• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 48
  • Tagged with
  • 102
  • 102
  • 76
  • 74
  • 74
  • 39
  • 39
  • 36
  • 28
  • 27
  • 26
  • 23
  • 21
  • 21
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Input shaping in a cantilever 3D printer : Construction and evaluation / Precision how en Cantilever 3D skrivare : Konstruktion och utvärdering

Achrén, Albert, Bårdén, Jacob January 2023 (has links)
FDM 3D printing is an additive manufacturing technology that is widely used, mainly for rapid prototyping. It is also one of the cheapest and most accessible AM technologies for consumers. FDM printers, and especially cheaper alternatives, can have problems with creating high quality prints. Reasons include poor design, inaccurate construction, cheap components, and improper tuning. Input shaping is a control technique that may help mitigate defects caused by poor mechanical design or construction. The “ringing” defect may be eliminated by applying this solution. To perform an evaluation in sub-optimal mechanical conditions a 3D printer was constructed with a cantilever design mainly using plastic prints for mechanically important parts. Printing tests were done with and without input shaping. The results that were produced showed a direct effect of input shaping in 3d printers. / FDM 3D-printing är en additiv tillverkningsteknik som är mycket använd, främst för snabb prototypering. Det är också en av de billigaste och mest tillgängliga AM-teknikerna för konsumenter. FDM skrivare, och särskilt billigare alternativ, kan ha problem med att skapa högkvalitativa utskrifter. Orsaker inkluderar dålig design, konstruktionfel, billiga komponenter och felaktig justering. Input shaping är en kontrollteknik som kan hjälpa till att mildra defekter som orsakas av dålig mekanisk design eller konstruktion. "Ringning" defekten kan elimineras genom att tillämpa denna lösning. För att utföra en utvärdering i dåliga mekaniska förhållanden konstruerades en 3D-skrivare med en fribärande design som använder plastutskrifter för mekaniskt viktiga delar. Utskriftstester gjordes med och utan input shaping. Resultaten som framställdes visade på en uppenbar förbättring av print kvalité som en direkt effekt av input shaping.
42

Repeatability of Additive Manufactured Parts

Tollander, Sofia, Kouach, Mona January 2017 (has links)
Saab Surveillance in Järfä̈lla constructs complex products, such as radars and electronic support measures. Saab sees an advantage in manufacturing details with additive manufacturing as it enables a high level of complexity. Additive manufacturing is relatively new in the industry and consequently there are uncertainties regarding the process. The purpose of this bachelor thesis was to improve the knowledge of the repeatability of additive manufactured parts as well as compare additive manufactured test rods in two different directions, horizontally and vertically, to subtractive manufactured test rods with a vibration test. The vibration test was conducted to simulate the operative environment where the additive manufactured parts might be implemented in the future. Before the vibration test could be performed, the test rods were designed in a 3D-modeling program and analysed with a finite element method to achieve the required natural frequency range of 100 - 200 Hz and a maximal bending stress of 60 - 80 MPa in the notched area of the test rod. It was concluded that the subtractive manufactured test rods had the highest repeatability. The horizontally additive manufactured test rods had a higher repeatability than the vertically additive manufactured test rods, but the vertically additive manufactured test rods had the highest overall strength. It was also concluded that more studies are needed to ensure that additive manufactured parts can be produced with high repeatability while maintaining the structural integrity. / Saab Surveillance i Järfä̈lla konstruerar komplexa försvarsprodukter som till exempel radarsystem. Additiv tillverkning i metall möjliggör tillverkning av produkter med hög komplexitet, men då tillverkningsprocessen är relativt ny i industrin finns det en stor osäkerhet kring processen. Syftet med detta kandidatexamensarbete var att få en bättre förståelse för repeterbarheten hos additivt tillverkade delar samt att jämföra additivt tillverkade provstavar konstruerade i två olika riktningar, horisontellt och vertikalt, med svarvade provstavar med hjälp av ett vibrationstest. Vibrationstestet genomfördes för att simulera den operativa miljön där de additivt tillverkade detaljerna skulle kunna implementeras i framtiden. Innan vibrationstestet kunde utföras simulerades provstavarnas design i en mjukvara för 3D-modellering. En finit element-analys utfördes även fö̈r att få en egenfrekvens inom intervallet 100 - 200 Hz och en maximal böjspänning mellan 60 - 80 MPa i anvisningen på provstaven. Slutsatsen drogs att de traditionellt bearbetade stavarna hade den högsta repeterbarheten. De horisontellt additivt tillverkade stavarna hade högre repeterbarhet än de vertikalt additivt tillverkade stavarna, men att de vertikalt additivt tillverkade stavarna hade ett längre utmattningsliv. Det kunde även konstateras att fler studier inom ämnet behövs för att kunna säkerställa repeterbarheten hos additivt tillverkade delar utan att behöva kompromissa med hållfastheten.
43

