• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 47
  • 41
  • Tagged with
  • 176
  • 176
  • 170
  • 167
  • 96
  • 93
  • 92
  • 87
  • 83
  • 63
  • 59
  • 53
  • 44
  • 42
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Étude d'équations aux dérivées partielles hyperboliques en mécanique des fluides

Seguin, Nicolas 08 December 2011 (has links) (PDF)
Ce mémoire est dédié à l'étude d'équations aux dérivées partielles de type hyperbolique intervenant en mécanique des fluides. Suivant les problèmes, on entend par étude la modélisation, l'analyse ou l'approximation numérique des modèles considérés. Le premier chapitre de ce mémoire traite des systèmes hyperboliques et de leur approximation par des schémas volumes finis. On présente notamment des schémas numériques simples pour approcher les solutions de systèmes de lois de conservation généraux. On étudie de plus la notion de hiérarchie de modèles, c'est-à-dire de connexion entre différents modèles à travers des procédés asymptotiques (relaxation, asymptotique parabolique et contrainte sur l'espace des états admissible), d'un point de vue théorique et/ou numérique, suivant le type de hiérarchie considéré. Le deuxième chapitre est consacré à la modélisation, l'analyse et l'approximation numérique d'écoulements diphasiques. Les modèles diphasiques envisagés ici sont les modèles compressibles avec deux vitesses et deux pressions, les modèles de dérive, les modèles pour un fluide avec transition de phase, ainsi que les modèles d'écoulements d'eau à surface libre. Pour la plupart des cas, on propose une analyse et une approximation numérique des modèles et quand c'est possible, on donne les liens les unissant. Le dernier chapitre compile différents travaux sur des modèles de fluides dans lesquels apparaissent des interfaces ayant une origine extérieure à l'écoulement lui-même. Les premiers travaux sont dédiés aux lois de conservation incluant une discontinuité, soit due à un changement brusque du milieu environnant, soit due à la présence d'une contrainte locale sur la solution. On présente ensuite l'analyse et l'approximation numérique d'un modèle de particule ponctuelle évoluant dans un fluide unidimensionnel. Enfin, on aborde le couplage de systèmes hyperboliques issus de la connexion interfaciale de codes de calcul, avec pour application l'adaptation dynamique de modèle, qui consiste à remplacer localement et dynamiquement un modèle par un modèle simplifié pour optimiser d'un code.
102

Equations de réaction-diffusion et quelques applications à la Biologie

Labadie, Mauricio 08 December 2011 (has links) (PDF)
La motivation de cette thèse de Doctorat est de modéliser quelques problèmes biologiques avec des systèmes et des équations de réaction-diffusion. La thèse est divisée en sept chapitres: 1. On modélise des ions de calcium et des protéines dans une épine dendritique mobile (une microstructure dans les neurones). On propose deux modèles, un avec des protéines qui diffusent et un autre avec des protéines fixées au cytoplasme. On démontre que le premier problème est bien posé, que le deuxième problème est presque bien posé et qu'il y a un lien continu entre les deux modèles. 2. On applique les techniques du Chapitre 1 pour un modèle d'infection virale et réponse immunitaire dans des cellules cultivées. On propose comme avant deux modèles, un avec des cellules qui diffusent et un autre avec des cellules fixées. On démontre que les deux problèmes sont bien posés et qu'il y a un lien continu entre les deux modèles. On Žtudie aussi le comportement asymptotique et la stabilité des solutions pour des temps larges, et on fait des simulations dans Matlab. 3. Dans le Chapitre 3 on montre que la croissance a deux effets positives dans la formation de motifs ou patterns. Le premier est un effet anti-explosion (anti-blow-up) car les solutions sur un domaine croissant explosent plus tard que celles sur un domaine fixé, et si la croissance est suffisamment rapide alors elle peut même empêcher l'explosion. Le deuxième est un effet stabilisant car les valeur propres sur un domaine croissant ont des parties réelles plus petites que celles sur un domaine fixé. 4. On étend la définition de front progressif à des variétés et on en étudie quelques propriétés. 5. On étudie des front progressifs sur la droite réelle. On démontre qu'il y a deux fronts progressifs qui se déplacent dans des directions opposées et qu'ils se bloquent mutuellement, générant ainsi une solution stationnaire non-triviale. Cet exemple montre que pour des modèles à diffusion non-homogène les fronts progressifs ne sont pas nécessairement des invasions. 6. On étudie des fronts progressifs sur la sphère. On démontre que pour des sous-domaines de la sphère avec des conditions aux limites de Dirichlet le front progressif est toujours bloqué, tandis que pour la sphère complète le front peut ou bien invahir ou bien être bloqué, tout en fonction des conditions initiales. 7. On étudie un problème elliptique aux valeurs propres nonlinéaires. Sur la sphère de dimension 1 on démontre l'existence de multiples solutions non-triviales avec des techniques de bifurcation. Sur la sphère de dimension n on utilise les mêmes arguments pour dŽmontrer l'existence de multiples solutions non-triviales à symétrie axiale, i.e. qui ne dépendent que de l'angle vertical.
103

