• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molekulare und biochemische Charakterisierung der purinergen Rezeptoren P2X4 und P2X7 im Alveolarepithel der Lunge

Weinhold, Karina 16 November 2010 (has links) (PDF)
Gegenstand der vorliegenden Arbeit sind die purinergen Rezeptoren P2X4R und P2X7R. Die P2XR werden durch ATP aktiviert und stellen unselektive Kationenkanäle dar, die auch für Ca2+ durchlässig sind. Beiden P2XR-Subtypen werden in den Alveolarepithel Typ I (AT I)-Zellen der Lunge exprimiert und aufgrund ihrer Kanalaktivitäten in Zusammenhang mit der alveolären Flüssigkeitshomöostase gebracht. Bei bisherigen Untersuchungen wurde jedoch die mögliche Assoziation und Modulation der P2XR durch Mikrodomänen der Zellmembran außer Acht gelassen. Ein Modell von Garcia-Marcos zeigt, dass P2X7R in Zellen der Glandula submandibularis zum Teil mit Mikrodomänen assoziiert ist. Die funktionellen Eigenschaften von P2X7R sind dabei von der Lokalisation in der Zellmembran abhängig (Garcia-Marcos et al., 2006). Die Caveolen sind eine spezielle Form von Mikrodomänen, die in der Zellmembran der AT I-Zellen auftreten. Das Hauptstrukturprotein der Caveolen im Lungenepithel ist Caveolin-1 (Cav-1). Über die Verteilung von P2X4R und P2X7R in den AT I-Zellen war bislang sehr wenig bekannt. Unsere Arbeitsgruppe identifizierte bei einer Sequenzanalyse potentielle Cav-1-Bindemotive in der Aminosäureabfolge beider P2XR (Couet et al., 1997). Die Assoziation mit den Caveolen würde die P2XR in die räumliche Nähe verschiedener Signalmoleküle bringen und die Beteiligung an downstream Events ermöglichen. Für die folgenden Analysen wurde die Alveolarepithelzelllinie E10 genutzt, da die E10-Zellen AT I-typische Eigenschaften besitzen und P2X4R, P2X7R sowie die Caveoline Cav-1 und Cav-2 aufweisen. Die Untersuchungen konzentrierten sich auf die Assoziation von P2X4R und P2X7R mit Mikrodomänen der Zellmembran sowie die wechselseitige Beziehung der P2XR. Besonders wurde dabei auf die Assoziation der P2XR mit Cav-1 eingegangen. Zusätzlich wurde in vitro die Interaktion der C-terminalen Bereiche der beiden P2XR mit Membranlipiden untersucht. Einige Membranlipide sind eng mit weiteren Signalmolekülen verknüpft. Aus diesem Grund wurde die Auswirkungen der Reduzierung von P2X4R und P2X7R auf den Proteingehalt der Ca2+-aktivierbaren downstream-Effektoren PKCβI und CaM analysiert. Die Auswertungen der Ergebnisse ergaben Folgendes: P2X4R und P2X7R sind Subtyp-spezifisch in den Mikrodomänen der Zellmembran von E10-Zellen verteilt. Mit Hilfe von biochemischen und immunfluoreszenz-mikroskopischen Methoden konnte die Assoziation von P2X4R und P2X7R mit Mikrodomänen nachgewiesen werden. P2X7R ist zum Teil mit Cav-1 assoziiert, wobei Förster Resonanz Energie Transfer (FRET)-Analysen ergaben, dass beide Proteine partiell einen Abstand von kleiner als 10 nm zueinander aufweisen. Durch die Subtyp-spezifische Verteilung könnte die Funktionalität der P2XR-Subtypen spezifisch durch die Bestandteile der Mikrodomänen moduliert und reguliert werden (Martens et al., 2001). P2X4R und P2X7R sind in hochmolekularen Proteinkomplexen assoziiert. Die Ausbildung von