperKPP soleus was exposed to forskolin to increase cAMP levels in order to activate PKA to document whether greater activity of PKA will alleviate HyperKPP symptoms. At 4.7 mM K+, forskolin increased force production, but worsened the decrease in force at 8 and 11 mM K+. Forskolin also did not improve membrane excitability. Pinacidil a KATP channel opener, improved force production at all [K+]e by causing a hyperpolarization of resting EM which then allowed for greater action potential amplitude and more excitable fibers. It is concluded that the development of a better therapeutic approach to treat HyperKPP can include a mechanism which activates Na+ K+ ATPase pumps and KATP channels.
307

Nouvelle synthèse de dérivés hétérocycliques thiazoliques, sélénazoliques, coumariniques, thiocoumariniques et quinolonéiques. Étude et évaluation de leur activité potentielle anticancéreuse / New synthesis of heterocyclic derivatives of thiazoles, selenazoles, coumarins, thiocoumarines, quinolones. Study and evaluation of their anticancer activity.

Xu, Zhanjie 23 May 2014 (has links)
Nous avons réalisé la synthèse de thiazoles, sélénazoles, thiéno[2,3-d]thiazoles et thiéno[2,3-d][1,3]sélénazoles, ce dernier étant préparé facilement à partir de cyanamide et de sulfure de carbone. Nous avons de cette manière pu synthétiser des 4-amino-1,3-thiazoles et 1,3-sélénazoles substitués en position 2 et 5 en deux étapes. Appliqué ces hétérocycles, les 4-halogéno-1,3-thiazoles et 1,3-sélénazoles ont été synthétisés par la méthode de Doyle. La labilité des halogènes dans les dérivés précédents a permis de préparer de nouveaux thiéno[2,3-d]thiazoles et [1,3]sélénazoles. La détermination du potentiel antiprolifératif de ces composés a permis de mettre en évidence deux composés, présentant des IC50 de l’ordre du micromolaire sur les lignées cellulaires cancéreuses : MCF-7, PC-3, Hs683, U373, SKMEL-28 et A549. Un composé surtout a montré une activité d’inhibition de Na+/K+-ATPase et de l'oncogène Ras. Par ailleurs dans un second sujet, nous nous sommes intéressés à la mise au point d’une synthèse des deux isomères (alpha et bêta) de 4-butoxylvinyl-coumarines, -thiocoumarine et -2-quinolones par couplage de Heck. Nous avons ainsi pu montrer que suivant le substituant présent en position 4 des hétérocycles le couplage était régiosélectif. Ces dérivés butoxyvinyliques se caractérisaient par leur caractère diénique et nous avons étudié leur réactivité, stéréoséléctivité et régiosélectivité avec différents diénophiles dans des réactions de cycloaddition de Diels-Alder. Parmi tous les composés polyhétérocycliques ainsi préparés, nous avons identifié des composés tétracycliques à noyau quinonique qui présentent un potentiel anticancéreux par des valeurs d’IC50 sur l’inhibition des phosphatases CDC25 et sur plusieurs lignées de cellules tumorales / We performed the synthesis of thiazoles, selenazoles, thieno[2,3-d]thiazoles and thieno[2,3-d][1,3] selenazoles which are easily prepared from cyanamide and carbon disulfide. By this way, we have synthesized 4-amino-1,3-thiazoles et 1,3-selenazoles substituted in position 2 and 5 in two steps. Used these heterocycles, 4-halogeno-1,3-thiazoles et 1,3-selenazoles were synthesized by Doyle’s method. Lability of halogens in previous derivatives allowed to prepare new thieno[2,3-d]thiazoles and [1,3]selenazoles. Determination of the antiproliferative activity of these compounds has brought out two compounds, showing IC50 values in micromolar range on investigated cancer cell lines: MCF-7, PC-3, Hs683, U373, SKMEL-28, and A549. One particular compound showed a high activity of anti-Na+/K+-ATPase and anti-ROS. In addition in the second subject, we were interested in the development of the synthesis of two isomers (alpha and beta) of 4-butoxylvinyl-coumarins, -thiocoumarin and -2-quinolones by Heck coupling. We showed that, depending on the substituent in the position 4 of the heterocycle, the coupling was regioselective. These butoxyvinylic derivatives, characterized by dienic character, were studied for their reactivity, stereoselectivity and regioselectivity with several dienophiles in Diels-Alder cycloaddition. Among all the polyheterocyclic compounds prepared, we have identified the tetracyclic compounds with quinonic ring which have potential anticancer activity by inhibition of CDC25 phosphatase and on several tumor cell lines
308

