21 |
Développement de nouvelles sondes pour l'analyse par RMN des fonctions cellulaires des biomolécules / Developpment of new probes for NMR based analysis of biomolecules’ cellular functionsFernandes, Laetitia 24 September 2015 (has links)
La compréhension des interactions intra- et inter-moléculaires à l’échelle atomique représente un enjeu scientifique important. A l’heure actuelle, les techniques de RMN ont déjà prouvé leur efficacité pour l’analyse de ces interactions in vitro, dans les solutions tampons. Toutefois, il a également été montré que la plupart des biomolécules ont une structure et une dynamique différentes in vivo, à l’intérieur des cellules, de celle in vitro. Il est donc crucial d’analyser les biomolécules dans leur milieu naturel, la cellule. Récemment, les progrès dans le domaine de la RMN dans les cellules ont permis de mieux comprendre la dynamique et les interactions des biomolécules présentes dans le milieu cellulaire complexe. Cependant, la biomolécule étudiée étant présente en faibles concentrations, elle possède un faible signal sur le spectre RMN, qu’il est difficile de suivre. De plus, du fait de la forte viscosité du milieu cellulaire, la relaxation rapide de l’aimantation transverse se traduit par un élargissement des raies spectrales. L’utilisation des états de spin à longs temps de vie et de la Polarisation Dynamique Nucléaire suivie par la dissolution de l’échantillon (dissolution-DNP) pourraient permettre de pallier aux problèmes d’élargissement de raies et de sensibilité. L’objectif de ce travail de thèse a été d’explorer les bénéfices des ces avancées récentes de la RMN pour l’étude des petites molécules, peptides et protéines à l’intérieur des cellules. Pour la protéine c-Src, qui appartient à la classe des protéines intrinsèquement désordonnées (IDP), la dynamique de l’ensemble des conformations de l’extrémité N-terminale a été suivie utilisant des états de spin à longs temps de vie LLS. Le signal du noyau de carbone-13 de la molécule de pyruvate a été augmenté utilisant la Polarisation Dynamique Nucléaire (DNP) afin de mieux l’observer dans le milieu cellulaire. Un peptide représentatif pour la partie active d’une autre protéine, IκBα, a été introduit dans des cellules HepG2 par l’électroporation. Les observations faites lors des ces expériences sont discutées dans la perspective de faciliter les études RMN des biomolécules à l’intérieur des cellules. / Most NMR studies are carried out in vitro, but the structure and dynamics of some biomolecules inside cells differ from those in vitro. It thus becomes interesting to analyze biomolecules such as proteins in their natural environment: the cell. Recent progress of in cell NMR allowed to better understand the behaviour of proteins: their dynamics and their interactions with other biomolecules in the cell. But the low concentration of proteins leads to low signal intensity. Moreover, the viscosity of the environment induces faster transverse relaxation, resulting in line broadening for proteins signals. The use of the Long-Lived States and Coherences (LLS and LLC, respectively) as well as dissolution Dynamic Nuclear Polarization (dissolution-DNP) can improve NMR observations in cells. LLS were used to understand and characterize the structure of the N-terminal domain of c-Src, which is intrinsically disordered. To follow the phosphorylation of proteins, a first preliminary study of a 21-aa peptides derived from IKBα electroporated into HepG2 cell lines was carried out.
|
22 |
Caractérisation RMN de matériaux hybrides pour l’encapsulation de principes actifs / NMR characterization of hybrid materials for vectorization of active compoundsDeligey, Fabien 24 June 2019 (has links)
Actuellement, une voie de développement de formulations médicamenteuses novatrices passe par la vectorisation de principes actifs connus dans des nanoparticules. Des matériaux hybrides sont ainsi formés, possédant de nouvelles propriétés liées au nano-confinement. Les travaux ici menés s’appuient sur la sensibilité de la Résonance Magnétique Nucléaire (RMN) du solide aux phénomènes prenant place aux échelles moléculaires, pour effectuer une analyse structurelle et dynamique de deux vecteurs. Le premier, hydrophile, est une matrice nanoporeuse de silice sol-gel, dans laquelle sont confinés des complexes de nitroprussiate de sodium isolés. À partir de mesures de relaxation de spin et d’anisotropie de déplacement chimique, différents régimes de dynamique moléculaire sont mis en évidence. Ils sont modulés par la présence de molécules de solvant résiduelles (H2O). Des gammes de température et d’hydratation sont identifiées, pour lesquelles le complexe reste associé malgré un état ‘‘pseudo-liquide’’. Dans la condition limite d’absence d’eau, la restriction du mouvement des complexes confinés est élucidée en caractérisant les interactions dipolaires hôtes / invités. Le second système allie la double vectorisation de la curcumine hydrophobe dans des nanoparticules de lipides solides encapsulées dans une matrice de silice (SBA-15). Une stratégie d’étude conjointe par RMN du solide et par