ADAPTION OF A HEATSINK TO ADDITIVE MANUFACTURING. : INCLUDING A GUIDE TO INDUSTRIAL STARTUP OF AM. / Anpassning av en elektronikkylare till Additiv Tillverkning. : Inklusive en industriell uppstartsguide för AM.

Ingman, Richard January 2019 (has links)
This thesis is an investigation of the current status of additive manufacturing (AM) regarding different technologies, the level of implementation in industry and the future obstacles for further implementation. As a secondary objective, an existing heatsink for electronic equipment was redesigned, adapted to and improved using the design advantages of AM, and was later manufactured through 3D-printing in aluminium (AlSi10Mg). The thesis resulted in a summarized roadmap of recommended actions for Saab Surveillance in Järfälla in the near future. And a redesigned heatsink, which was tested to hold a static pressure of 30 bar, and simulated to achieve the same pressure drop in the channel and withstand the same vibration load as the old heatsink. At the same time, the new design reduced the total weight by 20% and increased the heat transferring surface area of the channel by 100%, potentially doubling the heat transfer capability. / Detta examensarbete har undersökt den nuvarande statusen hos additiv tillverkning (AM) vad gäller olika teknologier, hur långt implementeringen i industrin kommit och framtida hinder som måste lösas för vidare implementering. Som sekundärt mål för projektet har en existerande elektronikkylare designats om och förbättrats med hjälp av designfördelarna hos AM, och tillverkades sedan genom 3D-printning i aluminium (AlSi10Mg). Arbetet har resulterat i en sammanfattad ’roadmap’ med rekommendationer för vad Saab Surveillance i Järfälla bör göra inom AM den närmaste tiden, samt en ny kylare som framgångsrikt trycktestades upp till 30 bar. Genom simuleringar visades den uppnå samma tryckfall och klara samma vibrationer som den tidigare kylaren, samtidigt som den väger 20% mindre och har en 100% ökning av kylkanalens våta area vilket potentiellt innebär en dubblering av kylförmågan.
44

A Business Model Perspective on Additive Manufacturing / Ett affärsmodellsperspektiv på additiv tillverkning