Simulation numérique des écoulements multiphasiques: de la théorie aux applications

Helluy, Philippe 06 January 2005 (has links) (PDF)
Ce travail présente quelques aspects de la théorie et de l'approximation numérique des écoulements multiphasiques compressibles.
104

Inéquations variationnelles stochastiques et applications aux vibrations de structures mécaniques

Mertz, Laurent 02 December 2011 (has links) (PDF)
Cette thèse traite des inéquations variationnelles stochastiques et de leurs applications aux vibrations de structures mécaniques. On considère d'abord un algorithme numérique déterministe pour obtenir le régime stationnaire d'une inéquation variationnelle stochastique modélisant un oscillateur élasto-plastique excité par un bruit blanc. Une famille de solutions d'équations aux dérivées partielles définissant la mesure invariante par dualité est étudiée comme alternative à la simulation probabiliste. Puis, nous présentons une nouvelle caractérisation de l'unique mesure invariante. Dans ce contexte, nous montrons une relation liant des problèmes non-locaux et des problèmes locaux en introduisant la définition des cycles courts. Dans un cadre orienté vers les applications, nous démontrons que la variance de la déformation plastique cro^it linéairement avec le temps et nous caractérisons rigoureusement le coefficient de dérive en introduisant la définition des cycles longs. Dans la suite, nous étudions un processus approché de la solution de l'inéquation comportant des sauts aux instants de transition de l' état plastique vers l' état élastique. Nous prouvons que la solution approchée converge sur tout intervalle de temps ni vers la solution de l'inéquation, lorsque la taille du saut tend vers 0. Ensuite, nous défi nissons une inéquation variationnelle stochastique pour modéliser un oscillateur élasto-plastique excité par un bruit blanc filtré. Nous prouvons la propriété ergodique du processus sous-jacent et nous caractérisons sa mesure invariante. Nous étendons la méthode de A.Bensoussan et J.Turi avec une difficulté supplémentaire due à l'accroissement de la dimension. Finalement, dans un chapitre orienté vers l'expérimentation numérique, nous mettons en évidence par les simulations probabilistes le phénomène de phases micro-élastiques. Leur impact concerne des grandeurs utiles a l'ingénieur comme la fréquence des déformations plastiques. Un critère empirique qui peut ^etre utile à l'ingénieur est fourni afin de ne pas prendre en compte les phases micro-élastiques et ainsi évaluer d'une façon réaliste, à partir de la mesure invariante, les statistiques de la déformation plastique d'un oscillateur élasto-plastique excité par un bruit blanc.
105

Quelques applications des fonctions a variation bornée en dimension finie et infinie

