• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 47
  • 41
  • Tagged with
  • 176
  • 176
  • 170
  • 167
  • 96
  • 93
  • 92
  • 87
  • 83
  • 63
  • 59
  • 53
  • 44
  • 42
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Développement et analyse de schémas volumes finis motivés par la préservation de comportements asymptotiques. Application à des modèles issus de la physique et de la biologie.

Bessemoulin-Chatard, Marianne 30 November 2012 (has links) (PDF)
Cette thèse est dédiée au développement et à l'analyse de schémas numériques de type volumes finis pour des équations de convection-diffusion, qui apparaissent notamment dans des modèles issus de la physique ou de la biologie. Nous nous intéressons plus particulièrement à la préservation de comportements asymptotiques au niveau discret. Ce travail s'articule en trois parties, composées chacune de deux chapitres. Dans la première partie, nous considérons la discrétisation du système de dérive-diffusion linéaire pour les semi-conducteurs par le schéma de Scharfetter-Gummel implicite en temps. Nous nous intéressons à la préservation par ce schéma de deux types d'asymptotiques : l'asymptotique en temps long et la limite quasi-neutre. Nous démontrons des estimations d'énergie--dissipation d'énergie discrètes qui permettent de prouver d'une part la convergence en temps long de la solution approchée vers une approximation de l'équilibre thermique, d'autre part la stabilité à la limite quasi-neutre du schéma. Dans la deuxième partie, nous nous intéressons à des schémas volumes finis préservant l'asymptotique en temps long dans un cadre plus général. Plus précisément, nous considérons des équations de type convection-diffusion non linéaires qui apparaissent dans plusieurs contextes physiques : équations des milieux poreux, système de dérive-diffusion pour les semi-conducteurs... Nous proposons deux discrétisations en espace permettant de préserver le comportement en temps long des solutions approchées. Dans un premier temps, nous étendons la définition du flux de Scharfetter-Gummel pour une diffusion non linéaire. Ce schéma fournit des résultats numériques satisfaisants si la diffusion ne dégénère pas. Dans un second temps, nous proposons une discrétisation dans laquelle nous prenons en compte ensemble les termes de convection et de diffusion, en réécrivant le flux sous la forme d'un flux d'advection. Le flux numérique est défini de telle sorte que les états d'équilibre soient préservés, et nous utilisons une méthode de limiteurs de pente pour obtenir un schéma précis à l'ordre deux en espace, même dans le cas dégénéré. Enfin, la troisième et dernière partie est consacrée à l'étude d'un schéma numérique pour un modèle de chimiotactisme avec diffusion croisée pour lequel les solutions n'explosent pas en temps fini, quelles que soient les données initiales. L'étude de la convergence du schéma repose sur une estimation d'entropie discrète nécessitant l'utilisation de versions discrètes d'inégalités fonctionnelles telles que les inégalités de Poincaré-Sobolev et de Gagliardo-Nirenberg-Sobolev. La démonstration de ces inégalités fait l'objet d'un chapitre indépendant dans lequel nous proposons leur étude dans un contexte assez général, incluant notamment le cas de conditions aux limites mixtes et une généralisation au cadre des schémas DDFV.
62

Modélisation mathématique des dynamiques de la réponse immunitaire T CD8, aux échelles cellulaire et moléculaire

Terry, Emmanuelle 12 October 2012 (has links) (PDF)
La réponse immunitaire se produit en réaction à une infection, c'est- à-dire à l'introduction d'un pathogène dans l'organisme. Nous nous intéressons à une population de cellules spécifique de la réponse, les lymphocytes T CD8. Nous avons développé un modèle non linéaire structuré en âge des dynamiques de cette réponse, à l' échelle cellulaire. Nous avons étudié l'existence et la stabilité des états d' équilibre, et obtenu des propriétés mettant en évidence, sous certaines conditions, des dynamiques à long terme correspondant à la situation biologiquement attendue. Nous avons ensuite réalisé une estimation systématique des valeurs de paramètres du modèle, afin de déterminer un ensemble de valeurs pour chaque paramètre qui permet de reproduire convenablement des données expérimentales. Cette démarche permet d'obtenir des informations sur l'influence des paramètres dans le modèle, et sur leurs variations selon la nature du pathogène. Enfin, nous nous sommes intéressés aux dynamiques de la réponse à l'échelle moléculaire, en écrivant un réseau des événements de signalisation clés depuis l'activation de la cellule en présence d'un antigène, jusqu'à l'entrée en cycle ou l'apoptose de la cellule. Nous avons déterminé un sous-modèle centré sur les choix entre survie et apoptose, que nous avons étudié mathématiquement et numériquement. Ce modèle a permis d' étudier les dynamiques de concentrations des protéines impliquées dans la signalisation intra-cellulaire de la réponse T CD8.
63