PORAT, INGRID, HOVSTADIUS, KLARA January 2018 (has links)
Additive manufacturing (AM) is an immature manufacturing technology which is often considered to have the potential of disrupting the manufacturing industry and many industrial companies are currently investigating how they can position themselves within the AM market. Technological innovations alone are often insufficient to fully exploit the benefits of new technology and requires to be accompanied with business model innovation. Consequently, companies face challenges to find guidance related to the application of AM; what to offer and to whom (value proposition), how to deliver such offering (value creation) and how to capture the profit (value capture) – that is, how to structure an AM business model. Therefore, this research investigates how large incumbent manufacturing companies tackle the emerging AM market from a business model perspective. The research unpacks the common themes within three business model components (value proposition, value creation and value capture) in the context of an AM business model, where theme 5 is contradicted by theory and by several other themes: 1. Immature demand 2. Internal cases as a starting point 3. Knowledge offerings 4. End-to-end solutions 5. Broad customer focus 6. Start in a technology niche, then expand 7. Invest in machines to learn AM 8. Change in designer mindset required 9. Partnerships to drive the AM market forward 10. A shift in power 11. Close customer relations 12. It is a race to the market The research is based on a multiple-case study consisting of 16 interviews at six different companies and two universities. / Additiv tillverkning (AM) är en omogen tillverkningsteknik som anses ha potential att kraftigt påverka den tillverkande industrin och många företag närmar sig nu AM för att undersöka hur de kan ta en stark position på marknaden. Teknologiska innovationer i sig är ofta otillräckliga för att till fullo utnyttja fördelar med ny teknik och därför krävs även innovation av affärsmodeller. Det kan vara svårt för företag att hitta argument och stöd för hur en affärsmodell inom AM ska struktureras, det vill säga avgöra vad som ska erbjudas och till vem (value proposition), hur erbjudandet ska levereras (value creation) och hur vinsten ska tillvaratas (value capture). Därför undersöker den här studien hur stora tillverkande företag möter den växande AM-marknaden utifrån ett affärsmodellsperspektiv. Forskningen påvisar gemensamma teman inom tre affärsmodellskomponenter (value proposition, value creation, value capture) i en AM-kontext, där tema 5 motsägs både av teorin och av flera andra teman: 1. Omogen efterfrågan 2. Starta med interna uppdrag 3. Kunskapserbjudanden 4. Helhetslösningar 5. Brett kundfokus 6. Börja i en tekniknisch, expandera sedan 7. Investera i maskiner för att bygga kunskap 8. Behov av förändring i designers tankesätt 9. Partnerskap för att driva AM-marknaden framåt 10. Maktpositionen skiftar 11. Nära kundrelationer 12. Det pågår ett race till marknaden Forskningen är baserad på en multipel fallstudie som inkluderar 16 intervjuer på sex olika företag och två universitet.
45

3D-skrivare inom bilindustrin : Additiv tillverkning gentemot traditionell tillverkning

Hajzeri, Tesi January 2018 (has links)
3D-teknologin uppmärksammas alltmer inom bilindustrin. Additiv tillverkning har redanimplementerats i stor utsträckning på exempelvis prototypframtagning. Det krävs dock drastiskteknologisk förändring för att möta de krav som ställs från konsumenter och samhället.Syftet med arbetet är att undersöka och uppmärksamma 3D-skrivarens roll inom bilindustrin.Studien fokuserar på resurseffektiv produktion med hjälp av 3D-skrivare. Målet är att utvärderavad införandet av 3D-skrivare innebär för denna industri och samhället. Vidare analyseras fördelaroch nackdelar med hjälp av litteraturstudier och intervjuer. Dessutom utreds det vilken inverkan3D-skrivare kan ha på marknadsstrukturer samt på företagens externa och interna dynamik.Sammanfattningsvis undersöks den additiva tillverkningens potential och utmaningar inombilindustrin.Det finns inga stora mängder forskning inom området eftersom 3D-skrivare inom bilproduktionhar införts ganska nyligen och implementeringen fortfarande befinner sig på forsknings- ochprototypframtagningsnivå. I detta arbete strävas det efter att ge en omfattande bild av 3Dskrivarimplementeringpå alla processer inom produktionssektorn.En slutsats från studien är att tekniken medför ett paradigmskifte för bilbranschen. Det konstaterasdock av resultatet att 3D-skrivateknologin behöver utvecklas och förbättras för att den skaanvändas i större utsträckning. Därtill krävs det mer forskning inom ämnet och en satsning påinförandet av kurser och laborationer inom additiv tillverkning i universitet, som ett nödvändigtsteg mot att främja 3D-teknologins frammarsch inom produktion. / 3D technology gets increasing attention in the automotive industry. Additive manufacturing hasalready been implemented to a significant extent, for example on prototype production. On theother hand, a drastic technological change is needed for the automotive industry to handle thedemands of consumers and society.In this research, the 3D printer's role in the automotive industry is highlighted and investigated. Inthe study, the focus is on resource-efficient manufacturing using 3D printers. The goal is toexamine what the introduction of 3D printers means for this industry and the society. Furthermore,pros and cons are analysed and obtained with the help of literature studies and interviews. Inaddition, the impact of 3D printers on market structures and on the company's external and internaldynamics is investigated. In summary, the potential and the challenges of additive manufacturingin the automotive industry are examined.There is not a substantial amount of research in the field since 3D printers have been introducedquite recently to the car manufacturing and implementation is still at research and prototypeproduction level. Therefore, the aim with this work is to provide a comprehensive image of 3Dprinter implementation on all processes in the production sector.One conclusion from the study is that this technology can lead to a paradigm shift for theautomotive industry. However, 3D printing technology needs to be developed and improved tobecome more widely used. More research on the subject is needed and an effort to introducecourses and laboratory work in additive manufacturing at universities is necessary to promote 3Dtechnology's advancement in production.
46

