• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 47
  • 41
  • Tagged with
  • 176
  • 176
  • 170
  • 167
  • 96
  • 93
  • 92
  • 87
  • 83
  • 63
  • 59
  • 53
  • 44
  • 42
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Résolution numérique des équations de Maxwell harmoniques par une méthode d'éléments finis discontinus

Helluy, Philippe 18 January 1994 (has links) (PDF)
Cette thèse porte sur la résolution théorique et numérique des équations de Maxwell dans le domaine temporel ou fréquentiel. Dans une première partie, on démontre l'existence et l'unicité mathématique de la solution du problème d'évolution. On s'intéresse également au comportement asymptotique en temps de cette solution lorsque le second membre des équations est sinusoïdal en temps. L'approche utilisée fait appel à la théorie des systèmes hyperboliques linéaires du premier ordre, au théorème de Hille-Yosida, aux principes d'amplitude-limite et d'absorption-limite, ainsi qu'à des théorèmes de traces (dans le cas du problème aux limites). Dans un second temps, on développe une approximation par éléments finis discontinus du problème fréquentiel, basée sur une décomposition de la matrice des flux en partie positive et négative (méthode de flux-splitting). Cette approche autorise l'utilisation de maillages totalement déstructurés. Une étude d'erreur lorsque le pas h du maillage tend vers zéro est proposée. Un algorithme itératif de résolution du problème discret, basé sur une décomposition de domaine sans recouvrement, est ensuite décrit. On démontre sa convergence vers l'unique solution discrète. L'implémentation sur un ordinateur à architecture massivement parallèle (IPSC 860) a été réalisée. Enfin, on construit une équation intégrale adaptée à la méthode, pour la résolution des problèmes en domaine non borné. Des expériences numériques sont décrites dans le cas d'éléments finis de type P0 (approximation constante par élément).
52

Quelques résultats d'existence, de contrôlabilité et de stabilisation pour des systèmes couplés fluide - structure

Lequeurre, Julien 05 December 2011 (has links) (PDF)
Nous nous intéressons dans cette thèse à l'étude de systèmes couplés fluide-structure. Ces systèmes peuvent modéliser l'écoulement du sang dans un vaisseau large. La vitesse et la pression du sang sont alors décrites par les équations de Navier-Stokes incompressibles et le déplacement de la partie mobile de la frontière vérifie une équation des poutres/ plaques (selon la dimension du modèle). Dans la première partie, nous montrons l'existence de solutions fortes à deux systèmes (correspondant à un paramètre nul ou non) en deux ou trois dimensions. Plus précisément, nous prouvons l'alternative suivante. Nous avons soit l'existence globale pour des conditions initiales petites, soit l'existence locale pour des conditions initiales quelconques. Dans une seconde partie, nous étudions d'une part la contrôlabilité à zéro d'un système couplant les équations de Navier-Stokes à une équation différentielle ordinaire pour des conditions initiales petites en deux dimensions. D'autre part, nous montrons la stabilisation (pour tout taux de décroissance) d'un système couplant les équations de Navier-Stokes et deux équations des plaques par deux contrôles dans le cadre périodique pour des conditions initiales petites. Dans ce cas, les contrôles sont de dimension finie.
53

Modélisation cinétique et hydrodynamique pour la physique, la chimie et la santé, analyse mathématique et numérique

Boudin, Laurent 09 December 2011 (has links) (PDF)
Mes travaux de recherche portent sur la mécanique des fluides, et plus précisément sur les systèmes de particules, avec plusieurs domaines d'applications : le poumon (aérosol thérapie, pollution, régimes diffusifs), la formation d'opinion (sociophysique), et le couplage entre un fluide et une phase dispersée. La plupart de mes travaux s'appuient sur la théorie cinétique, où apparaissent des équations aux dérivées partielles cinétiques où l'inconnue est une fonction de distribution ayant pour variables non seulement le temps ou l'espace, mais aussi toute autre grandeur physique pertinente décrivant l'état des particules (vitesse, énergie, opinion, etc.).
54

Modélisation et simulation numérique d'écoulements multi-composants en milieu poreux

