• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 18
  • Tagged with
  • 57
  • 46
  • 42
  • 39
  • 27
  • 27
  • 26
  • 24
  • 18
  • 17
  • 17
  • 16
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Psychophysics and physiology of attentional influences on visual motion processing / Psychophysik und Physiologie von Aufmerksamkeitseinflüssen auf die Verarbeitung visueller Bewegung

Anton-Erxleben, Katharina 08 May 2008 (has links)
No description available.
32

Charakterisierung von stressregulierten Genen als potentielle Modulatoren von Lernen und Angst / Characterization of stress-regulated genes as potential modulator of learning and anxiety

Fischer, Andre 31 October 2002 (has links)
No description available.
33

Molecular profiling of presynaptic docking sites / Molekulare Zusammensetzung präsynaptischer Dockingstellen

Boyken, Anne Janina 04 July 2011 (has links)
No description available.
34

Strukturelle und funktionelle Untersuchungen von Domänen des spannungsabhängigen Kaliumkanals Tsha3 aus der Regenbogenforelle Onchorhynchus Mykiss / Structural and functional analyses of domains of the Kv Tsha3

Herrling, Regina 20 June 2014 (has links)
Voltage gated potassium channels (Kv) play a key role in the nervous system- not only due to their involvement in the action potential. Vertebrates express four subtypes, which are termed Kv1, Kv2, Kv3 and Kv4, respectively. Tsha3 is a Kv1 channel which was originally isolated from brain tissue of rainbow trout (Oncorhynchus mykiss). This channel possesses an unique amino terminus and a characteristic amino acid sequence in the T1 domain, which is engaged in the oligomerization of Kv α-subunits and is thus involved into the segregation of subfamilies. The two major goals of this thesis were the structural and functional characterization of the N-terminal cytosolic domain of Tsha3 as well as the invention of a system to gain data about the functional dynamics of full length Kv channels. Molecular biological techniques were used to isolate mRNA from trout brains, to transcribe it into cDNA and clone it into vectors. DNA from such plasmids was ligated into expression vectors for heterologous expression in E. coli, P. pastoris and Sf21 cells, with concomitant fusion of marker proteins (GFP or DsRed) or tags (6 x HisTag or StrepTagII) due to the individual experiment. Protein was overexpressed in E. coli and affinity purified to analyze separated domains with biochemical (SDS-PAGE and Western Blot, Pull-Down-Assay or Dot-Blot-Assay) or biophysical (CD-spectroscopy, EPR spectroscopy) efforts. The P. pastoris system to express Tsha1 was established, to generate a system for future EPR-measurements of whole Kv channels. Heterologous expression of Kv1α (Tsha3 and Tsha1) and the core domain of Kvβ in Sf21 cells was performed to analyze the subcellular distribution of the respective subunits via fluorescence microscope and via subcellular fractionation of cell lysates with downstream biochemical analyses (SDS-PAGE and Western Blot). Furthermore the gating of diverse fusion constructs of Tsha3 in co-expressions and the gating of diverse cystein substitution mutants of Tsha1 were measured via path-clamp recordings in whole cell modus. The structural analyses of the N-terminal cytosolic domain (NCD) of Tsha3 revealed that the 128 amino acid containing part before the T1-domain (Tsha3-NT) can be structurally divided into three parts of different structure and mobility. The most outward part possesses a very high mobility and is putatively unfolded as random coil. This section is expected to express no tertiary contacts. The middle part of Tsha3-NT is structured in α-helices and β-sheets and thus slightly immobile. This folded part is also assumed to build no tertiary structure and to be exposed into the cytosol. The third, which is directly neighboring the T1 domain, has the most restricted mobility of Tsha3-NT. It consists predominantly of α-helices and exhibits a tertiary structure, putatively with the T1 domain. Tsha3-NCD self-tetramerizes and oligomerizes with Tsha1, although mutations exist in Tsha3 in conserved amino acids, which were reported to function in subfamily specific hetero-tetramerization. Thus it is proven, that Tsha3 takes part in the segregation into the Kv1 subfamily. Furthermore, Tsha3 interacts with the core domain of Kvβ2 although there are also mutations in the reported consensus sequence for interaction. Association of Kvβ2 in co-expression studies directs Tsha3-DsRed fusion constructs from internal vesicular structures into the cell membrane. But the fusion with DsRed is leading to a loss of function of Tsha3 which cannot be rescued by co-expression of the chaperone Kvβ2. But- without fusion of marker proteins- Tsha3 was identified as an outward rectifier in a cooperative Bachelor Thesis. These structural data lead to the assumption, that Tsha3-NT exhibits lateral interactions and especially the helical but mobile middle part of the N-terminus can play such a role. Due to the localization next to the membrane, interactions with membrane proteins- putatively with protein cascades are possible. Although Tsha3-NT contains no reported interaction domains for protein-protein interactions, follow-up experiments should be performed to shed light on this interesting question. Tsha1 C30S C31S C180S C224A C239S C389S C424S C476S is a complete cysteine free mutant, which was identified as a functional voltage-gated potassium channel. It was expressed in and purified from eukaryotic cells (P. pastoris) and therefore it can be assumed to be properly folded and modified. After a slight optimization of the features of expression, this system can be used to reconstitute Tsha1 channels into liposomes and use them for Freeze Quench EPR to gain structural information about a Kv1 channel in the open as well as in the closed state. This is the first report of the establishment of a full length Kv for studies of structure and functional dynamics experiments.
35

The Influence of Spatial Attention on Neuronal Receptive Field Structure within Macaque Area MT / Der Einfluss von räumlicher Aufmerksamkeit auf die Struktur rezeptiver Felder im superior-temporalen Kortex des Rhesusaffen

Womelsdorf, Thilo 04 November 2004 (has links)
No description available.
36

Redoxmodulation Hippokampaler Neurone / Redoxmodulation Of Hippocampal Neurons

Gerich, Florian 31 October 2007 (has links)
No description available.
37

Charakterisierung von Calcium-Transienten in Astrozyten der ventralen respiratorischen Gruppe / Characterization of calcium-transients in astrocytes of the ventral respiratory group

Härtel, Kai 31 October 2007 (has links)
No description available.
38

Modulatorische Effekte von Stickstoffmonoxid und Juvenilhormon auf die Kontrolle des Reproduktionsverhaltens in weiblichen Chorthippus biguttulus / Modulatory effects of nitric oxide and juvenile hormone on the control of reproductive behavior in female Chorthippus biguttulus

Wirmer, Andrea 01 July 2010 (has links)
No description available.
39

Candidate mechanosensitive transduction channels in Drosophila melanogaster / Kandidaten für den mechanosensitiven Transduktionskanal in Drosophila melanogaster

Effertz, Thomas 09 June 2011 (has links)
No description available.
40

Expression der CRFR-Gene in Antwort auf Stress und Lernen / Expression of CRFR genes in response to stress and learning

Sananbenesi, Farahnaz 07 May 2003 (has links)
No description available.

Page generated in 0.0237 seconds