• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 160
  • 18
  • 16
  • 16
  • 9
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 293
  • 115
  • 109
  • 103
  • 69
  • 50
  • 48
  • 40
  • 36
  • 31
  • 28
  • 27
  • 26
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Výpočtová simulace válcování v kalibru / Computational simulation of pass rolling

Hacek, Samuel January 2020 (has links)
Táto diplomová práca sa zaoberá možnosťami výpočtového modelovania valcovania v kalibroch pomocou metódy konečných prvkov. Na začiatku je formulovaná motivácia pre písanie práce a problémová situácia, nasledovaná zostavením systému podstatných veličín. Ďaľšia kapitola popisuje rôzne spôsoby valcovania ako aj samotný valcovací proces. Dôraz je kladený na popis tradičného návrhu kalibrov. Nasledujúca kapitola sa zaoberá teóriou plasticity, plastickým chovaním materiálu a jeho modelovaním v konečnoprvkovom prostredí Abaqus, ktoré je použité vo výpočtovej časti práce. Predstavené sú viaceré modely plasticity, ako aj modely tvárneho porušovania, používané na posúdenie tvárniteľnosti či simuláciu šírenia tvárnej trhliny v materiáli. Práca pokračuje kapitolou zameranou na metódu konečných prvkov, najmä jej explicitný algoritmus, využívaný vo výpočtovej časti práce. Ďaľšia časť je venovaná popisu základných princípov fotoelasticimetrie, tradičnej experimentálnej metódy. Tieto kapitoly zahŕňajú aj popis konečnoprvkovej a experimentálnej fotoplastickej analýzy konkrétneho prípadu valcovania v kalibroch, riešené v predchádzajúcom článku. Použitý výpočtový model je základom nového konečnoprvkového modelu, ktorého tvorbe je predmetom nasledujúcej kapitoly. Naviac sú vytvorené aj dve varianty pôvodného, zjednodušeného výpočtového modelu. S použitím vytvorených výpočtových modelov sú vykonané štrukturálne analýzy a vyhodnotené viaceré výsledky, následne zhrnuté a porovnané s pôvodnými výpočtovými a experimentálnymi výsledkami. Rozbor porovnania výsledkov a zhodnotenie použiteľnosti a spoľahlivosti jednotlivých výpočtových modelov tvoria záver práce.
252

Product Development and Finite Element Analysis of Polyurethane Press Shoe : Produktutveckling och finit element analys av press-sko i polyuretan

Bergström, Mikael January 2021 (has links)
The press-section of a paper machine holds several different types of press rolls. One of the many press roll variants is the Valmet produced press roll, ViscoNip. This press roll utilizes an extended nip in order to increase the amount of water removed. The extended press nip in ViscoNip is special since it is controllable by a pressurized polyurethane press shoe. The press shoe runs through the body of the press roll. Due to limits of the current production process, new manufacturing methods and construction solutions are needed. In cooperation with another thesis, the current design and manufacturing process was reviewed and a plan intended to improve the current solution was formulated. The plan was to, by working together in a project, perform a product development process intended to create concepts able to utilize new methods of manufacturing. By using established methods of concept generation, such as Brainwriting 6-3-5, 11 concepts were created. Some of these concepts involved a redesign of the press shoe, leading to a need for construction and performance analysis. With the other thesis focusing on researching new possible and available manufacturing solutions. The work of this thesis fully committed to the structural and mechanical performance evaluation of the new concepts. This was performed by creating a model of the technical application using Finite Element Modelling in ABAQUS. The model included a hyperelastic material model for the polyurethane material as well as cohesive zone modelling to account for partitioning of the part. The model was then used to simulate the different concepts as they were subjected to a challenging load case. The results of which were used as the basis for structural and performance analysis. The analysis showed proof of sufficient structural stability and mechanical performance for all evaluated concepts. Then, in cooperation with the other thesis, a final concept choice was made. All in all, three different redesigned concepts were deemed as having potential for further development. The current solution was also deemed as having potential for future development but only when new manufacturing methods or techniques were considered.
253

Development and simulation of a safety bracket for a safety system

Andersson, Robin, Timalm, Robert January 2020 (has links)
This thesis report aims to help the client developing their new product. The new product to be developed is a safety bracket for a safety system. The safety bracket connects different parts which create the safety system and it should be able to withstand impacts from moving objects. The client has a set of requirements that needs to be addressed during the product development process. One of the most important requirements that must be fulfilled is the given impact energy that the safety bracket must withstand. The methodology used during this thesis work is the product development processes (PDP). The product development process is used to find concepts that have the potential to answer the research questions and to fulfil the requirements. Some methods used in the product development process are brainstorming, brainwriting and combining working principles. The concepts were evaluated with a combination of Pugh´s matrix and weighting matrix. The three best concepts were selected for further development and tested with FEA simulation with Abaqus CAE. The impact simulation gave indications if the concepts could handle the impact energy and if they could fulfil the requirements. All three concepts could withstand the impact energy based on the simulations and most of the requirements could be fulfilled. The concepts with thinner profile walls had a reduction in stress and an increase in impact duration, where the kinetic energy is distributed throughout the impact. A protective shell helps with the reduction of stress and the energy absorption during the impact simulation.
254