hochmolekularen Proteinkomplexen wird in Zusammenhang mit der Assoziation von Proteinen mit Mikrodomänen diskutiert (Zurzolo et al., 2003). Die Untersuchung der molekularen Organisation von P2X4R und P2X7R in E10-Zellen mittels blue native- und high resolution clear native-PAGE zeigte, dass beide P2XR mit hochmolekularen Proteinkomplexen assoziiert sind. P2X7R konnte in drei Komplexen nachgewiesen werden. Im ersten Komplex von ~760 kDa liegt P2X7R mit Cav-1 assoziiert vor, während der dominant auftretende, zweite P2X7R-Subkomplex von ~580 kDa vermutlich nicht mit dem co-migrierten Cav-1/Cav-2-Komplex in Verbindung steht. Der dritte P2X7R-assoziierte Komplex war zusammen mit P2X4R bei ~430 kDa nachweisbar und Immunpräzipitationen bestätigten, dass P2X4R und P2X7R in einem Komplex miteinander assoziiert sind (Weinhold et al., 2010). P2X4R und P2X7R stehen in Wechselbeziehung zueinander. Diese Ergebnisse der siRNA-induzierte Herabregulation von P2X4R und P2X7R lassen vermuten, dass die beiden Rezeptoren direkt oder indirekt miteinander verbunden sind. So führte die Reduzierung von P2X4R zur Erhöhung des P2X7R-Proteingehaltes. Dabei nimmt P2X7R in der Zellmembran zu und verändert seine Verteilung nicht. Umgekehrt nimmt der Proteingehalt von P2X4R in den E10-Zellen zu, wenn P2X7R herabreguliert wird. Die Zunahme von P2X4R in der Zellmembran konnte zwar durch die Biotinylierung der Oberflächenproteine nachgewiesen werden, aber die Verteilung von P2X4R verschob sich zugunsten des intrazellulären P2X4R-Anteils. Vermutlich führt die Reduzierung von P2X7R zu Störungen im exo-/endozytotischen System. Die wechselseitige Zunahme der P2XR in den Mikrodomänen weist zudem auf einen kompensatorischen Mechanismus hin. Negativ geladene Phospholipide interagieren direkt mit den C-terminalen Abschnitten der P2XR. Mit den in vitro Bindetests konnte gezeigt werden, dass die C-terminalen Enden von P2X4R und P2X7R direkt mit den negativ geladenen Phosphoinositiden PI(4)P, PI(4,5)P2, PI(3,4,5)P3 sowie mit Phosphatidsäure, Phosphatidylserin, Phosphatidylglycerol, Cardiolipin und 3 Sulfogalactosylceramid interagieren können. Die Regulation der P2XR durch diese Phospholipide, vor allem PI(4,5)P2, und die Beteiligung der P2XR an Lipid-vermittelten Signalwegen in Epithelzellen, stellen einen möglichen Link zu weiteren downstream-Signalen dar. Die Reduzierung von P2X7R beeinflusst den Proteingehalt der downstream-Effektoren PKCβI und CaM. Sowohl im Lungengewebe von P2rx7(-/-) Mäusen als auch nach der Reduzierung von P2X7R in den E10-Zellen zeigte sich, dass der Proteingehalt der Signalmoleküle PKCβI und CaM vermindert war. Reduzierung von P2X4R hatte dagegen kaum Einfluss auf PKCβI und führte zur Erhöhung des CaM-Proteingehaltes, vermutlich hervorgerufen durch die Zunahme von P2X7R. Beide downstream-Effektoren sind in Mikrodomänen (Caveolen) der Zellmembran lokalisiert und können sowohl durch Lipid-vermittelte Signale als auch durch einen Kanal-vermittelten Ca2+-Einstrom aktiviert und reguliert werden. Die Ergebnisse der vorliegenden Arbeit zeigten, dass P2X4R und P2X7R in AT I-Zellen der Lunge nicht nur Kanaleigenschaften besitzen, sondern durch