• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 160
  • 37
  • 23
  • 22
  • 20
  • 11
  • 9
  • 7
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 351
  • 122
  • 115
  • 103
  • 89
  • 72
  • 72
  • 67
  • 59
  • 48
  • 44
  • 42
  • 41
  • 37
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Investigation of 10-bit SAR ADC using flip-flip bypass circuit

Fontaine, Robert Alexander 15 April 2014 (has links)
The Successive Approximation Register (SAR) Analog to Digital Converter (ADC) is power efficient and operates at moderate resolution. However, the conversion speed is limited by settling time and control logic constraints. This report investigates a flip-flop bypass technique to reduce the required conversion time. A conventional design and flip-flop bypass design are simulated using a 0.18[micrometer] CMOS process. Background and design of the control logic, comparator, capacitive array, and switches for implementing the SAR ADCs is presented with the emphasis on optimizing for conversion speed. / text
102

Integrated temperature sensors in deep sub-micron CMOS technologies

Chowdhury, Golam Rasul 03 July 2014 (has links)
Integrated temperature sensors play an important role in enhancing the performance of on-chip power and thermal management systems in today's highly-integrated system-on-chip (SoC) platforms, such as microprocessors. Accurate on-chip temperature measurement is essential to maximize the performance and reliability of these SoCs. However, due to non-uniform power consumption by different functional blocks, microprocessors have fairly large thermal gradient (and variation) across their chips. In the case of multi-core microprocessors for example, there are task-specific thermal gradients across different cores on the same die. As a result, multiple temperature sensors are needed to measure the temperature profile at all relevant coordinates of the chip. Subsequently, the results of the temperature measurements are used to take corrective measures to enhance the performance, or save the SoC from catastrophic over-heating situations which can cause permanent damage. Furthermore, in a large multi-core microprocessor, it is also imperative to continuously monitor potential hot-spots that are prone to thermal runaway. The locations of such hot spots depend on the operations and instruction the processor carries out at a given time. Due to practical limitations, it is an overkill to place a big size temperature sensor nearest to all possible hot spots. Thus, an ideal on-chip temperature sensor should have minimal area so that it can be placed non-invasively across the chip without drastically changing the chip floor plan. In addition, the power consumption of the sensors should be very low to reduce the power budget overhead of thermal monitoring system, and to minimize measurement inaccuracies due to self-heating. The objective of this research is to design an ultra-small size and ultra-low power temperature sensor such that it can be placed in the intimate proximity of all possible hot spots across the chip. The general idea is to use the leakage current of a reverse-bias p-n junction diode as an operand for temperature sensing. The tasks within this project are to examine the theoretical aspect of such sensors in both Silicon-On-Insulator (SOI), and bulk Complementary Metal-Oxide Semiconductor (CMOS) technologies, implement them in deep sub-micron technologies, and ultimately evaluate their performances, and compare them to existing solutions. / text
103

A Configurable Terasample-per-second Imaging System for Optical SETI

Mead, Curtis Charles 08 October 2013 (has links)
A new instrument for conducting astronomical searches for nanosecond-scale optical pulses has been designed, built, and is now operating at Oak Ridge Observatory in Harvard, MA. The Advanced All-sky Camera, based on the previous generation ASIC-based design, is implemented using Xilinx Virtex-5 LX110 FPGAs to create a flexible and configurable system. Each FPGA has 32 1.5 Gsps analog-to-digital converters, implemented as 8-level flash ADCs using 256 of the Virtex-5's LVDS input pairs. Thirty-two FPGAs in the system total 1024 ADC channels, each with 8kB of sample memory, for triggering on and recording coincident pulse waveforms from an array of 1024 photomultiplier tube anodes. / Engineering and Applied Sciences
104

Tunable mismatch shaping for bandpass Delta-Sigma data converters

Akram, Waqas 16 June 2011 (has links)
Oversampled digital-to-analog converters typically employ an array of unit elements to drive out the analog signal. Manufacturing defects can create errors due to mismatch between the unit elements, leading to a sharp reduction in the effective dynamic range through the converter. Mismatch noise shaping is an established technique for alleviating these effects, but usually anchors the signal band to a fixed frequency location. In order to extend these advantages to tunable applications, this work explores a series of techniques that allow the suppression band of the mismatch noise shaping function to have an adjustable center frequency. The proposed techniques are implemented in hardware and evaluated according to mismatch shaping performance, latency and hardware complexity. / text
105

Study on a second-order bandpass Σ∆-modulator for flexible AD-conversion

Svensson, Hanna January 2008 (has links)
An important component in many communication system is the digital to analog converter. The component is needed in order to convert real world analog quantities to digital quantities which are easier to process. As the market for hand held devices with wireless communication with the outer world has increased new approaches for sharing the frequency spectrum are needed. Therefore it would be interesting to look at the possibility to design an analog to digital converter that, in runtime, can change the frequency band converted, and hence the used standard. This thesis study one of the possibilities to design such an ADC, as a Σ∆ modulator, and more precise the structure called Cascade of resonators with distributed feedback and input (CRFB). The order of the modulator in this study is two.
106

