• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 11
  • 10
  • 10
  • 7
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A 12-bit, 10 Msps two stage SAR-based pipeline ADC

Gandara, Miguel Francisco 23 April 2013 (has links)
The market for battery powered communications devices has grown significantly in recent years. These devices require a large number of analog to digital converters (ADCs) to transform wireless and other physical data into the digital signals required for digital signal processing elements and micro-processors. For these applications, power efficiency and accuracy are of the utmost importance. Successive approximation register (SAR) ADCs are frequently used in power constrained applications, but their main limitation is their low sampling rate. In this work, a two stage pipelined ADC is presented that attempts to mitigate some of the sampling rate limitations of a SAR while maintaining its power and resolution advantages. Special techniques are used to reduce the overall sampling capacitance required in both SAR stages and to increase the linearity of the multiplying digital to analog converter (MDAC) output. The SAR sampling network, control logic, and MDAC blocks are completely implemented. Ideal components were used for the clocking, comparators, and switches. At the end of this design, a figure of merit of 51 fJ/conversion-step was achieved. / text
2

Investigation of 10-bit SAR ADC using flip-flip bypass circuit

Fontaine, Robert Alexander 15 April 2014 (has links)
The Successive Approximation Register (SAR) Analog to Digital Converter (ADC) is power efficient and operates at moderate resolution. However, the conversion speed is limited by settling time and control logic constraints. This report investigates a flip-flop bypass technique to reduce the required conversion time. A conventional design and flip-flop bypass design are simulated using a 0.18[micrometer] CMOS process. Background and design of the control logic, comparator, capacitive array, and switches for implementing the SAR ADCs is presented with the emphasis on optimizing for conversion speed. / text
3

LOW-POWER TECHNIQUES FOR SUCCESSIVE APPROXIMATION REGISTER (SAR) ANALOG-TO-DIGITAL CONVERTERS

Sekar, Ramgopal 01 August 2010 (has links)
In this work, we investigate circuit techniques to reduce the power consumption of Successive Approximation Register Analog-to-Digital Converter (SAR-ADC). We developed four low-power SAR-ADC design techniques, which are: 1) Low-power SAR-ADC design with split voltage reference, 2) Charge recycling techniques for low-power SAR-ADC design, 3) Low-power SAR-ADC design using two-capacitor arrays, 4) Power reduction techniques by dynamically minimizing SAR-ADC conversion cycles. Matlab simulations are performed to investigate the power saving by the proposed techniques. Simulation results show that significant power reduction can be achieved by using the developed techniques. In addition, design issues such as area overhead, design complexity associated with the proposed low-power techniques are also discussed in the thesis.
4

Energy-Efficient Capacitance-to-Digital Converters for Low-Energy Sensor Nodes

Omran, Hesham 11 1900 (has links)
Energy efficiency is a key requirement for wireless sensor nodes, biomedical implants, and wearable devices. The energy consumption of the sensor node needs to be minimized to avoid battery replacement, or even better, to enable the device to survive on energy harvested from the ambient. Capacitive sensors do not consume static power; thus, they are attractive from an energy efficiency perspective. In addition, they can be employed in a wide range of sensing applications. However, the sensor readout circuit–i.e., the capacitance-to-digital converter (CDC)–can be the dominant source of energy consumption in the system. Thus, the development of energy-efficient CDCs is crucial to minimizing the energy consumption of capacitive sensor nodes. In the first part of this dissertation, we propose several energy-efficient CDC architectures for low-energy sensor nodes. First, we propose a digitally-controlled coarsefine multislope CDC that employs both current and frequency scaling to achieve significant improvement in energy efficiency. Second, we analyze the limitations of successive approximation (SAR) CDC, and we address these limitations by proposing a robust parasitic-insensitive opamp-based SAR CDC. Third, we propose an inverter-based SAR CDC that achieves an energy efficiency figure-of-merit (FoM) of 31fJ/Step, which is the best energy efficiency FoM reported to date. Fourth, we propose a differential SAR CDC with quasi-dynamic operation to maintain excellent energy efficiency for a scalable sample rate. In the second part of this dissertation, we study the matching properties of small integrated capacitors, which are an integral component of energy-efficient CDCs. Despite conventional wisdom, we experimentally illustrate that the mismatch of small capacitors can be directly measured, and we report mismatch measurements for subfemtofarad integrated capacitors. We also correct the common misconception that lateral capacitors match better than vertical capacitors, and we identify the conditions that make one implementation preferable. In the third and last part of this dissertation, we investigate the potential of novel metal-organic framework (MOF) thin films in capacitive gas sensing. We provide sensitivity-based optimization and simple fabrication flow for capacitive interdigitated electrodes. We use a custom flexible gas sensor test setup that is designed and built in-house to characterize MOF-based capacitive gas sensors.
5