Unicité, reconstruction, stabilité pour des problèmes inverses bidimensionnels

Santacesaria, Matteo 30 November 2012 (has links) (PDF)
Dans cette thèse nous étudions quelques problèmes inverses de valeurs au bord en dimension deux. Les problèmes considérés sont le problème de Calderon et le problème de Gel'fand-Calderon dans le cas scalaire et multi-canal, c'est-à-dire matriciel : cela peut etre vu notamment comme une approximation non-surdéterminée du cas tridimensionnel. Nous montrons d'abord quelques résultats pour le problème de Calderon anisotrope : nous présentons une nouvelle formulation du résultat d'unicité sur le plan ainsi que le premier résultat d'unicité globale pour le cas des surfaces à bord. Après, nous démontrons une nouvelle estimation de stabilité globale pour le problème de Gel'fand-Calderon dans le cas scalaire et multi-canal. Des techniques similaires donnent aussi une procédure de reconstruction globale pour le meme problème. Nous proposons ensuite un algorithme d'approximation rapidement convergent pour le problème de Gel'fand-Calderon multi-canal : cet algorithme est principalement motivé par des résultats de la théorie de diffusion inverse multi-dimensionnelle. Comme derniers résultats nous présentons des nouvelles estimations de stabilité globale pour les deux problèmes mentionnés plus haut qui dépendent explicitement de la régularité et de l'énergie.
64

Etude de quelques problèmes inverses pour le système de Stokes. Application aux poumons.

Egloffe, Anne-Claire 19 November 2012 (has links) (PDF)
Dans cette thèse, nous nous intéressons à la résolution de problèmes inverses provenant d'une modélisation multi-échelle de l'écoulement de l'air dans les poumons. Dans un premier temps, nous considérons une version simplifiée du modèle de l'écoulement de l'air dans les poumons : l'écoulement est modélisé par les équations de Stokes incompressibles avec des conditions aux limites de type Robin sur une partie du bord. Nous cherchons à identifier le coefficient de Robin défini sur une partie non accessible du bord à partir de mesures de la vitesse et de la pression disponibles sur une autre partie du bord. Après avoir quantifié des résultats de continuation unique pour le système de Stokes, nous établissons deux inégalités de stabilité logarithmiques, l'une valable en dimension 2 et l'autre valable en toute dimension. Toutes deux sont basées sur des inégalités de Carleman, globale dans le premier cas et locales dans le second. Les inégalités de stabilité sont d'abord montrées sur le problème stationnaire puis la théorie des semi-groupes permet de passer au problème non stationnaire. De plus, sous l'hypothèse a priori que le coefficient de Robin est constant par morceaux, nous prouvons une inégalité de stabilité Lipschitzienne pour le problème stationnaire. Nous concluons cette thèse en revenant au problème initial pour lequel nous imposons des conditions au bord non-standard faisant intervenir le flux. En particulier, nous obtenons des premiers résultats numériques encourageants concernant l'identification de certains paramètres du modèle.
65

Analyse mathématique de modèles de dynamique des populations : équations aux dérivées partielles paraboliques et équations intégro-différentielles

Garnier, Jimmy 18 September 2012 (has links) (PDF)
Cette thèse porte sur l'analyse mathématique de modèles de réaction-dispersion. L'objectif est de comprendre l'influence du terme de réaction, de l'opérateur de dispersion, et de la donnée initiale sur la propagation des solutions de ces équations. Nous nous sommes intéressés principalement à deux types d'équations de réaction-dispersion : les équations de réaction-diffusion où l'opérateur de dispersion différentielle est le laplacien et les équations intégro-différentielles pour lesquelles l'opérateur de dispersion est de type convolution. Dans le cadre des équations de réaction-diffusion en milieu homogène, nous proposons une nouvelle approche plus intuitive concernant les notions de fronts progressifs tirés et poussés. Cette nouvelle caractérisation nous a permis de mieux comprendre d'une part les mécanismes de propagation des fronts et d'autre part l'influence de l'effet Allee, correspondant à une diminution de la fertilité à faible densité, lors d'une colonisation. Ces résultats ont des conséquences importantes en génétique des populations. Dans le cadre des équations de réaction-diffusion en milieu hétérogène, nous avons montré sur un exemple précis comment la fragmentation du milieu modifie la vitesse de propagation des solutions. Enfin, dans le cadre des équations intégro-différentielles, nous avons montré que la nature sur- ou sous-exponentielle du noyau de dispersion $J$ modifie totalement la vitesse de propagation. Plus précisément, la présence de noyaux de dispersion à queue lourde ou à décroissance sous-exponentielle entraîne l'accélération des lignes de niveaux de la solution.
66

Perturbation de problèmes aux valeurs propres non linéaires et problèmes à frontière libre

Conrad, Francis 05 December 1986 (has links) (PDF)
On étudie quelques familles de problèmes aux limites elliptiques non linéaires d'ordre 2, de la forme Au=f(λ,χ,u,ε) où les réels positifs λ et ε qui apparaissent dans la non linéarité de f jouent, respectivement, le rôle de paramètre de bifurcation et de paramètre de perturbation. On considère l'aspect branches de solutions, retournements, pour ε>0 et ε→0 dans 5 cas
67

Numerical approximation and analysis of mathematical models arising in cells movement