Saad, Bilal 02 December 2011 (has links) (PDF)
Cette thèse concerne la modélisation, l'étude mathématique et la simulation numérique des problèmes d'écoulements diphasique (liquide et gaz) multi-composant (principalement eau et hydrogène) en milieu poreux. Le domaine d'application typique concerne le stockage des déchets radioactifs de moyenne et haute activité à vie longue. Ce type d'étude est motivé, entre autre, par une augmentation de la pression au sein du stockage due à un dégagement d'hydrogène au niveau des colis, pouvant ainsi fracturer la roche environnante et donc faciliter la migration des radionucléides. En supposant que le transfert de masse entre l'hydrogène gazeux et l'hydrogène dissous est donné par la loi de Henry un premier modèle est étudié. Une preuve d'existence de solutions faibles pour ce modèle a été réalisée sans hypothèse de petites données et en traitant le modèle complet en considérant que la densité de chaque composant dépend de sa propre pression. Ensuite,nous avons fait évoluer le modèle vers un modèle à transfert de masse dynamique. On établit l'existence de solutions faibles pour ce deuxième modèle avec un principe du maximum sur la saturation liquide et sur la fraction massique d'hydrogène dissous. Parallèlement, un code numérique en 1D a été développé afin de comparer les solutions numériques obtenues entre le premier modèle et le second modèle lorsque la cinétique de changement de phase devient instantanée. Des accords probant ont été obtenus sur différents cas tests dont un issu des cas tests du GNR MOMAS diphasique. Enfin, un schéma numérique de type volumes finis avec un décentrage phase par phase pour la simulation des écoulements diphasiques eau-gaz sous l'hypothèse que la densité de chaque phase dépend de sa propre pression a été proposé. On établit la convergence de ce schéma numérique. Ce schéma a été validé sur un maillage 2D non structuré.
55

Analyse mathématique et numérique de quelques problèmes d'ondes en milieu périodique

Coatléven, Julien 18 November 2011 (has links) (PDF)
De nombreux problèmes physiques sont modélisés par des équations aux dérivées partielles posées dans un domaine pour lesquels la géométrie ainsi que les coefficients sont décrits par des fonctions périodiques, hormis dans certaines régions de taille modeste par rapport à celle du domaine d'intérêt (on parle alors de perturbations pour ces régions). Les caractéristiques du problème sortant très souvent du cadre d'application des méthodes d'homogénéisation, nous avons développé des méthodes alternatives tirant parti de la periodicité afin de restreindre le domaine de calcul à des domaines bornés. Pour cela, nous avons généralisé les approches de type Lippmann-Schwinger, ce qui nous permet de traiter le cas de défauts bornés ou le cas de défauts non bornés structurés, la difficulté tenant au fait que l'on ne dispose pas dans le cas d'un milieu périodique quelconque d'une représentation analytique de la solution en l'absence de perturbation (i.e la fonction de Green est inconnue en général). Notre approche repose sur la connaissance des opérateurs de Dirichlet- to-Neumann (DtN) de bandes périodiques non bornés dans une seule direction. Nous traitons deux grandes familles de problèmes, les problèmes harmoniques, pour lesquels les opérateurs DtN dans les bandes sont connus, et les problèmes d'évolution, pour lesquels nous proposons une méthode de construction de ces opérateurs. Nous traitons dans ces deux situations le cas d'une perturbation bornée ou non, puis nous généralisons les techniques de scattering multiple du milieu homogène au cas périodique, afin de pouvoir traiter le cas de plusieurs perturbations.
56

Dynamique des fluides de grade deux

Jaffal, Basma 14 December 2010 (has links) (PDF)
Cette thèse est consacrée à l'étude des équations des fluides de grade deux. Lorsque le coefficient matériel $\alpha$ est petit, ces équations peuvent etre considérées comme une perturbation singulière des équations de Navier-Stokes puisqu'elles font intervenir un terme de dérivée d'ordre trois. Dans une première partie, on considère les équations des fluides de grade deux en rotation rapide dans un tore tridimensionnel. On démontre deux résultats d'existence globale de solutions fortes . Dans le premier, on suppose que le coefficient matériel $\alpha$ est arbitraire et que les troisièmes composantes des moyennes verticales de la donnée initiale et du terme de force sont petites par rapport aux composantes horizontales. Dans le deuxième cas, on ne restreint pas la taille de la donnée initiale et du terme de force, mais on suppose que $\alpha$ est assez petit. Dans ces deux cas, on montre que le système des fluides de grade deux en rotation rapide converge vers un système limite couplé, composé d'un système linéaire et d'un système de fluides de grade deux à deux variables, mais à trois composantes. Une partie essentielle du travail consiste à démontrer l'existence globale des solutions de ce système limite à trois composantes. Dans la deuxième partie, on étudie le comportement asymptotique en temps grand du système des fluides de grade deux dans l'espace $\mathbb{R}^2$. En introduisant des changements de variables d'échelle et en écrivant des estimations d'énergie dans des espaces de Sobolev à poids polynomiaux, on démontre que, sous une condition de petitesse sur la donnée initiale, les solutions des fluides de grade deux convergent vers le tourbillon d'Oseen. On donne aussi une estimation du taux de convergence. La dernière partie de cette thèse porte sur la comparaison de la dynamique des équations des fluides de grade deux avec celle des équations de Navier-Stokes en dimension deux d'espace. On montre que, si $z_0$ est un point d'équilibre hyperbolique des équations de Navier-Stokes, le système des fluides de grade deux admet un unique point d'équilibre $z_{\alpha}$ dans un certain voisinage de $z_0$, si $\alpha$ est assez petit. Ensuite, on construit la variété locale instable de $z_{\alpha}$ et on la compare à celle de $z_0$.
57