Innovation genom additiv tillverkning / Innovation through Additive Manufacturing

Ståhl, Dennis, Guo, Siyu January 2018 (has links)
Additiv tillverkning, AM, är en teknik som utvecklas med stormsteg. Konventionella tillverkningsmetoder, som exempelvis svarvning eller formgjutning, är begränsade när det kommer till att ta fram produkter med komplexa geometrier och därför är AM ett bra komplement. Tidigare har dock andra materialegenskaper såsom brott- och sträckgräns varit något som kompenserats med inom AM. Men i den takt som AM utvecklas kan tekniken snart ersätta de flesta konventionella tillverkningsmetoderna helt. Syftet med denna rapport är att redogöra vad som är möjligt att producera med dagens AM och vad som kan förväntas i framtiden.Eftersom att komplexa former inte är ett problem med AM så går produkterna att ta fram i ett enda steg jämfört med när de tidigare blivit hopmonterade av flera mindre delar. AM i metall är något som är under snabb utveckling och i dagsläget finns det många metoder för detta, bland annat Selective Laser Sintering, Selective Laser Melting, Beam Metal Deposition, Electron Beam Melting och Binder Jetting. Metoderna använder olika typer av teknik för att skapa modeller och de har alla sina för- och nackdelar vad gäller kostnad, hållfasthet och arbetshastighet.Verktyg i alla dess former är exempel på produkter som kräver hög prestanda och lång livslängd. För att integrera de höga kraven på prestanda och möjligheterna till komplexa geometrier med AM så är det en spiralborr med invändiga kylkanaler som tas fram i denna rapport. De invändiga kylkanalerna skiftar i diameter för att optimera intaget av kylmedel samtidigt som trycket på utloppet ökar.Som tidigare nämnt finns det många metoder för AM i metall. Den metod som anses bäst lämpad för detta ändamål är Selective Laser Melting då denna metod skapar kompakta metallprodukter med hög hållfasthet. En 3D-modell av Spiralborren skapas i Solid Edge ST9 och modellen simuleras i ANSYS Workbench för att se hur kylkanalerna påverkar borren vid användning. Resultatet av simuleringen visar på att den totala deformationen blir 0,68μm och den maximalaspänningen blir 33,95MPa, båda uppstår i mitten på spiralborren. Varken totala deformationen eller spänningen i borren når alltså en kritisk gräns, och därför dras slutsatsen att detta är en konstruktion som skulle klara de krav som finns på en borr.Utvecklingen av nya metoder för AM i metall går snabbt och inom en snar framtid kommer de nya teknikerna ha så pass hög arbetshastighet och vara så pass priseffektiva att de kommer kunna ersätta de flesta konventionella tillverkningsmetoderna helt och hållet. / Additive manufacturing, AM, is a technique that is developing in an incredible pace. Conventional manufacturing methods, like lathe turning or casting for instance, are limited when it comes to creating products with complex geometries, in these cases AM is a good complement. Previously though, material characteristics like tensile strength and yield point is something that AM has been compensating with. But in the current rate of development, the AM-technique can soon replace most conventional manufacturing methods completely. The purpose of this project is to describe the possibilities in AM today and what could be expected in the future.Since complex geometries is not a problem with AM, the products can be produced in only one step compared to conventional methods where it often takes several steps to produce a product. AM with metal is something that is developing fast and there are already many different methods, for instance Selective Laser Sintering, Selective Laser Melting, Beam Metal Deposition, Electron Beam Melting and Binder Jetting. These methods use different techniques to create prototypes and they all have their pros and cons what matters cost, strength and working speed.Tools in all forms are examples of products that requires high performance and a long life-span. To integrate the requirement of high performance and the possibilities with complex geometries through AM, a twisted drill with internal cooling channels is produced in this project. The internal cooling channels are shifting in diameter to optimize the inlet of coolant and at the same time increase the outlet.As mentioned earlier there are many different methods for AM in metal. The method that is considered the best for this purpose is Selective Laser Melting since this method creates compact metal products with high strength. A 3D-model of the twisted drill was created in Solid Edge ST9 and was then analyzed in ANSYS Workbench to see the impact of the internal cooling channels during use of the drill. The results show that the total deformation is 0,68μm and maximum tension is 33,95MPa, both in the middle of the drill. Neither the total deformation or the maximum tension reaches a critical limit and therefor the drawn conclusion is that this model would reach the requirements given to a drill.The development of new methods in AM with metal is going fast and in a near future the new techniques will have increased in working speed so much and be price effective enough to replace most of the conventional manufacturing methods completely.
47