die Assoziation mit unterschiedlichen Mikrodomänen an verschiedene Signalwege gekoppelt sind. Trotzdem ist bisher wenig über die Funktionen der P2XR in AT I-Zellen hinsichtlich der Beteiligung an apoptotischen Prozessen, der Proliferation, der Differenzierung oder Migration und Wundheilung bekannt (Barth and Kasper, 2009). Aufgrund der komplexen Funktion, vor allem durch die Assoziation mit Cav-1 und der Wechselbeziehung mit dem P2X4R, wird der P2X7R für zukünftige Forschungen im alveolären Lungenepithel von Bedeutung sein. Barth K, Kasper M (2009) Membrane compartments and purinergic signalling: occurrence and function of P2X receptors in lung. FEBS J 276:341-353. Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP (1997) Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 272:6525-6533. Garcia-Marcos M, Perez-Andres E, Tandel S, Fontanils U, Kumps A, Kabre E, Gomez-Munoz A, Marino A, Dehaye JP, Pochet S (2006) Coupling of two pools of P2X7 receptors to distinct intracellular signaling pathways in rat submandibular gland. J Lipid Res 47:705-714. Martens JR, Sakamoto N, Sullivan SA, Grobaski TD, Tamkun MM (2001) Isoform-specific localization of voltage-gated K+ channels to distinct lipid raft populations. Targeting of Kv1.5 to caveolae. J Biol Chem 276:8409-8414. Weinhold K, Krause-Buchholz U, Rödel G, Kasper M, Barth K (2010) Interaction and interrelation of P2X7 and P2X4 receptor complexes in mouse lung epithelial cells. Cell Mol Life Sci 67:2631-2642. Zurzolo C, van Meer G, Mayor S (2003) The order of rafts. Conference on microdomains, lipid rafts and caveolae. EMBO Rep 4:1117-1121.
2

Molekulare und biochemische Charakterisierung der purinergen Rezeptoren P2X4 und P2X7 im Alveolarepithel der Lunge

Weinhold, Karina 01 November 2010 (has links)
Gegenstand der vorliegenden Arbeit sind die purinergen Rezeptoren P2X4R und P2X7R. Die P2XR werden durch ATP aktiviert und stellen unselektive Kationenkanäle dar, die auch für Ca2+ durchlässig sind. Beiden P2XR-Subtypen werden in den Alveolarepithel Typ I (AT I)-Zellen der Lunge exprimiert und aufgrund ihrer Kanalaktivitäten in Zusammenhang mit der alveolären Flüssigkeitshomöostase gebracht. Bei bisherigen Untersuchungen wurde jedoch die mögliche Assoziation und Modulation der P2XR durch Mikrodomänen der Zellmembran außer Acht gelassen. Ein Modell von Garcia-Marcos zeigt, dass P2X7R in Zellen der Glandula submandibularis zum Teil mit Mikrodomänen assoziiert ist. Die funktionellen Eigenschaften von P2X7R sind dabei von der Lokalisation in der Zellmembran abhängig (Garcia-Marcos et al., 2006). Die Caveolen sind eine spezielle Form von Mikrodomänen, die in der Zellmembran der AT I-Zellen auftreten. Das Hauptstrukturprotein der Caveolen im Lungenepithel ist Caveolin-1 (Cav-1). Über die Verteilung von P2X4R und P2X7R in den AT I-Zellen war bislang sehr wenig bekannt. Unsere Arbeitsgruppe identifizierte bei einer Sequenzanalyse potentielle Cav-1-Bindemotive in der Aminosäureabfolge beider P2XR (Couet et al., 1997). Die Assoziation mit den Caveolen würde die P2XR in die räumliche Nähe verschiedener Signalmoleküle bringen und die Beteiligung an downstream Events ermöglichen. Für