Design of a low power 8-bit A/D converter for wireless neural recorder applications

Yang, Jiao 10 July 2017 (has links)
Human brain and related topics like neuron spikes and their active potentials have become more and more attractive to people these days, as these issues are extremely helpful for curing many neural injuries and cognitive diseases. One method to discover this field is by designing a chip embedded in brains with probes to actual neurons. It is obvious that batteries are not practical for these applications and thereby RF radiation is used as power sources, revealing that chips should operate under a very low power supply. Since neural signals are analog waveforms, analog-to-digital converter (A/D converter, ADC) is the key component in a neural recorder chip. This thesis proposes the complete design of a low power 8-bit successive approximation register (SAR) A/D converter for use in a wireless neural recorder chip, realizing the function of digitizing a sampled neural signal with a frequency distribution of 10Hz to 10kHz. A modified energy-saving capacitor array in the SAR structure is provided to help save power dissipation. Therefore, the ADC shall operate within a power budget of 20­μW maximum from a 1­V power source, at a clock frequency of 500kHz corresponding to a conversion rate of 55.5-kS/s. All the circuits are designed and implemented based on the IBM/Global Foundries 8HP 130nm BiCMOS technology. Simulations of schematic and layout versions are done respectively to verify the functionality, linearity and power consumption of the ADC. Key words: Successive approximation register analog-to-digital converter (SAR-ADC), low power design, energy-saving capacitor array, neural recorder applications
6

A Successive Approximation Register Analog-to-digital Converter For Low Cost Microbolometers

Mahsereci, Yigit Uygar 01 February 2012 (has links) (PDF)
Commercialization of infrared (IR) vision is of vital importance for many applications, such as automobile and health care. The main obstacle in front of the further spread of this technology is the high price. The cost reduction is achieved by placing on-chip electronics and diminishing the camera size, where one of the important components is the analog-to-digital converter (ADC). This thesis reports the design of a successive approximation register (SAR) ADC for low-cost microbolometers and its test electronics. Imaging ADCs are optimized only for the specific application in order to achieve the lowest power, yet the highest performance. The successive approximation architecture is chosen, due to its low-power, small-area nature, high resolution potential, and the achievable speed, as the ADC needs to support a 160x120 imager at a frame rate of 25 frames/sec (fps). The resolution of the ADC is 14 bit at a sampling rate of 700 Ksample/sec (Ksps). The noise level is at the order of 1.3 LSBs. The true resolution of the ADC is set to be higher than the need of the current low-cost microbolometers, so that it is not the limiting factor for the overall noise specifications. The design is made using a 0.18&micro / m CMOS process, for easy porting of design to the next generation low-cost microbolometers. An optional dual buffer approach is used for improved linearity, a modified, resistive digital-to-analog converter (DAC) is used for enhanced digital correction, and a highly configurable digital controller is designed for on-silicon modification of the device. Also, a secondary 16-bit high performance ADC with the same topology is designed in this thesis. The target of the high resolution ADC is low speed sensors, such as temperature sensors or very small array sizes of infrared sensors. Both of the SAR ADCs are designed without switched capacitor circuits, the operation speed can be minimized as low as DC if an extremely low power operation is required. A compact test setup is designed and implemented for the ADC. It consists of a custom designed proximity card, an FPGA card, and a PC. The proximity card is designed for high resolution ADC testing and includes all analog utilities such as voltage references, voltage regulators, digital buffers, high resolution DACs for reference generation, voltage buffers, and a very high resolution &Delta / -&Sigma / DAC for input voltage generation. The proximity card is fabricated and supports automated tests, because many components surrounding the ADC are digitally controllable. The FPGA card is selected as a commercially available card with USB control. The full chip functionalities and performances of both ADCs are simulated. The complete layouts of both versions are finished and submitted to the foundry. The ADC prototypes consist of more than 7500 transistors including the digital circuitry. The power dissipation of the 16-bit ADC is around 10mW, where the 14-bit device consumes 30mW. Each of the dies is 1mm x 5mm, whereas the active circuits occupy around 0.5mm x 1.5mm silicon area. These chips are the first steps in METU for the realization of the digital-in digital-out low cost microbolometers and low cost sensors.
7