Goldman, Michael 09 December 2011 (has links) (PDF)
Cette thèse a pour but d'étudier quelques applications des fonctions à variation bornée et des ensembles de périmètre fini. Nous nous intéressons en particulier à des applications en traitement d'images et en géométrie de dimension finie et infinie. Nous étudions tout d'abord une méthode dite Primale-Duale proposée par Appleton et Talbot pour la résolution de nombreux problèmes en traitement d'images. Nous réinterprétons cette méthode sous un oeil nouveau, ce qui aide à mieux la comprendre mathématiquement. Ceci permet par exemple de démontrer sa convergence et d'établir de nouvelles estimations a posteriori qui sont d'une grande importance pratique. Nous considérons ensuite le problème de courbure moyenne prescrite en milieu périodique. A l'aide de la théorie des ensembles de périmètre fini, nous démontrons l'existence de solutions approchées compactes de ce problème. Nous étudions également le comportement asymptotique de ces solutions lorsque leur volume tend vers l'infini. Les deux dernières parties de la thèse sont consacrées à l'étude de problèmes géométriques dans les espaces de Wiener. Nous étudions d'une part les liens entre symétrisations, semi-continuité et inégalités isopérimétriques ce qui permet d'obtenir un résultat d'approximation et de relaxation pour le périmètre dans ces espaces de dimension infinie. Nous démontrons d'autre part la convexité des solutions de certains problèmes variationnels dans ces espaces, en développant au passage l'étude de la semi-continuité et de la relaxation dans ce contexte.
106

Identification par imagerie laser d'un objet dissimulé - Aspects mathématiques et numériques

Bellet, Jean-Baptiste 10 December 2010 (has links) (PDF)
Nous nous intéressons à l'imagerie d'un objet enfoui dans un milieu multi-couches inhomogène, avec des données ne contenant pas la phase. Nous résolvons un problème direct modèle de propagation des ondes dans un tel milieu, à l'aide de l'analyse asymptotique et des équations intégrales. Puis nous développons des algorithmes de reconstruction à base de dérivée topologique et des techniques de l'optimisation de forme.
107

Solitons et comportement asymptotique des solutions en grand temps pour l'équation de Novikov-Veselov

Kazeykina, Anna 03 December 2012 (has links) (PDF)
Ce travail est consacré à l'étude de l'équation de Novikov-Veselov, un analogue ( 2 + 1 )-dimensionnel de l'équation renommée de Korteweg-de Vries, intégrable via la transformée de la diffusion inverse pour l'équation de Schrödinger stationnaire en dimension 2 à énergie fixe. Nous commençons par étudier une classe spéciale de solutions rationnelles non singulières de l'équation de Novikov-Veselov à énergie positive, construites par Grinevich et Zakharov, et nous démontrons que ces solutions sont multisolitons. Les solutions de Grinevich-Zakharov sont localisées comme $ O( | x |^{ -2 } ) $, $ | x | \to \infty $, et dans le travail présent, nous prouvons que cette localisation est presque la plus forte possible pour les solitons de l'équation de Novikov-Veselov: nous montrons que l'équation de Novikov-Veselov à énergie non nulle ne possède pas de solitons localisés plus fort que $ O ( | x |^{ - 3 } ) $, $ | x | \to \infty $. Pour le cas d'énergie zéro, nous montrons que si les solitons de l'équation de Novikov-Veselov appartiennent à l'image des solutions de l'équation de Novikov-Veselov modifiée sous la transformation de Miura, dans ce cas, la localisation plus forte que $ O( | x |^{ -2 } ) $ n'est pas possible. Dans le travail présent, nous étudions également la question du comportement asymptotique des solutions du problème de Cauchy pour l'équation de Novikov-Veselov à énergie non nulle (pour le cas d'énergie positive, les solutions transparentes ou " reflectionless " sont considérées). Sous l'hypothèse de non singularité des données de diffusion des solutions nous obtenons que ces solutions décroissent avec le temps de façon uniforme comme $ O( t^{ -1 } ) $, $ t \to +\infty $, dans le cas d'énergie positive et comme $ O( t^{ -3/4 } ) $, $ t \to +\infty $, dans le cas d'énergie négative; dans ce dernier cas, nous démontrons également que l'estimation obtenue est optimale.
108

Étude unifiée d'équations aux dérivées partielles de type elliptique régies par des équations différentielles à coefficients opérateurs dans un cadre non commutatif: applications concrètes dans les espaces de Hölder et les espaces Lp