An 8-bit, 12.5GS/s Folding-interpolating Analog-to-digital Converter

Ghetmiri, Shohreh 10 August 2009 (has links)
The motivation behind this work is to target the demand for high-speed medium-resolution ADCs for satellite communication systems. An 8-bit, 12.5GS/s folding-interpolating ADC was designed in 0.25µm, 190GHz SiGe BiCMOS technology from IHP. The ADC consists of a THA, a reference resistor ladder, folding amplifiers, an interpolating resistor string, a comparator array, a digital encoder, a coarse quantizer and a bit synchronizer. Post-layout simulation results of the ADC verify that its performance meets all the required specifications. By comparison to other high-speed ADCs, implemented in SiGe technologies, the present design features the highest sampling rate for 8-bit resolution ADCs to date with a good FOM (12.9pJ/conversion). The THA and the comparator were implemented experimentally and characterized to verify their performance and to ascertain the possibility of implementing the complete ADC. The experimental results meet the expected specifications and indicate that both circuits are suitable for the implementation of the ADC.
107

Integrated Circuit Blocks for High Performance Baseband and RF Analog-to-Digital Converters

Chen, Hongbo 2011 December 1900 (has links)
Nowadays, the multi-standard wireless receivers and multi-format video processors have created a great demand for integrating multiple standards into a single chip. The multiple standards usually require several Analog to Digital Converters (ADCs) with different specifications. A promising solution is adopting a power and area efficient reconfigurable ADC with tunable bandwidth and dynamic range. The advantage of the reconfigurable ADC over customized ADCs is that its power consumption can be scaled at different specifications, enabling optimized power consumption over a wide range of sampling rates and resulting in a more power efficient design. Moreover, the reconfigurable ADC provides IP reuse, which reduces design efforts, development costs and time to market. On the other hand, software radio transceiver has been introduced to minimize RF blocks and support multiple standards in the same chip. The basic idea is to perform the analog to digital (A/D) and digital to analog (D/A) conversion as close to the antenna as possible. Then the backend digital signal processor (DSP) can be programmed to deal with the digital data. The continuous time (CT) bandpass (BP) sigma-delta ADC with good SNR and low power consumption is a good choice for the software radio transceiver. In this work, a proposed 10-bit reconfigurable ADC is presented and the non-overlapping clock generator and state machine are implemented in UMC 90nm CMOS technology. The state machine generates control signals for each MDAC stage so that the speed can be reconfigured, while the power consumption can be scaled. The measurement results show that the reconfigurable ADC achieved 0.6-200 MSPS speed with 1.9-27 mW power consumption. The ENOB is about 8 bit over the whole speed range. In the second part, a 2-bit quantizer with tunable delay circuit and 2-bit DACs are implemented in TSMC 0.13um CMOS technology for the 4th order CT BP sigma-delta ADC. The 2-bit quantizer and 2-bit DACs have 6dB SNR improvement and better stability over the single bit quantizer and DACs. The penalty is that the linearity of the feedback DACs should be considered carefully so that the nonlinearity doesn't deteriorate the ADC performance. The tunable delay circuit in the quantizer is designed to adjust the excess loop delay up to +/- 10% to achieve stability and optimal performance.
108

Construction of a Low-Noise Amplifier Chain With Programmable Gain and Offset

Tallhage, Jonas January 2013 (has links)
A low-noise, variable gain amplier chain was constructed for interfa-cing a sensor to an ADC. During the course of the work two dierent methods -switched-capacitor circuits and chopping circuits - for dealing with 1/f noise wereinvestigated during the course of the work. The resulting circuit did not quitemeet the performance required by the specication, some possible improvementsare suggested.
109

An 8-bit, 12.5GS/s Folding-interpolating Analog-to-digital Converter

Ghetmiri, Shohreh 10 August 2009 (has links)
The motivation behind this work is to target the demand for high-speed medium-resolution ADCs for satellite communication systems. An 8-bit, 12.5GS/s folding-interpolating ADC was designed in 0.25µm, 190GHz SiGe BiCMOS technology from IHP. The ADC consists of a THA, a reference resistor ladder, folding amplifiers, an interpolating resistor string, a comparator array, a digital encoder, a coarse quantizer and a bit synchronizer. Post-layout simulation results of the ADC verify that its performance meets all the required specifications. By comparison to other high-speed ADCs, implemented in SiGe technologies, the present design features the highest sampling rate for 8-bit resolution ADCs to date with a good FOM (12.9pJ/conversion). The THA and the comparator were implemented experimentally and characterized to verify their performance and to ascertain the possibility of implementing the complete ADC. The experimental results meet the expected specifications and indicate that both circuits are suitable for the implementation of the ADC.
110

OFDM受信機におけるADCの非線形性を考慮した干渉影響の軽減手法

澤田, 学, SAWADA, Manabu, 山里, 敬也, YAMAZATO, Takaya, 片山, 正昭, KATAYAMA, Masaaki 06 1900 (has links)
No description available.

Page generated in 0.0213 seconds