calorimétrie différentielle à balayage (DSC) est mise en place. Les résultats montrent que d’autres facteurs que la compartimentalisation (polymorphisme, dynamique moléculaire des composés hôtes) doivent également être pris en compte pour la compréhension des propriétés de ces matériaux très hétérogènes. Malgré le recours à une instrumentation RMN de dernière génération (spectromètre 1GHz, sonde MAS 1.3mm), la présence de principe actif est observée uniquement dans les compartiments de tensioactif. Ces résultats permettent d’émettre de nouvelles hypothèses sur la distribution du principe actif, tout en montrant les limites de l’approche RMN basée uniquement sur l’étude des noyaux 1H. / Nowadays, a way of developing novel medicinal compounds focuses on confinement of known active molecules inside nanoparticles. Therefore, hybrid materials emerge, exhibiting new properties related to nano-confinement. This work relies on the sensibility of solid-state Nuclear Magnetic Resonance (SS-NMR) towards molecular scale phenomena in order to perform structural and dynamical analysis of two delivery systems. They are modulated by the influence of residual solvent molecules (H2O). Temperature and hydration ranges are identified, for which the complex stays associated, although it is in a liquid-like state. Toward the limit of water absence, movement restrictions of the confined complexes are elucidated by characterizing dipolar host / guest interactions. The second system combines a double vectorization of hydrophobic curcumin molecules inside solid lipid nanoparticles, encapsulated inside a silica matrix (SBA-15). A joint SS-NMR and Differential Scanning Calorimetry (DSC) characterization strategy is put in place. The results show that other factors than compartmentalization (polymorphism, molecular dynamics of host compounds) should also be taken into account to understand the properties of these very heterogeneous materials. Despite resorting to the latest NMR instrumentation (1GHz spectrometer, 1.3mm MAS probehead), presence of the active ingredient is only detected inside the surfactant compartment. These results allow making new assumptions for the distribution of curcumin inside the material while showing the limits of an NMR approach relying solely on the study of 1H nuclei.
|
23 |
Etudes combinées par RMN et calculs DFT de (fluoro, oxy)-phosphates de vanadium paramagnétiques pour les batteries Li-ion ou Na-ion / Combined NMR/DFT study of paramagnetic vanadium (fluoro, oxy)-phosphates for Li or Na ion batteriesBamine-Abdesselam, Tahya 07 June 2017 (has links)
Ce travail consiste en l’étude par RMN multinoyaux de matériauxparamagnétiques d’électrodes positives pour batteries Li ou Na-ion. La RMN du solidepermet une caractérisation de l’environnement local du noyau sondé grâce à l’exploitationdes interactions hyperfines dues à la présence d’une certaine densité d’électrons célibataires(déplacement de contact de Fermi) sur ce noyau (densité transférée selon des mécanismesplus ou moins complexes). Les matériaux étudiés sont des fluoro ou oxy phosphates devanadium de formules générales AVPO4X (A= Li ou Na; X = F, OH, ou OF) (structure typeTavorite), et Na3V2(PO4)2F1-xOx. Tous ces matériaux ont été caractérisés par RMN du 7Li ou23Na, 31P et 19F combiné à des calculs DFT, afin de mieux comprendre les structure etstructure électroniques locales. Notamment, ces études nous ont permis de mettre enévidence la présence de défauts dans certains matériaux et donc de discuter leur impact surles propriétés électrochimiques. L’utilisation de la méthode PAW nous a permis de modéliserdes défauts dilués dans des supermaille. Ensuite, l’impact de ces défauts sur la structurelocale a été étudié afin d’envisager les mécanismes de transfert de spin possibles etreproduire leur déplacements de RMN. / Paramagnetic materials for positive electrodes for Li or Na-ion batteries havebeen studied by multinuclear NMR. The local environment of the probed nucleus can becharacterized by solid state NMR making use of hyperfine interactions due to transfer ofsome electron spin density (Fermi contact shift) on this nucleus, via more or less complexmechanisms. The materials studied are vanadium fluoro or oxy phosphates of generalformulas AVPO4X (A= Li or Na; X = F, OH, or OF) belonging to the Tavorite family and theNa3V2(PO4)2F1-xOx . All these materials have been characterized by 7Li or 23Na, 31P and 19F,combined with DFT calculations to better understand local electronic structures andstructures. In particular, these studies have enabled us to highlight the presence of defects incertain materials and to discuss their impact on the electrochemical properties. The use ofthe PAW method allowed us to model diluted defects in large supercells, to calculate theFermi contact shifts of the surrounding nuclei and to study the mechanisms of electron spintransfer. This allowed us to better understand the nature of defects in materials.For some systems, the mechanisms related to the intercalation or deintercalation of Li+ orNa+ ions have also been studied by NMR.
|
Page generated in 0.0155 seconds