die folgenden Analysen wurde die Alveolarepithelzelllinie E10 genutzt, da die E10-Zellen AT I-typische Eigenschaften besitzen und P2X4R, P2X7R sowie die Caveoline Cav-1 und Cav-2 aufweisen. Die Untersuchungen konzentrierten sich auf die Assoziation von P2X4R und P2X7R mit Mikrodomänen der Zellmembran sowie die wechselseitige Beziehung der P2XR. Besonders wurde dabei auf die Assoziation der P2XR mit Cav-1 eingegangen. Zusätzlich wurde in vitro die Interaktion der C-terminalen Bereiche der beiden P2XR mit Membranlipiden untersucht. Einige Membranlipide sind eng mit weiteren Signalmolekülen verknüpft. Aus diesem Grund wurde die Auswirkungen der Reduzierung von P2X4R und P2X7R auf den Proteingehalt der Ca2+-aktivierbaren downstream-Effektoren PKCβI und CaM analysiert. Die Auswertungen der Ergebnisse ergaben Folgendes: P2X4R und P2X7R sind Subtyp-spezifisch in den Mikrodomänen der Zellmembran von E10-Zellen verteilt. Mit Hilfe von biochemischen und immunfluoreszenz-mikroskopischen Methoden konnte die Assoziation von P2X4R und P2X7R mit Mikrodomänen nachgewiesen werden. P2X7R ist zum Teil mit Cav-1 assoziiert, wobei Förster Resonanz Energie Transfer (FRET)-Analysen ergaben, dass beide Proteine partiell einen Abstand von kleiner als 10 nm zueinander aufweisen. Durch die Subtyp-spezifische Verteilung könnte die Funktionalität der P2XR-Subtypen spezifisch durch die Bestandteile der Mikrodomänen moduliert und reguliert werden (Martens et al., 2001). P2X4R und P2X7R sind in hochmolekularen Proteinkomplexen assoziiert. Die Ausbildung von hochmolekularen Proteinkomplexen wird in Zusammenhang mit der Assoziation von Proteinen mit Mikrodomänen diskutiert (Zurzolo et al., 2003). Die Untersuchung der molekularen Organisation von P2X4R und P2X7R in E10-Zellen mittels blue native- und high resolution clear native-PAGE zeigte, dass beide P2XR mit hochmolekularen Proteinkomplexen assoziiert sind. P2X7R konnte in drei Komplexen nachgewiesen werden. Im ersten Komplex von ~760 kDa liegt P2X7R mit Cav-1 assoziiert vor, während der dominant auftretende, zweite P2X7R-Subkomplex von ~580 kDa vermutlich nicht mit dem co-migrierten Cav-1/Cav-2-Komplex in Verbindung steht. Der dritte P2X7R-assoziierte Komplex war zusammen mit P2X4R bei ~430 kDa nachweisbar und Immunpräzipitationen bestätigten, dass P2X4R und P2X7R in einem Komplex miteinander assoziiert sind (Weinhold et al., 2010). P2X4R und P2X7R stehen in Wechselbeziehung zueinander. Diese Ergebnisse der siRNA-induzierte Herabregulation von P2X4R und P2X7R lassen vermuten, dass die beiden Rezeptoren direkt oder indirekt miteinander verbunden sind. So führte die Reduzierung von P2X4R zur Erhöhung des P2X7R-Proteingehaltes. Dabei nimmt P2X7R in der Zellmembran zu und verändert seine Verteilung nicht. Umgekehrt nimmt der Proteingehalt von P2X4R in den E10-Zellen zu, wenn P2X7R herabreguliert wird. Die Zunahme von P2X4R in der Zellmembran konnte zwar durch die Biotinylierung der Oberflächenproteine nachgewiesen werden, aber die Verteilung von P2X4R verschob sich zugunsten des intrazellulären P2X4R-Anteils. Vermutlich führt die Reduzierung von P2X7R zu Störungen im exo-/endozytotischen System. Die