Twarogowska, Monika 14 February 2012 (has links) (PDF)
La thèse est d'éditée a l'analyse numérique et mathématique de systèmes d'équations aux dérivées partielles provenant de la modélisation du mouvement des cellules. Nous constructions un modèle de croissance tumorale dépendant des nutriments et nous montrons la stabilité asymptotique des états stationnaires constants pour des perturbations petites. Puis, les modèles paraboliques et hyperboliques de chimiotactisme sont approchés en utilisant des méthodes de différences finis et de volumes finis. En particulier, nous constructions un schéma consistant, le schéma well-balanced pour les états stationnaires a vitesse constante, qui conserve la positivité de la densité et traite le vide. Avec ces méthodes numériques efficaces et précises, le comportement des solutions est analysé. Premièrement le problème de la diffusion pure est étudié et le phénomène du temps d'attente et la régularité sous la condition physique aux bords sont considérés. Puis nous concentrons notre attention sur l'étude de l'existence et de la stabilité des états stationnaires et sur le comportement en temps long du modèle du chimiotactisme sur un domaine borné.
68

Modélisation mathématique et numérique des fluides à l'échelle nanométrique

Joubaud, Rémi 20 November 2012 (has links) (PDF)
Ce travail présente quelques contributions mathématiques et numériques à la modélisation des fluides à l'échelle nanométrique. On considère deux niveaux de modélisation. Au premier niveau,une description atomique est adoptée. On s'intéresse aux méthodes permettant de calculer la viscosité de cisaillement d'un fluide à partir de cette description microscopique. On étudie en particulier les propriétés mathématiques de la dynamique de Langevin hors d'équilibre permet-tant de calculer la viscosité. Le deuxième niveau de description se situe à l'échelle du continu et l'on considère une classe de modèles pour les électrolytes à l'équilibre incorporant d'une part la présence d'un confinement avec des parois chargées et d'autre part des effets de non-idéalité dus aux corrélations électrostatiques entre les ions et au phénomène d'exclusion stérique. Dans un premier temps, on étudie mathématiquement le problème de minimisation de l'énergie libre dans le cas où celle ci reste convexe (non-idéalité modérée). Puis, on considère le cas non convexe (forte non-idéalité) conduisant à une séparation de phase
69

Contributions aux méthodes numériques pour les problèmes couplés et les écoulements incompressibles

Fernández, Miguel Ángel 13 December 2010 (has links) (PDF)
Les travaux résumés dans ce mémoire s'articulent, essentiellement, autour des deux thématiques suivantes: la modélisation et la simulation numériques de systèmes couplés (Chapitres 1-3) et les méthodes d'éléments finis stabilisées pour des problèmes transitoires (Chapitre 4). Ces travaux sont essentiellement motivés par l'étude de la stabilité aéroélastique de structures du génie civil et la simulation numérique de l'écoulement du sang et de l'électrophysiologie cardiaque. Dans le cadre de l'interaction fluide-structure, nous couplons les équations de Navier-Stokes en domaine mobile avec l'équation de l'élastodynamique non-linéaire. Nous étudions la stabilité des états d'équilibre du système à partir de l'analyse des solutions harmoniques d'un problème linéaire spécifique. Dans le contexte de la simulation temporelle, nous proposons une méthode de Newton exacte pour la résolution des schémas de couplage implicite. Puis nous nous intéressons à la question suivante: comment éviter le couplage fort sans compromettre la stabilité? Cette question est abordée de deux points de vue différents: via le couplage semi-implicite avec projection et par un traitement faible approprié des conditions d'interface au niveau discret. Nous abordons aussi la simulation numérique des ECG en utilisant un modèle mathématique 3D complet, entièrement basée sur des EDP/EDO. Les principaux ingrédients de ce modèle sont: dynamique phénoménologique au niveau cellulaire, équation bidomaine (dans le cœur) et équation de Laplace généralisée (dans le torse). D'autres aspects essentiels à la modélisation sont élucidés, ce qui nous permet de simuler des ECGs complets réalistes. Quelques schémas de discrétisation en temps pour l'équation bidomaine et le système couplé cœur-torse sont analysés. Enfin, nous généralisons la méthode de pénalisation intérieure conforme au problème d'Oseen et aux équations de Navier-Stokes transitoires. Des estimations d'erreur a priori (uniformes par rapport à la viscosité) sont fournies pour des approximations vitesse/pression du même ordre. Une analyse d'erreur abstraite pour des méthodes de stabilisation symétriques est présentée pour l'équation de Stokes et l'équation de réaction-advection-diffusion transitoires. Dans le cas de Stokes, nous montrons que l'instabilité des petits pas de temps peut être éliminée par un choix judicieux de l'approximation de la vitesse initiale. Pour l'équation de réaction-advection-diffusion, nous contournons le problème de la réduction de la structure creuse de la matrice (due à l'opérateur de stabilisation) par un traitement explicite de la stabilisation.
70

Etudes de modèles de croissance et fragmentation et applications en biologie

Doumic, Marie 20 June 2013 (has links) (PDF)
Etude d'équations de croissance et de fragmentation, problèmes inverses et directs, et applications en biologie

Page generated in 0.0485 seconds