Meisner, Maëlis 22 June 2012 (has links) (PDF)
L'objectif de ce travail est l'étude des équations différentielles complètes du second ordre de type elliptique à coefficients opérateurs dans un espace de Banach X quelconque. Une application concrète de ces équations est détaillée, il s'agit d'un problème de transmission du potentiel électrique dans une cellule biologique où la membrane constitue une couche mince. L'originalité de ce travail réside particulièrement dans le fait que les opérateurs non bornés considérés ne commutent pas nécessairement. Une nouvelle hypothèse dite de non commutativité est alors introduite. L'analyse est faite dans deux cadres fonctionnels distincts: les espaces de Hölder et les espaces Lp (avec X un espace UMD). L'équation est d'abord étudiée sur la droite réelle puis sur un intervalle borné avec conditions aux limites de Dirichlet. On donne des résultats d'existence, d'unicité et de régularité maximale de la solution classique sous des conditions sur les données dans des espaces d'interpolation. Les techniques utilisées sont basées sur la théorie des semi-groupes, le calcul fonctionnel de Dunford et la théorie de l'interpolation. Ces résultats sont tous appliqués à des équations aux dérivées partielles concrètes de type elliptique ou quasi-elliptique.
109

Analyse de modèles mathématiques pour la propagation de la lumière dans les fibres optiques en présence de biréfringence aléatoire

Gazeau, Maxime 19 October 2012 (has links) (PDF)
L'étude de la propagation de la lumière dans les fibres optiques monomodes requiert la prise en compte de plusieurs phénomènes compliqués tels que la dispersion modale de polarisation et l'effet Kerr. Il s'est avéré que l'évolution de l'enveloppe lentement variable du champ électrique est bien décrite par un système couplé d'équations de Schrödinger non linéaires à coefficients aléatoires : l'équation de Manakov PMD. Cette équation fait intervenir différentes échelles dont le ratio est donné par un petit paramètre. La première partie de ce travail consiste à étudier le comportement asymptotique de la solution de l'équation de Manakov PMD lorsque ce petit paramètre tend vers zéro. En généralisant la théorie de l'Approximation-Diffusion au cadre de la dimension infinie, on a montré que la dynamique asymptotique est donnée par une équation aux dérivées partielles stochastiques dirigée par un mouvement brownien de dimension trois. Dans une seconde partie, nous proposons un schéma de différences finies de type Crank Nicolson pour cette équation pour lequel nous obtenons un ordre de convergence en probabilité d'ordre 1/2. La discrétisation du bruit doit être implicite afin d'obtenir un schéma conservatif et stable. Enfin la dernière partie est relative à la simulation numérique de la dispersion modale de polarisation et à ses effets sur la propagation et la collision de solitons de Manakov. Dans ce cadre, on propose une méthode de réduction de variance valable pour les équations aux dérivées partielles stochastiques.
110

Modélisation multi-échelle et simulation numérique de l'érosion des sols de la parcelle au bassin versant

Minh-Hoang, Le 26 November 2012 (has links) (PDF)
L'objectif global de ce travail est d'étudier une modélisation multi-échelle et de développer une méthode adaptée pour la simulation numérique du processus d'érosion à l'échelle du bassin versant. Après avoir passé en revue les différents modèles existants, nous dérivons une solution analytique non triviale pour le système couplé modélisant le transport de sédiments par charriage. Ensuite, nous étudions l'hyperbolicité de ce système avec diverses lois de sédimentation proposées dans la littérature. Concernant le schéma numérique, nous présentons le domaine de validité de la méthode de splitting, pour les équations modélisant l'écoulement et celle décrivant l'évolution du fond. Pour la modélisation du transport en suspension à l'échelle de la parcelle, nous présentons un système d'équations couplant les mécanismes d'infiltration, de ruissellement et le transport de plusieurs classes de sédiments. L'implémentation et des tests de validation d'un schéma d'ordre élevé et de volumes finis bien équilibré sont également présentés. Ensuite, nous discutons sur l'application et la calibration du modèle avec des données expérimentales sur dix parcelles 1m2 au Niger. Dans le but d'aboutir la simulation à l'échelle du bassin versant, nous développons une modélisation multi échelle dans laquelle nous intégrons le taux d'inondation dans les équations d'évolution afin de prendre en compte l'effet à petite échelle de la microtopographie. Au niveau numérique, nous étudions deux schémas bien équilibrés : le schéma de Roe basé sur un chemin conservatif, et le schéma avec reconstruction hydrostatique généralisée. Enfin, nous présentons une première application du modèle avec les données expérimentales du bassin versant de Ganspoel qui nécessite la parallélisation du code.

Page generated in 0.0614 seconds