wechselseitige Zunahme der P2XR in den Mikrodomänen weist zudem auf einen kompensatorischen Mechanismus hin. Negativ geladene Phospholipide interagieren direkt mit den C-terminalen Abschnitten der P2XR. Mit den in vitro Bindetests konnte gezeigt werden, dass die C-terminalen Enden von P2X4R und P2X7R direkt mit den negativ geladenen Phosphoinositiden PI(4)P, PI(4,5)P2, PI(3,4,5)P3 sowie mit Phosphatidsäure, Phosphatidylserin, Phosphatidylglycerol, Cardiolipin und 3 Sulfogalactosylceramid interagieren können. Die Regulation der P2XR durch diese Phospholipide, vor allem PI(4,5)P2, und die Beteiligung der P2XR an Lipid-vermittelten Signalwegen in Epithelzellen, stellen einen möglichen Link zu weiteren downstream-Signalen dar. Die Reduzierung von P2X7R beeinflusst den Proteingehalt der downstream-Effektoren PKCβI und CaM. Sowohl im Lungengewebe von P2rx7(-/-) Mäusen als auch nach der Reduzierung von P2X7R in den E10-Zellen zeigte sich, dass der Proteingehalt der Signalmoleküle PKCβI und CaM vermindert war. Reduzierung von P2X4R hatte dagegen kaum Einfluss auf PKCβI und führte zur Erhöhung des CaM-Proteingehaltes, vermutlich hervorgerufen durch die Zunahme von P2X7R. Beide downstream-Effektoren sind in Mikrodomänen (Caveolen) der Zellmembran lokalisiert und können sowohl durch Lipid-vermittelte Signale als auch durch einen Kanal-vermittelten Ca2+-Einstrom aktiviert und reguliert werden. Die Ergebnisse der vorliegenden Arbeit zeigten, dass P2X4R und P2X7R in AT I-Zellen der Lunge nicht nur Kanaleigenschaften besitzen, sondern durch die Assoziation mit unterschiedlichen Mikrodomänen an verschiedene Signalwege gekoppelt sind. Trotzdem ist bisher wenig über die Funktionen der P2XR in AT I-Zellen hinsichtlich der Beteiligung an apoptotischen Prozessen, der Proliferation, der Differenzierung oder Migration und Wundheilung bekannt (Barth and Kasper, 2009). Aufgrund der komplexen Funktion, vor allem durch die Assoziation mit Cav-1 und der Wechselbeziehung mit dem P2X4R, wird der P2X7R für zukünftige Forschungen im alveolären Lungenepithel von Bedeutung sein. Barth K, Kasper M (2009) Membrane compartments and purinergic signalling: occurrence and function of P2X receptors in lung. FEBS J 276:341-353. Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP (1997) Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 272:6525-6533. Garcia-Marcos M, Perez-Andres E, Tandel S, Fontanils U, Kumps A, Kabre E, Gomez-Munoz A, Marino A, Dehaye JP, Pochet S (2006) Coupling of two pools of P2X7 receptors to distinct intracellular signaling pathways in rat submandibular gland. J Lipid Res 47:705-714. Martens JR, Sakamoto N, Sullivan SA, Grobaski TD, Tamkun MM (2001) Isoform-specific localization of voltage-gated K+ channels to distinct lipid raft populations. Targeting of Kv1.5 to caveolae. J Biol Chem 276:8409-8414. Weinhold K, Krause-Buchholz U, Rödel G, Kasper M, Barth K (2010) Interaction and interrelation of P2X7 and P2X4 receptor complexes in mouse lung epithelial cells. Cell Mol Life Sci 67:2631-2642. Zurzolo C, van Meer G, Mayor S (2003) The order of rafts. Conference on microdomains, lipid rafts and caveolae. EMBO Rep 4:1117-1121.