Estudo de falhas transientes e técnicas de tolerância a falhas em conversores de dados do tipo SAR baseados em redistribuição de carga

Lanot, Alisson Jamie Cruz January 2014 (has links)
Conversores A/D do tipo aproximações sucessivas (SAR) baseados em redistribuição de carga são frequentemente utilizados em aplicações envolvendo a aquisição de sinais, principalmente as que exigem um baixo consumo de área e energia e boa velocidade de conversão. Esta topologia está presente em diversos dispositivos programáveis comerciais, como também em circuitos integrados de propósito geral. Tais dispositivos, quando expostos a ambientes suscetíveis a radiação, como é o caso de aplicações espaciais, estão sujeitos à colisão com partículas capazes de ionizar o silício. Estes podem causar falhas temporárias, como um efeito transiente, uma inversão de bit em um elemento de memória, ou até mesmo danos permanentes no circuito. Este trabalho visa descrever o comportamento do conversor SAR baseado em redistribuição de carga após a ocorrência de efeitos transientes causados por radiação, por meio de simulação SPICE. Tais efeitos podem causar falhas nos componentes da topologia: chaves, lógica de controle e comparador. Estes são propagados por todo o estágio de conversão, devido à sua característica sequencial de conversão. Por fim, uma discussão sobre as possíveis técnicas de mitigação de falhas para esta topologia é apresentada. / Successive Approximation Register (SAR) Analog to Digital Converters (ADCs) based on charge redistribution are frequently used in data acquisition systems, especially those requiring low power and low area, and good conversion speed. This topology is present on several mixed-signal programmable devices. These devices, when exposed to harsh environments, such as radiation, which is the case for space applications, are prone to Single Event Effects (SEEs). These effects may cause temporary failures, such as transient effects or memory upsets or even permanent failures on the circuit. This work presents the behavior of this type of converter after the occurrence of a transient fault on the circuit, by means of SPICE simulations. These transient faults may cause an inversion on the conversion due to a transient on the control logic of the switches, or a charge or discharge of the capacitors when a transient occur on the switches, as well as a failure on the comparator, which may propagate to the remainder stages of conversion, due to the sequential nature of the converter. A discussion about the possible fault mitigation techniques is also presented.
8

Estudo de falhas transientes e técnicas de tolerância a falhas em conversores de dados do tipo SAR baseados em redistribuição de carga

Lanot, Alisson Jamie Cruz January 2014 (has links)
Conversores A/D do tipo aproximações sucessivas (SAR) baseados em redistribuição de carga são frequentemente utilizados em aplicações envolvendo a aquisição de sinais, principalmente as que exigem um baixo consumo de área e energia e boa velocidade de conversão. Esta topologia está presente em diversos dispositivos programáveis comerciais, como também em circuitos integrados de propósito geral. Tais dispositivos, quando expostos a ambientes suscetíveis a radiação, como é o caso de aplicações espaciais, estão sujeitos à colisão com partículas capazes de ionizar o silício. Estes podem causar falhas temporárias, como um efeito transiente, uma inversão de bit em um elemento de memória, ou até mesmo danos permanentes no circuito. Este trabalho visa descrever o comportamento do conversor SAR baseado em redistribuição de carga após a ocorrência de efeitos transientes causados por radiação, por meio de simulação SPICE. Tais efeitos podem causar falhas nos componentes da topologia: chaves, lógica de controle e comparador. Estes são propagados por todo o estágio de conversão, devido à sua característica sequencial de conversão. Por fim, uma discussão sobre as possíveis técnicas de mitigação de falhas para esta topologia é apresentada. / Successive Approximation Register (SAR) Analog to Digital Converters (ADCs) based on charge redistribution are frequently used in data acquisition systems, especially those requiring low power and low area, and good conversion speed. This topology is present on several mixed-signal programmable devices. These devices, when exposed to harsh environments, such as radiation, which is the case for space applications, are prone to Single Event Effects (SEEs). These effects may cause temporary failures, such as transient effects or memory upsets or even permanent failures on the circuit. This work presents the behavior of this type of converter after the occurrence of a transient fault on the circuit, by means of SPICE simulations. These transient faults may cause an inversion on the conversion due to a transient on the control logic of the switches, or a charge or discharge of the capacitors when a transient occur on the switches, as well as a failure on the comparator, which may propagate to the remainder stages of conversion, due to the sequential nature of the converter. A discussion about the possible fault mitigation techniques is also presented.
9