Off-line-programmering av en industriell robotcell för automatiserad additiv tillverkning : - En nybörjarvänlig dokumentation / Off-line-programming of an industrial robot cell for automated additive manufacturing : - A beginner-friendly documentation

Håkansson Burelius, Martin, Blomqvist, Dennis January 2021 (has links)
För att industrier ska hålla sig tekniskt uppdaterade krävs det att studenter, som så småningom blir personal, får utbildning som strävar efter modernisering. En viktig del inom modernisering i dag är automatisering via exempelvis automatiserad additiv tillverkning och off-line-programmering (OLP) som båda besitter stor potential, inte minst inom tillverkningsindustrin. Dessvärre så förekommer det brist på dokumentation om hur denna process går till steg för steg till färdig produkt, därför ämnar sig denna studie till att försöka täcka denna kunskapslucka genom att tillhandahålla en nybörjarvänlig dokumentation om processerna. Dokumentationen ska kunna bidra som referensverktyg i utbildningssyfte, där användaren kan genom nybörjarvänliga guider följa processen steg-för-steg från CAD-modell i SolidWorks till skapandet av robotbanor via 3D-printerprogrammet Slic3r och genom simuleringsprogrammen RoboDK och MotoSim utföra OLP som leder till simulering av additiv tillverkning. Tillvägagångssättet som tagits fram i denna studie valideras även genom automatiserad additiv tillverkning i verklig robotcell. Olika problem och idéer kring framtida forskning tas även upp i denna studie för att kunna utveckla och optimera processen. / In order for industries to stay technically up-to-date, it is necessary that students, who eventually become staff, receive education that strives for modernization. An important part of modernization today is automation via, for example, automated additive manufacturing and off-line programming (OLP), both of which have great potential, not least in the manufacturing industry. Unfortunately, there is a lack of documentation on how this process goes step by step to the finished product, so this study aims to try to cover this knowledge gap by providing a beginner-friendly documentation on the processes. The documentation should be able to contribute as a reference tool for educational purposes, where the user can through beginner-friendly guides follow the process step-by-step from CAD model in SolidWorks to the creation of robot paths via the 3D printer program Slic3r and through the simulation programs RoboDK and MotoSim perform OLP leading to simulation of additive manufacturing. The approach developed in this study is also validated through automated additive manufacturing in real robot cells. Various problems and ideas about future research are also addressed in this study in order to be able to develop and optimize the process.
48

Adaptive Concrete 3D Printing Based on industrial Robotics / Adaptiv betong 3D-utskrift Baserad på industriell robotik