Etude mathématique et numérique de guides d'ondes ouverts non uniformes, par approche modale

Goursaud, Benjamin 08 December 2010 (has links) (PDF)
Cette thèse s'inscrit dans le cadre de l'étude, à la fois théorique et numérique, de la diffraction d'une onde harmonique par la jonction entre deux guides d'ondes ouverts. Nous démontrons que ce problème est bien posé. Pour cela, nous utilisons des conditions de rayonnement modales, qui sont fondées sur la représentation de la solution dans un guide droit à l'aide des modes guidés (liés au spectre ponctuel de l'opérateur transverse) et des modes de radiation (liés au spectre continu de l'opérateur transverse). Cette représentation semble difficile à mettre en oeuvre dans une méthode numérique, à cause du continuum des modes de radiation. Comme alternative, nous utilisons des PMLs (Perfectly Matched Layers) pour borner le domaine de calcul dans les directions transverses, ce qui modifie singulièrement la nature de l'opérateur transverse : il perd son caractère autoadjoint et son spectre devient exclusivement discret. Parmi ses nouveaux modes, se trouvent désormais des modes à fuite, dont les propriétés sont étudiées. Nous expliquons en quoi la perte du caractère autoadjoint implique que le calcul des modes peut être délicat. Nous expliquons ensuite comment utiliser ces nouveaux modes (formant maintenant un ensemble discret) dans des méthodes numériques pour la jonction entre deux guides d'ondes ouverts (conditions aux limites transparentes fondées sur des opérateurs de Dirichlet-to-Neumann, méthode multimodale).
58

MODELLING NUCLEOCYTOPLASMIC TRANSPORT WITH APPLICATION TO THE INTRACELLULAR DYNAMICS OF THE TUMOR SUPPRESSOR PROTEIN P53

Dimitrio, Luna 05 September 2012 (has links) (PDF)
In this thesis, I discuss two main subjects coming from biology and I propose two models that mimic the behaviours of the biological networks studied. The first part of the thesis deals with intracellular transport of molecules. Proteins, RNA and, generally, any kind of cargo molecules move freely in the cytoplasm: intracellular transport as a consequence of Brownian motion is classically modelled as a diffusion process. Some specific proteins, like the tumour suppressor p53, use microtubules to facilitate their way towards the nucleus. Microtubules are a dense network of filaments that point towards the cell centre. Motor proteins bind to these filaments and move along, bearing a cargo bound to them. I propose a simplified bi-dimensional model of nucleocytoplasmic transport taking into account the kinetic processes linked to microtubule transport. Unlike in other models we know, I represented the position of a single MT filament. This model is given by a system of partial differential equations which are cast in different dimensions and connected by suitable exchange rules. A numerical scheme is introduced and several scenarios are presented and discussed to answer to the question of which proteins benefit from microtubule transport, depending on their diffusion coefficients. In the second part of the thesis, I design and analyse a physiologically based model representing the accumulation of protein p53 in the nucleus after triggering of the sentinel protein ATM by DNA damage. The p53 protein plays an essential role in the physiological maintenance of healthy tissue integrity in multicellular organisms (regulation of cell cycle arrest, repair pathways and apoptosis). Firstly, I developed a compartmental ODE model to represent the temporal dynamics of the protein. Since the p53 protein is known for its oscillatory behaviour, I performed a numerical bifurcation study to verify the existence, in the model, of stable periodic solutions. Next, I have expanded the model by the addition of a spatial variable and analysed the spatio-temporal dynamics of p53. After checking the existence of oscillations in the spatial setting, I have analysed the robustness of the system under spatial variations (diffusion and permeability coefficients, cell shape and size).
59

Analyse et développement de méthodes de raffinement hp en espace pour l'équation de transport des neutrons