3

Verstärkung der Zelladhärenz und Induktion des Zell-Spreading - eine neue Funktion von RAGE, einem hoch selektiven Differenzierungsmarker humaner Alveolar-Typ 1-Zellen / Promotion of cell adherence and induction of cell spreading - a novel function of RAGE, a highly selective differentiation marker of human alveolar type 1 cells

Demling, Nina 15 June 2005 (has links) (PDF)
RAGE (receptor for advanved glycation endproducts) was identified on endothelial cells as binding partner for AGE-modified molecules. The term "Advanced glycation endproducts" involves a number of structurally diverse molecules, which derive from multiple complex rearrangements of reducing sugars with free amino-groups of proteins. They evolve during food production and also in vivo during ageing and to an accelerated degree in diabetes, where AGEs cause receptor-mediated cellular perturbations. Due to the pathological relevance the aim of this thesis was to generate a "biosensor" for AGEs. To this end, the membrane-expressed receptor (flRAGE) as well as soluble RAGE (sRAGE) were expressed in mammalian cells and investigated in numerous binding studies. These did not reveal a specific interaction of AGE-modified ligands with RAGE. In addition, the expression of RAGE on endothelial cells, as described in the literature, could not be followed neither with the help of newly generated monoclonal anti-RAGE antibodies, nor in quantitative "real time" RT-PCR analysis. These results cast doubts on the meaning of RAGE as a proinflammatory receptor in AGE-mediated pathologies and on the adequacy of RAGE for the "biosensor". At the same time the question concerning a physiological role of the receptor arose. RAGE-expression was analysed in different healthy human tissues by "real time" RT-PCR, which revealed an almost selective expression in lung tissue. An important indication for a possible physiological function of RAGE in lung provided the selective localization of RAGE on alveolar epithelial type I cells as demonstrated in frozen lung sections as well as in in vitro cultivated lung cells. RAGE could be identified as a novel, highly specific marker for the thin, expanded AT I cell, which form part of the air-blood-barrier. In the following, RAGE was found to be an interaction partner for collagen IV, a major component of the alveolar basal lamina. Membrane-expressed RAGE did not only strengthened adherence of cells but also induced cell spreading on collagen IV-coated surfaces. This preferential interaction of RAGE with collagen IV could substantially contribute to the functional morphology of AT I cells in vivo, thereby ensuring an effective bidirectional gas-exchange. The results of this thesis expose a novel, so far unnoticed aspect of the biology of RAGE, which presumably contributes to the phenotypic characteristic und function of normal human lung tissue. / RAGE (receptor for advanced glycation endproducts) wurde als Interaktionspartner auf Endothelzellen für AGE-modifizierte Moleküle identifiziert. Unter den "Advanced glycation endproducts" werden eine Vielzahl strukturell unterschiedlicher Moleküle zusammengefasst, die durch mehrstufige komplexe Umlagerungen zwischen reduzierenden Zuckern und freien Aminogruppen von Proteinen entstehen. Sie entstehen sowohl bei der Herstellung von Lebensmitteln, als auch in vivo während des Alterns und in erhöhtem Maß bei Diabetes, wobei sie Rezeptor-vermittelt Zellstörungen hervorrufen. In der vorliegenden Arbeit wurde zunächst aufgrund der pathologischen Relevanz eine Strategie zur Konzeption eines "Biosensors" für AGEs verfolgt. Hierfür wurde sowohl der membranständige Rezeptor (flRAGE) als auch löslicher RAGE (sRAGE) in Säugerzellen exprimiert und in zahlreichen Bindungs- und Funktionsanalysen getestet. Hierbei konnte keine spezifische Interaktion