Microtubule-dependent nuclear congression in fission yeast and a novel factor in cellular morphogenesis of fission yeast / La congression nucléaire contrôlée par les microtubules chez s. pombe et un nouveau facteur de morphogenèse chez s. pombe

Scheffler, Kathleen 29 September 2014 (has links)
(I) J'ai étudié les mécanismes contrôlant la congression des noyaux pendant la conjugaison de la levure S. pombe. A l'aide d'imagerie à long terme basée sur la microfluidique, j'ai mesuré la durée précise de la congression nucléaire et démontré que deux moteurs moléculaires des MTs, la dynéine et la kinésine-14 Klp2 contribuent à ce processus, dans des voies parallèles. La dynéine s’associe aux SPBs. Son niveau au SPB dépend de la chaine légère intermédiaire Dli1 qui pourrait potentiellement stabiliser le complexe dynéine et est requise pour la congression. Klp2 se localise sur les MTs. La localisation différentielle des deux moteurs suggère des rôles distincts pour tirer les noyaux l'un vers l'autre. Klp2 pourrait induire le glissement de MTs antiparallèles émanant des SPBs, alors que la dynéine localisée au SPB pourrait tirer sur des MTs émanant du SPB opposé.(II) J'ai caractérisé un nouveau facteur morphogénétique, l’AAA+-ATPase Knk1, qui promeut la croissance linéaire chez S. pombe. L’absence de Knk1 provoque la formation d’un coude à proximité des extrémités cellulaires. Ce défaut ne résulte pas de défauts des MTs, qui participent à la linéarité de la croissance. Knk1 se localise aux extrémités de la cellule indépendamment des MTs et des câbles d’actine. Cette localisation requiert son N-terminus et est renforcée quand le domaine ATPase C-terminal lie l’ATP. La concentration de Knk1 aux extrémités est aussi contrôlée par Sla2 et Cdc42, de manière anti-correlée, et indépendamment de l’endocytose. Enfin, Knk1 oscille périodiquement entre les deux extrémités, indépendamment des oscillations de Cdc42, suggérant l'existence d'au moins deux systèmes oscillatoires séparés. / (I) I studied the molecular mechanisms underlying nuclear congression during fission yeast conjugation. Using microfluidic-based long-term imaging, I defined the precise timing of nuclear congression compared to cell mating and found that two MT molecular motors, dynein and the kinesin-14 Klp2 promote nuclear congression in parallel pathways. Dynein associates with SPBs. Dynein level at SPBs is controlled by the light intermediate chain Dli1 that may promote stabilization of the dynein complex and is essential for dynein-dependent nuclear congression, while dynactin is surprisingly not required for this process. Klp2 localizes along MTs. These differential localization patterns suggest distinct roles for the two motors in pulling the nuclei together: Klp2 may slide anti-parallel MTs emanating from the SPBs, while dynein at the SPB may pull on MTs emanating from the opposite SPB.(II) I characterized a novel morphogenetic factor, the AAA+-ATPase Knk1, supporting linear growth in fission yeast. knk1Δ cells display a kink close to cell tips, a unique shape phenotype that is neither caused by defects in behavior of MTs that promote linear extension. Knk1 localizes to cell tip independently of MTs and actin cables. This localization is mediated by Knk1 N-terminus and enhanced upon ATP binding to Knk1 C-terminal ATPase domain. Knk1 tip levels are enhanced in a sla2 or cdc42, independently of Sla2 role in endocytosis. Finally, Knk1 oscillates between the two cell tips in an anti-correlated periodic manner possibly uncoupled from Cdc42 oscillations suggesting the existence of at least two separated oscillatory systems contributing to fission yeast morphogenesis.
309

Synthesis and Identification of Novel Arylnaphthalene V-ATPase Inhibitors as Selective Anti-Filoviral Agents