Hu, Ruiming January 2021 (has links)
Additive manufacturing, also known as 3D printing is the construction of a three-dimensional object from 3D CAD model. The process includes that material depositing, joining or solidifying using computer control. It is getting widely used in many fields, such as architecture and civil engineering, industry and even medical fields. Also, the prevalence of 6 axis industrial robot gives researchers and engineers extended possibilities to design and create with the additional degrees of freedom. This project has been conducted at KTH ABE school and ITM school. In recent years, The ABE school explored the possibility of 3D printing with building materials such as concrete which provides a practical basis for the implementation of this project. The ITM school gave guidance and suggestions for this project based on their experience in industrial manufacturing and robot control. The goals were to propose an improvement of current workflow and explore a detection strategy for the defection of concrete 3D printing product. Due to the material limitations of concrete and robot control, the previous printing tasks that should have been automated require human supervision and intervention, which affects work efficiency and completion of finished product. In order to avoid this, an Intel RealSense L515 Lidar camera was applied to capture a point cloud of product to detect the height of product and program can compensate the print layers number and robot trajectory. The industrial robot is controlled by KRL generated from the known trajectory. The implementation of this project consists of background research, design the layout of 3D printing system, algorithm development and case study. A simple clay model is produced during this project to study the feasibility of this method. / Additiv tillverkning, även känd som 3D-utskrift, är konstruktionen av ett tredimensionellt objektfrån 3D CAD-modellen. Processen innefattar att material avsätter, sammanfogar eller stelnar under datorstyrningen. Det används allmänt inom många områden, till exempel arkitektur och anläggning, industri och till och med medicinska områden. Också, förekomsten av 6-axligindustrirobot ger forskare och ingenjörer mer möjlighet att designa och skapa på grund av fler frihetsgrader. Detta projekt har genomförts vid KTH ABE-skolan och ITM-skolan. Under de senaste åren har ABE -skolan undersökt möjligheterna till 3D-utskrift med byggmaterial som betong, vilket ger en teoretisk grund för genomförandet av detta projekt. ITM-skolan gav vägledning och förslag för detta projekt baserat på deras erfarenhet av industrielltillverkning och robotstyrning. Målen var att föreslå en förbättring av det nuvarande arbetsflödet och utforska en detekteringsstrategi för osäkerheten i konkret 3D-utskrift. På grund av den materiella begränsningen av betong och felaktighet i robotstyrning kräver de tidigare utskriftsuppgifterna som borde ha automatiserats mänsklig övervakning och intervention. Detta påverkar arbetseffektiviteten och färdigställandet av den färdiga produkten. För att undvika detta tillämpades en Intel RealSense L515 -radarkamera för att fånga produktensmoln för att upptäcka produktens höjd och programmet kan kompensera antalet utskriftslager och robotbanan. Industriroboten styrs av KRL genererad från den kända banan. Genomförandet av detta projekt består av bakgrundsresurser, design av layouten för 3D -utskriftssystem, algoritmutveckling och fallstudier. En enkel lermodell produceras under detta projekt för att studera genomförbarheten av denna metod.
49

ADDITIVE MANUFACTURING OF PURE COPPER USING ELECTRON BEAM MELTING (EBM)