der AGE-modifizierten Moleküle mit RAGE nachgewiesen werden. Auch die in der Literatur beschriebene Expression von RAGE auf Endothelzellen konnte mit Hilfe neu generierter monoklonaler Antikörper, sowie in quantitativen "real time" RT-PCR-Analysen nicht nachvollzogen werden. Diese Ergebnisse warfen Zweifel an der grundlegenden Bedeutung von RAGE als proinflammatorischer Rezeptor in AGE-bedingten Krankheiten auf und stellten damit auch dessen Eignung für einen AGE-Biosensor in Frage. Gleichzeitig warf diese Skepsis die Frage nach einer möglichen physiologischen Funktion dieses Rezeptors auf. Eine vergleichende Analyse der RAGE-Expression in verschiedenen gesunden Geweben mittels "real time" RT-PCR ergab eine nahezu selektive Expression in Lungengewebe. Wichtige Anhaltspunkte für die Funktion von RAGE in der Lunge ergaben sich aus der selektiven Lokalisation des Rezeptors auf Alveolarepithelzellen Typ I (AT I) sowohl in Gefrierschnitten der Lunge als auch nach in vitro-Kultur von Lungenzellen. RAGE konnte als neuer, hoch spezifischer Marker für die lang gestreckten AT 1 Zellen, die einen Teil der Blut-Luft-Schranke bilden, definiert werden. In folgenden Funktionsanalysen konnte RAGE als spezifischer Interaktionspartner für Kollagen IV, einer Hauptkomponente der Alveolar-Basalmembran, identifiziert werden. Membranständiger RAGE verstärkte nicht nur die Adhärenz von Zellen an Kollagen IV-beschichtete Oberflächen, er induzierte auch Zell-"Spreading". Dies gab Anlass für die Vermutung, dass die beobachtete präferentielle Interaktion von RAGE mit Kollagen IV maßgeblich zu der funktionellen Morphologie der AT I Zellen in vivo beitragen könnte, die die Voraussetzung für einen effektiven bidirektionalen Gasaustausch darstellt. Durch die Ergebnisse dieser Arbeit wurde ein neuer, bisher unbeachteter Aspekt der Biologie des RAGE aufgedeckt, der vermutlich entscheidend zur phänotypischen Ausprägung und Funktion des normalen humanen Lungengewebes beiträgt.
4

Verstärkung der Zelladhärenz und Induktion des Zell-Spreading - eine neue Funktion von RAGE, einem hoch selektiven Differenzierungsmarker humaner Alveolar-Typ 1-Zellen

Demling, Nina 08 July 2005 (has links)
RAGE (receptor for advanved glycation endproducts) was identified on endothelial cells as binding partner for AGE-modified molecules. The term "Advanced glycation endproducts" involves a number of structurally diverse molecules, which derive from multiple complex rearrangements of reducing sugars with free amino-groups of proteins. They evolve during food production and also in vivo during ageing and to an accelerated degree in diabetes, where AGEs cause receptor-mediated cellular perturbations. Due to the pathological relevance the aim of this thesis was to generate a "biosensor" for AGEs. To this end, the membrane-expressed receptor (flRAGE) as well as soluble RAGE (sRAGE) were expressed in mammalian cells and investigated in numerous binding studies. These did not reveal a specific interaction of AGE-modified ligands with RAGE. In addition, the expression of RAGE on endothelial cells, as described in the literature, could not be followed neither with the help of newly generated monoclonal anti-RAGE antibodies, nor in quantitative "real time" RT-PCR analysis. These results cast doubts on the meaning of RAGE as a proinflammatory receptor in AGE-mediated pathologies and on the adequacy of RAGE for the "biosensor". At the same time the question concerning a physiological role of the receptor arose. RAGE-expression was analysed in different healthy human tissues by "real time" RT-PCR, which revealed an almost selective expression in lung tissue. An important indication for a possible physiological function of RAGE in lung provided the selective localization of RAGE on alveolar epithelial type I cells as