Aaron R. Lindstrom (5929982) 16 January 2020 (has links)
<div>Ebolavirus, a genus of filoviruses, are responsible for outbreaks that cause up to 90% fatality, including the recent outbreak in West Africa that has resulted in over 28,603 reported cases and 11,301 deaths according to the WHO. Inhibitors of Vacuolar-ATPase (V-ATPase), a key protein complex that is responsible for endosomal acidification and represents a unique method to block this common viral pathway. V-ATPase inhibitors have previously been explored as therapies for many diseases but have failed due to high toxicity. Diphyllin is a natural, arylnaphthalene lignan that represents a novel structural class of V-ATPase inhibitors with a greater selectivity index than previous V-ATPase inhibitors. Diphyllin has shown promising anti-tumor and anti-osteoclast activity, as well as strong anti-viral activity against Influenza and Dengue viruses. </div><div>Herein, novel modifications of the lactone and phenol functional groups of diphyllin were explored for the ability to enhance the potency or therapeutic selectivity of the diphyllin core. Four initial sets of derivatives were synthesized and assayed for activity against ebolavirus infection, inhibition of cellular endosomal acidification, cytotoxicity and biochemical inhibition of isolated V-ATPase. Modification of diphyllin’s lactone functional group reduced both activity and selectivity, while alkylation of the phenol groups significantly enhanced activity. The incorporation of basic heterocycles to the alkyl group created an alkylamino series of derivatives that exhibited significantly improved therapeutic selectivity compared to diphyllin. Further investigation of the alkylamino class indicated that they retained activity against Marburgvirus infection, a filovirus related to Ebolavirus. Alkylamino derivatives inhibited ebolavirus infection of human macrophages at low micromolar levels with no apparent cytotoxicity.</div><div>Further investigation of the alkylamino class of diphyllin derivatives was conducted to determine if potency and/or therapeutic selectivity could be optimized. The addition of a 1-methylpiperazine moiety to the end of the alkyl chain improved potency 1260-fold over diphyllin, though therapeutic selectivity was not improved. The modification of the alkylamino linker to an acetamide eliminated cytotoxicity but decreased derivative activity against V-ATPase activity. To evaluate if the cytotoxicity evidenced by the alkylamino derivatives was evidenced in organisms, the derivative toxicity was assessed in zebrafish and mouse models. Derivatives displayed toxicity in a zebrafish developmental model but were all at least 10-fold less toxic than the known V-ATPase inhibitor bafilomycin A1. Three derivatives were well tolerated in CD-1 mice when administered at therapeutically relevant concentrations and caused no abnormal changes in their blood chemistry. Overall, these results demonstrate that the alkylamino and acetamide diphyllin phenol derivatives should be further studied as therapies for ebolavirus infection in addition to other V-ATPase mediated diseases.</div><div><br></div>
310

Studium exprese MDR pump u kvasinek Saccharomyces cerevisiae za různých růstových podmínek: metoda s fluorescenční sondou diS-C3(3) / Studium exprese MDR pump u kvasinek Saccharomyces cerevisiae za různých růstových podmínek: metoda s fluorescenční sondou diS-C3(3)

Zahumenský, Jakub January 2011 (has links)
In this work, we studied two yeast ABC transporters, Pdr10p and Pdr15p. At the time of assignment of this thesis, it was believed that these proteins contribute to the yeast MDR phenotype (PDR) on the grounds of their high homology to another yeast MDR protein, Pdr5p. In order to study these pumps, two sets of isogenic null-mutant strains were prepared with all possible combinations of gene deletions. We report that both of the studied proteins are very important in sus- taining the normal plasma membrane microenvironment for the most abundant, and essential, yeast plasma membrane protein, H+ -ATPase and so influence the membrane potential. Pdr10p and Pdr15p thus play an as yet unknown role in reg- ulation of the activity of this enzyme. Furthermore, we report that deletion of the genes coding for these proteins severely reduces the ability of the H+ -ATPase to be activated by the protonophore CCCP which is a weak acid. Studies performed with immunosuppressant FK506 further show that this compound reduces the viability of S. cerevisiae mutant strain PLY643 lacking genes coding for Pdr5p, Snq2p and Yor1p. Further deletion of Pdr10p and Pdr15p does not increase the lethality of this compound. Neither CCCP nor FK506 are substrates of the stud- ied pumps. 1

Page generated in 0.0628 seconds