Chinnappan, Prithiv Kumar, Shanmugam, Vishal January 2022 (has links)
Pure copper (Cu) has the properties of high optical reflectivity and surface tarnishing as well as excellent thermal and electrical conductivity. Accordingly, laser-based additive manufacturing (AM) techniques confront various difficulties to produce thismaterial. In contrast, the electron beam melting (EBM) process is paving to become an excellent method to manufacture AM parts from such materials. This is since theelectron beam is not influenced by the optical reflectivity of the material. Furthermore, EBM works under vacuum that can protect the powder material from oxidization. In addition, the high working temperature and preheating process for each layer canensure a uniform heat input and a much lower cooling rate. Hence, the EBM processcan significantly prevent the parts from delamination failure caused by residual stress. Accordingly, this research work is intended to investigate the EBM processability and geometrical freedom/accuracy of EBM made copper components. The 99.95% pure Cu powder with a particle size range of 45-100μm are used to produce samples. All the samples are built with a certain layer thickness of 50μm with altering parameters, including the processing temperature, line offset, focus offset, beamspeed, and beam current. It is found that the processing temperature of 500°C leadsto low density and severe lateral melting/sintering. Accordingly, the temperature is lowered to 450°C, 400°C, 350°C, and 310°C to control the excessive lateral melting. Since dense parts could only be produced above 400°C, this work focuses on developing 400°C processing temperature with different line offset, focus offset, beamspeed, and beam current. However, it is observed that the processing window of the EBM process is rather narrow, too high or too low energy input could both result in a porous part with severe distortion. After many experimental optimizations runs, the combination of the optimum parameters is reached which can deliver parts with over 99% density and a good geometrical stability. After optimization, the benchmark partsare designed and manufactured according to electrical and thermal applications (using the optimum parameters). Afterwards, the corresponding geometrical freedomand accuracy of the copper components made by EBM is assessed and discussed. / Ren koppar (Cu) har egenskaper som hög optisk reflektivitet och ytans anlöning samt utmärkt termisk och elektrisk ledningsförmåga. Följaktligen möter laserbaserad additiv tillverkning (additive manufacturing, AM) olika svårigheter när det gäller att producera detta material. Däremot är elektronstrålesmältning ("electron beam melting", EBM) på väg att bli en utmärktmetod för att tillverka AM-delar av sådana material. Detta beror på att elektronstrålen inte påverkas av materialets optiska reflektivitet. Dessutom arbetar EBM under vakuum som kan skydda pulvermaterialet från oxidering. Dessutom kan den höga arbetstemperaturen och förvärmningsprocessen för varje lager säkerställa en jämn värmetillförsel och en mycket lägre kylningshastighet. EBM-processen kan därför i hög grad förhindra att delamineringsfel orsakade av restspänningar uppstår. Syftet med detta forskningsarbete är därför att undersöka EBM-processbarheten och den geometriska friheten/precisionen hos EBM tillverkade kopparkomponenter. Det 99,95 % rena Cu-pulvret med ett partikelstorleksområde på 45-100 μm används för att producera prover. Alla prover är byggda med en viss tjocklek på 50 μm med ändrade parametrar, inklusive bearbetningstemperatur, linjeförskjutning, fokusförskjutning, strålhastighet och strålström. Det har visat sig att bearbetningstemperaturen på 500°C leder till låg densitet och allvarlig lateral smältning/sintring. Följaktligen sänks temperaturen till 450°C, 400°C, 350°C och 310°C för att kontrollera den överdrivna laterala smältningen. Eftersom täta delar endast kunde produceras över 400°C, fokuserar detta arbete på att utveckla 400°C bearbetningstemperatur med olika linjeförskjutning, fokusförskjutning, strålhastighet och strålström. Det observeras dock att bearbetningsfönstret för EBMprocessen är ganska smalt, för hög eller för låg energitillförsel kan båda resultera i en porösdel med allvarlig förvrängning. Efter många experimentella optimeringskörningar uppnås kombinationen av de optimala parametrarna som kan leverera delar med över 99% densitet och en god geometrisk stabilitet. Efter optimering designas och tillverkas benchmarkdelarna i enlighet med elektriska och termiska applikationer (med optimala parametrar). Därefter bedöms och diskuteras motsvarande geometriska frihet och noggrannhet hos kopparkomponenterna tillverkade av EBM.
50

Challanges In Constructing Large Frame FDM 3D Printers / Utmaningar Vid Konstruktion Av Stora FDM 3D Skrivare