demonstrated in frozen lung sections as well as in in vitro cultivated lung cells. RAGE could be identified as a novel, highly specific marker for the thin, expanded AT I cell, which form part of the air-blood-barrier. In the following, RAGE was found to be an interaction partner for collagen IV, a major component of the alveolar basal lamina. Membrane-expressed RAGE did not only strengthened adherence of cells but also induced cell spreading on collagen IV-coated surfaces. This preferential interaction of RAGE with collagen IV could substantially contribute to the functional morphology of AT I cells in vivo, thereby ensuring an effective bidirectional gas-exchange. The results of this thesis expose a novel, so far unnoticed aspect of the biology of RAGE, which presumably contributes to the phenotypic characteristic und function of normal human lung tissue. / RAGE (receptor for advanced glycation endproducts) wurde als Interaktionspartner auf Endothelzellen für AGE-modifizierte Moleküle identifiziert. Unter den "Advanced glycation endproducts" werden eine Vielzahl strukturell unterschiedlicher Moleküle zusammengefasst, die durch mehrstufige komplexe Umlagerungen zwischen reduzierenden Zuckern und freien Aminogruppen von Proteinen entstehen. Sie entstehen sowohl bei der Herstellung von Lebensmitteln, als auch in vivo während des Alterns und in erhöhtem Maß bei Diabetes, wobei sie Rezeptor-vermittelt Zellstörungen hervorrufen. In der vorliegenden Arbeit wurde zunächst aufgrund der pathologischen Relevanz eine Strategie zur Konzeption eines "Biosensors" für AGEs verfolgt. Hierfür wurde sowohl der membranständige Rezeptor (flRAGE) als auch löslicher RAGE (sRAGE) in Säugerzellen exprimiert und in zahlreichen Bindungs- und Funktionsanalysen getestet. Hierbei konnte keine spezifische Interaktion der AGE-modifizierten Moleküle mit RAGE nachgewiesen werden. Auch die in der Literatur beschriebene Expression von RAGE auf Endothelzellen konnte mit Hilfe neu generierter monoklonaler Antikörper, sowie in quantitativen "real time" RT-PCR-Analysen nicht nachvollzogen werden. Diese Ergebnisse warfen Zweifel an der grundlegenden Bedeutung von RAGE als proinflammatorischer Rezeptor in AGE-bedingten Krankheiten auf und stellten damit auch dessen Eignung für einen AGE-Biosensor in Frage. Gleichzeitig warf diese Skepsis die Frage nach einer möglichen physiologischen Funktion dieses Rezeptors auf. Eine vergleichende Analyse der RAGE-Expression in verschiedenen gesunden Geweben mittels "real time" RT-PCR ergab eine nahezu selektive Expression in Lungengewebe. Wichtige Anhaltspunkte für die Funktion von RAGE in der Lunge ergaben sich aus der selektiven Lokalisation des Rezeptors auf Alveolarepithelzellen Typ I (AT I) sowohl in Gefrierschnitten der Lunge als auch nach in vitro-Kultur von Lungenzellen. RAGE konnte als neuer, hoch spezifischer Marker für die lang gestreckten AT 1 Zellen, die einen Teil der Blut-Luft-Schranke bilden, definiert werden. In folgenden Funktionsanalysen konnte RAGE als spezifischer Interaktionspartner für Kollagen IV, einer Hauptkomponente der Alveolar-Basalmembran, identifiziert werden. Membranständiger RAGE verstärkte nicht nur die Adhärenz von Zellen an Kollagen IV-beschichtete Oberflächen, er induzierte auch Zell-"Spreading". Dies gab Anlass für die Vermutung, dass die beobachtete präferentielle Interaktion von RAGE mit Kollagen IV maßgeblich zu der funktionellen Morphologie der AT I Zellen in vivo beitragen könnte, die die Voraussetzung für einen effektiven bidirektionalen Gasaustausch darstellt. Durch die Ergebnisse dieser Arbeit wurde ein neuer, bisher unbeachteter Aspekt der Biologie des RAGE aufgedeckt, der vermutlich entscheidend zur phänotypischen Ausprägung und Funktion des normalen humanen Lungengewebes beiträgt.

Page generated in 0.0298 seconds