Estudo de falhas transientes e técnicas de tolerância a falhas em conversores de dados do tipo SAR baseados em redistribuição de carga

Lanot, Alisson Jamie Cruz January 2014 (has links)
Conversores A/D do tipo aproximações sucessivas (SAR) baseados em redistribuição de carga são frequentemente utilizados em aplicações envolvendo a aquisição de sinais, principalmente as que exigem um baixo consumo de área e energia e boa velocidade de conversão. Esta topologia está presente em diversos dispositivos programáveis comerciais, como também em circuitos integrados de propósito geral. Tais dispositivos, quando expostos a ambientes suscetíveis a radiação, como é o caso de aplicações espaciais, estão sujeitos à colisão com partículas capazes de ionizar o silício. Estes podem causar falhas temporárias, como um efeito transiente, uma inversão de bit em um elemento de memória, ou até mesmo danos permanentes no circuito. Este trabalho visa descrever o comportamento do conversor SAR baseado em redistribuição de carga após a ocorrência de efeitos transientes causados por radiação, por meio de simulação SPICE. Tais efeitos podem causar falhas nos componentes da topologia: chaves, lógica de controle e comparador. Estes são propagados por todo o estágio de conversão, devido à sua característica sequencial de conversão. Por fim, uma discussão sobre as possíveis técnicas de mitigação de falhas para esta topologia é apresentada. / Successive Approximation Register (SAR) Analog to Digital Converters (ADCs) based on charge redistribution are frequently used in data acquisition systems, especially those requiring low power and low area, and good conversion speed. This topology is present on several mixed-signal programmable devices. These devices, when exposed to harsh environments, such as radiation, which is the case for space applications, are prone to Single Event Effects (SEEs). These effects may cause temporary failures, such as transient effects or memory upsets or even permanent failures on the circuit. This work presents the behavior of this type of converter after the occurrence of a transient fault on the circuit, by means of SPICE simulations. These transient faults may cause an inversion on the conversion due to a transient on the control logic of the switches, or a charge or discharge of the capacitors when a transient occur on the switches, as well as a failure on the comparator, which may propagate to the remainder stages of conversion, due to the sequential nature of the converter. A discussion about the possible fault mitigation techniques is also presented.
10

Design of Ultra-Low-Power Analog-to-Digital Converters

Zhang, Dai January 2012 (has links)
Power consumption is one of the main design constraints in today’s integrated circuits. For systems powered by small non-rechargeable batteries over their entire lifetime, such as medical implant devices, ultra-low power consumption is paramount. In these systems, analog-to-digital converters (ADCs) are key components as the interface between the analog world and the digital domain. This thesis addresses the design challenges, strategies, as well as circuit techniques of ultra-low-power ADCs for medical implant devices. Medical implant devices, such as pacemakers and cardiac defibrillators, typically requirelow-speed, medium-resolution ADCs. The successive approximation register (SAR) ADC exhibits significantly high energy efficiency compared to other prevalent ADC architectures due to its good tradeoffs among power consumption, conversion accuracy, and design complexity. To design an energy-efficient SAR ADC, an understanding of its error sources as well as its power consumption bounds is essential. This thesis analyzes the power consumption bounds of SAR ADC: 1) at low resolution, the power consumption is bounded by digital switching power; 2) at medium-to-high resolution, the power consumption is bounded by thermal noise if digital assisted techniques are used to alleviate mismatch issues; otherwise it is bounded by capacitor mismatch.  Conversion of the low frequency bioelectric signals does not require high speed, but ultra-low-power operation. This combined with the required conversion accuracy makes the design of such ADCs a major challenge. It is not straightforward to effectively reduce the unnecessary speed for lower power consumption using inherently fast components in advanced CMOS technologies. Moreover, the leakage current degrades the sampling accuracy during the long conversion time, and the leakage power consumption contributes to a significant portion of the total power consumption. Two SAR ADCs have been implemented in this thesis. The first ADC, implemented in a 0.13-µm CMOS process, achieves 9.1 ENOB with 53-nW power consumption at 1 kS/s. The second ADC, implemented in a 65-nm CMOS process, achieves the same resolution at 1 kS/s with a substantial (94%) improvement in power consumption, resulting in 3-nW total power consumption. Our work demonstrates that the ultra-low-power operation necessitates maximum simplicity in the ADC architecture.

Page generated in 0.1625 seconds