Emericks, Isak January 2020 (has links)
This project was initiated by Postnord who wanted to develop their own large frame FDM 3D printer, mainly for two reasons. The first reason was to be able to use the collaboration between Postnord and KTH to present how Postnord are promoting domestic production in the same time as portraying themselves as leaders in the field of additive manufacturing in Sweden. The second reason was to get a machine with the ability to print both small- and large-scale prototypes and products to be used in an industrial environment. The targeted goals and desired outcome of the PP3D (PostPaper3D - project name) was to construct a large frame FDM 3D printer, with a build area of 1 square meter and (if possible) a printing volume of 1 cubic meter, capable of printing parts for industrial applications. This would be achieved by using industrial components and state-of-the-art open source 3D printing control systems. Sensors for filament run-out detection and automatic printer bed levelling was also desired. On top of these goals KTH-IIP wanted the project work to focus on the construction of large frame FDM 3D printers, what challenges appear in scaling up the technology, to further the internal vision of developing strategic competencies in the field of additive manufacturing - as requested by the industry. The result of the project was a FDM 3D printer with a build volume of 1000x1000x950 [mm] that comes with dual independent extruders - meaning it may either print two copies of the same part simultaneously or utilize both printer heads to work on a single component. The top tested speed (printing) was 100 [mm/s] and the top tested movement speed was 250 [mm/s]. The theoretical accuracy of the machine is 50 [μm] but this has not been tested in this project. In the scope of the master thesis all prototype-symptoms were not eliminated, where the most considerable issue being the motors occasionally skipping steps (and losing their location) during rapid accelerations and changes in velocity. When this happens, it will most likely result in a failed print. The proposed solution for this is to further adjust the firmware to allow for finer, more regulated accelerations and speeds. Another possible solution is to replace the motors with stronger ones. In delivery the machine operates using state of the art components and software, from prominent Swedish and international producers. An interview of Isak Emericks alongside the printer can be seen in Appendix B, in the form of a newsletter. / Det här projektet initierades av Postnord som ville utveckla en egen storskalig FDM 3D printer, huvudsakligen på grund av två anledningar. Den första för att kunna använda samarbetet med KTH för att visa hur Postnord främjar inhemsk produktion samtidigt som de själva är ledare och initiativtagare inom additiv tillverkning i Sverige. Den andra anledningen var för att få tag på en maskin som har möjligheten att skriva ut stora- och småskaliga prototyper och produkter som kan användas i en industriell miljö. De uppsatta målen och önskvärda resultatet med PP3D (PostPapper3D - projektnamn) var att konstruera en storskalig FDM 3D skrivare, men en byggarea på 1 kvadratmeter och (om möjligt) en byggvolym på 1 kubikmeter, kapabel att skriva ut delar för industriella tillämpningar. Det här skulle uppnås genom att använda industriella komponenter och toppmoderna kontrollsystem för 3D skrivare. Sensorer för att upptäcka när utskriftsmaterialet var på väg att ta slut och automatisk utjämning av byggytan var också önskvärt. Förutom dessa målsättningar så ville KTH-IIP att arbetet skulle fokusera på konstruktionen av en storskalig FDM 3D skrivare, vilka utmaningar och problem som uppstår när tekniken skalas upp, för att fortsätta den interna visionen om att utveckla strategiska kompetenser inom additiva tillverkningsmetoder - vilket industrin efterfrågade. Resultatet av projektet var en 3D skrivare med en byggvolym på 1000x1000x950 [mm] som kommer utrustad med två (individuellt styrda) utskriftshuvuden - som antingen kan skriva ut två identiska kopior av samma objekt eller som kan arbeta tillsammans för att bygga upp en komponent mer effektivt. Den högsta testade utskriftshastigheten var 100 [mm/s] och den högsta testade hastigheten för rörelse var 250 [mm/s]. Den teoretiska upplösningen hos maskinen är 50 [μm] men det här har inte kontrollerats i det här projektet. Inom omfattningen av ett examensarbete (civilingenjör) så hann inte alla prototyp-symptom elimineras, där det mest betydande problemet var att motorerna bitvis missar steg (och förlorar sin positionering) under hastiga accelerationer och förändringar i rörelseriktning. När detta händer så resulterar det oftast i misslyckade utskrifter. Den presenterade lösningen för det här är att fortsätta justera mjukvaruinställningarna tills finare och mer kontrollerade rörelsemönster uppnås. En annan tänkbar lösning är att byta ut motorerna mot starkare varianter. Vid leverans så nyttjar maskinen toppmoderna komponenter och mjukvara, från framstående svenska och internationella producenter. En intervju med Isak Emericks tillsammans med 3D skrivaren hittas i Bilaga B, i formen av ett nyhetsbrev.

Page generated in 0.3001 seconds