Material Characterization for the Simulation of Drop Tests Against PMMA Sheets

Sancho Montagut, Arturo January 2020 (has links)
There is a high demand for implementing simulations in the design and product devel-opment processes, avoiding the execution of costly tests on prototypes and giving thechance of discarding unsuitable designs, as well as exploring possible ones without much cost added.This project assignment is to find a suitable way to simulate drop tests on two typesof PMMA sheets, a material widely used on luminaire covers. Therefore, it becomesnecessary to study the mechanical behavior of these materials, using experimental tests,in order to calibrate the material models used in the simulations.During the experimental testing, common polymer behaviors were found on the twostudied materials, such as rate dependence, non-linear elasticity, viscoelasticity and vis-coplasticy. Behaviors which presented several challenges regarding the choice and cali-bration of the material models.The two di?erent polymers were calibrated for the simulations using two di?erentmaterial models. An elastic-plastic (Drucker Prager Plasticity) model was used for oneof the materials, whereas an hyperelastic-viscoelastic model was used for the other one.Finally, several drop tests simulations were conducted and compared with experimentaltests
255

Feasibility Study of Wind Turbine Blades Constructed in 1300 MPa Fossil-Free Steel : Finite Element weight optimization with respect to structural integrity by Abaqus and Tosca Structure

van der Brug, Peter, Urban, Sina January 2022 (has links)
This study aims to perform a feasibility study on the DTU 10MW-RWT wind turbine blades constructed in the fossil-free high-strength steel 1300 MPa from SSAB. The acceptance criteria, on which the study is based, are taken from the DTU composite wind turbine model. A maximum weight of 41 000kg and a maximum tip displacement of 12.5 m are chosen. By fulfilling the acceptance criteria, the results of this study could contribute to a more sustainable future by decreasing the carbon dioxide emissions of wind turbine blades and improving their  recycling options. To perform weight optimization the Finite Element Analyses software Abaqus and the optimization software Tosca Structure are used.  The study is conducted based on Design for Six Sigma (DFSS) up until the design concept SG2. The study results in a preliminary design of the wind turbine blade constructed in SSAB Strenx 1300 and proofs that Tosca is a suitable software for performing weight optimization. The results show that it would be feasible to replace the wind turbine blades with SSAB Strenx 1300 MPa, but it will result in a weight increase for the current design. For further studies, it is recommended to consult with the stakeholders on how much weight increase of the blade is acceptable and study on how to modify the design of the steel wind turbine blade.
256

Optimizing Slab Thickness and Joint Spacing for Long-Life Concrete Pavement in Ohio

ALJhayyish, Anwer K. 04 June 2019 (has links)
No description available.
257

Theory and Application of Damping in Jointed Structures

Mathis, Allen, MATHIS 28 June 2019 (has links)
No description available.
258

Parametric study of bridge response to high speed trains, ballasted track on concrete bridges

Rashid, Shahbaz January 2011 (has links)
When a train enters a bridge, passenger sitting inside will feel a sudden bump in the track, which not only affect the riding comfort of the passengers but also put a dynamic impact on the bridge structure. Due to this impact force, we have very serious maintenance problems in the track close to the bridge structure. This sudden bump is produced when train travelling on the track suddenly hit by a very stiff medium like bridge structure. In order to reduce this effect, transition zones are introduced before the bridge so that the change in stiffness will occur gradually without producing any bump.   This master thesis examine the effect of track stiffness on the bridge dynamic response under different train speeds from 150 to 350 km/h with interval 5 km/h and also estimate the minimum length of transition zones require to reduce the effect of change in stiffness on the bridge. Study also gives us some guidelines about the choice of loading model of the train, location of maximum vertical acceleration, effect of ballast model on the results and minimum length of transition zone needs to include in the bridge-track FE-model, for dynamic analysis of the concrete bridges. To carry out this research MATLAB is used to produce an input file for the ABAQUS FEM program. ABAQUS will first read this file, model the bridge and then analysis the bridge. MATLAB will again read the result file, process the result data and plot the necessary graphs.   The Swedish X2000 train is used for this study, which has been modeled with two different methods: moving load model and sprung mass model, in order to see the difference in results. For verification of the MATLAB-ABAQUS model, a 42m long bridge is analysed and results are compared with known results. In this study, concrete simply supported bridges with spans of 5, 10, 15, 20, 25 m have been analysed.
259

Development of an insert for a gripper and a fastening system : Exemplified for a human robot collaborative assembly process

Dimuro Duckwitz, Gonzalo January 2022 (has links)
Nowadays, the use of robots in industrial tasks is growing constantly. However, manual assembly is one area that is hard to make fully automated since manual assembly operations work with different shapes and products that require human finesse to do some operations. Humans, on the other hand, have a lot of limitations since this kind of task can be unergonomic and repetitive for operators, which can cause them stress, fatigue, repetitive stress injuries(RSI), and repetitive motion injuries. This project involved designing an insert for the gripper 2F-85 (version 3) that would allow the collaborative robot (UR5) to carry out more assembly tasks in order to relieve human workers of repetitive tasks. The insert has to handle cylindrical shapes in addition to bigger parts that the actual insert cannot handle due to its parallel stroke. For that, a detailed market analysis and insert research were conducted in the initial study. The new insert was then developed using a double-diamond design process. The needs were ranked using the Moscow prioritization method, and ideas were then generated using the brainstorming technique. The final concept was chosen using the weighted decision matrix method. After the final concept selection, computer-aided design (CAD) technology was employed to create the new insert's 3D model and its technical specifications. The mechanical behaviour of the new insert was analysed to reflect its range of workability, expressing the maximum force that it can withstand on each of its grip work surfaces without presenting plastic deformation. For this study, finite element analyses were conducted following the general method for linear structural analysis using Abaqus. Achieving an insert that can reach, transport, and assemble different shapes will help integrate collaborative robots into manual assembly processes, avoiding the cost of a new gripper.
260

Study of the Effect of Unidirectional Carbon Fiber in Hybrid Glass Fiber / Carbon Fiber Sandwich Box Beams

Joshi, Ninad Milind January 2013 (has links)
No description available.

Page generated in 0.0213 seconds