Fournier, Damien 10 October 2011 (has links) (PDF)
Pour la conception des cœurs de réacteurs de 4ème génération, une précision accrue est requise pour les calculs des différents paramètres neutroniques. Les ressources mémoire et le temps de calcul étant limités, une solution consiste à utiliser des méthodes de raffinement de maillage afin de résoudre l'équation de transport des neutrons. Le flux neutronique, solution de cette équation, dépend de l'énergie, l'angle et l'espace. Les différentes variables sont discrétisées de manière successive. L'énergie avec une approche multigroupe, considérant les différentes grandeurs constantes sur chaque groupe, l'angle par une méthode de collocation, dite approximation Sn. Après discrétisation énergétique et angulaire, un système d'équations hyperboliques couplées ne dépendant plus que de la variable d'espace doit être résolu. Des éléments finis discontinus sont alors utilisés afin de permettre la mise en place de méthodes de raffinement dite hp. La précision de la solution peut alors être améliorée via un raffinement en espace (h-raffinement), consistant à subdiviser une cellule en sous-cellules, ou en ordre (p-raffinement) en augmentant l'ordre de la base de polynômes utilisée.Dans cette thèse, les propriétés de ces méthodes sont analysées et montrent l'importance de la régularité de la solution dans le choix du type de raffinement. Ainsi deux estimateurs d'erreurs permettant de mener le raffinement ont été utilisés. Le premier, suppose des hypothèses de régularité très fortes (solution analytique) alors que le second utilise seulement le fait que la solution est à variations bornées. La comparaison de ces deux estimateurs est faite sur des benchmarks dont on connaît la solution exacte grâce à des méthodes de solutions manufacturées. On peut ainsi analyser le comportement des estimateurs au regard de la régularité de la solution. Grâce à cette étude, une stratégie de raffinement hp utilisant ces deux estimateurs est proposée et comparée à d'autres méthodes rencontrées dans la littérature. L'ensemble des comparaisons est réalisé tant sur des cas simplifiés où l'on connaît la solution exacte que sur des cas réalistes issus de la physique des réacteurs.Ces méthodes adaptatives permettent de réduire considérablement l'empreinte mémoire et le temps de calcul. Afin d'essayer d'améliorer encore ces deux aspects, on propose d'utiliser des maillages différents par groupe d'énergie. En effet, l'allure spatiale du flux étant très dépendante du domaine énergétique, il n'y a a priori aucune raison d'utiliser la même décomposition spatiale. Une telle approche nous oblige à modifier les estimateurs initiaux afin de prendre en compte le couplage entre les différentes énergies. L'étude de ce couplage est réalisé de manière théorique et des solutions numériques sont proposées puis testées.
60

Approximation élément spectral des équations de Navier-Stokes Incompressibles dans un domaine mobile et applications

Pena, Gonçalo 01 October 2009 (has links) (PDF)
Dans cette thèse nous nous intéressons a l'approximation numérique des équations incompressibles de Navier-Stokes évoluant dans un domaine en mouvement par la méthode des éléments spectraux et des intégrateurs en temps d'ordre élève. Dans une première phase, nous présentons la méthode des éléments spectraux et les outils de base pour effectuer des discrétisations spectrales du type Galerkin ou Galerkin avec intégration numérique (G-NI). Nous couvrons un large éventail de possibilités concernant les éléments de référence, fonctions de base, points d'interpolation et points de quadrature. Dans cette approche, l'intégration et la différentiation des fonctions polynomiales est faite numériquement grâce a l'aide d'ensembles de points convenables. En ce qui concerne la différenciation, nous présentons une étude numérique des points qui doivent être utilisés pour atteindre une meilleure stabilité numérique (parmi les choix que nous avons actuellement). Deuxièmement, nous introduisons les équations incompressibles stationnaires et non-stationnaires de Stokes et de Navier-Stokes et son approximation spectrale. Dans le cas non-stationnaire, nous introduisons une combinaison de la méthode Backward Différentiation Formula (BDF) et une formule d'extrapolation du même ordre pour l'intégration par rapport au temps. Une fois les équations discrétisées, un système linéaire doit être résolu pour obtenir la solution approchée. Dans ce contexte, nous resolvons ce système avec un préconditionneur par blocs. Nous montrons que le préconditionneur est optimal par rapport au nombre d'iterations utilisées par la méthode GMRES dans le cas stationnaire, mais pas dans le cas non-stationnaire. Une autre alternative est d'utiliser les méthodes de factorization algébrique de type Yosida et séparer le calcul de la vitesse et de la pression. Un cas test est présente pour déterminer les proprietes de convergence de ce type de méthodes dans notre contexte. Troisièmement, nous 'tendons les algorithmes développés dans le cas ou le domaine est fixe au cadre de la formulation Arbitraire Lagrange-Euler (ALE). La question de la définition d'une carte ALE d'ordre élevé est aborée. Cela permet de construire un domaine de calcul qui est d'ecrit avec des éléments courbes. Un cas test utilisant une méthode directe et les méthodes Yosida-q pour resoudre le système linéaire est présente pour montrer les ordres de convergence de la méthode proposée. Finalement, nous appliquons la méthode développée pour résoudre une un problème d'interaction fluide-structure pour un exemple simple bidimensionnel d'hémodynamique. Nous considérons deux approches: une implicite entièrement couplée et une semi-implicite.

Page generated in 0.0551 seconds