• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 6
  • 4
  • 4
  • 2
  • Tagged with
  • 33
  • 15
  • 12
  • 9
  • 9
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Suppression of ABHD2, identified through a functional genomics screen, causes anoikis resistance, chemoresistance and poor prognosis in ovarian cancer. / 機能的ゲノミクススクリーンにより同定した因子ABHD2の発現低下は、卵巣癌のアノイキス抵抗性、化学療法抵抗性をもたらし、予後不良につながる

Yamanoi, Kouji 25 September 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20662号 / 医博第4272号 / 新制||医||1024(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 武藤 学, 教授 松田 道行, 教授 原田 浩 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
22

Critical Functionality Effects from Storage Temperature on Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cell Suspensions / ヒトiPS細胞由来網膜色素上皮細胞懸濁液の非凍結条件下における保存温度の影響

Kitahata, Shohei 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21685号 / 医博第4491号 / 京都大学大学院医学研究科医学専攻 / (主査)教授 辻川 明孝, 教授 高橋 淳, 教授 井上 治久 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
23

Identification of Thioredoxin-Interacting Protein as a Potential Mediator of Anoikis-Resistance in Ovarian Cancer

Spaeth-Cook, Douglas M., Jr 31 October 2017 (has links)
No description available.
24

Deciphering the Mechanisms of AMPK Activation upon Anchorage- Deprivation

Sundararaman, Ananthalakshmy January 2016 (has links) (PDF)
AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis in cells. It has been implicated as a therapeutic target for various metabolic diseases like type II diabetes and obesity. However, its role in cancer is context-dependent and therefore warrants further studies to explore its possible use as a therapeutic target. AMPK can either promote or retard the growth of cancer cells depending on other cues and stresses in the milieu of the cancer cells. This study aims to understand AMPK signalling in response to extracellular cues of matrix deprivation and matrix stiffness that are important determinants of metastasis. 1) Calcium-Oxidant Signalling Network Regulates AMPK Activation upon Matrix Deprivation. Recent work from our lab, as well as others, has identified a novel role for the cellular energy sensor AMP-activated protein kinase in epithelial cancer cell survival under matrix deprivation. However, the molecular mechanisms that activate AMPK upon matrix-detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, while re-attachment to the matrix leads to its dephosphorylating and inactivation. Since matrix-detachment leads to loss of integrin signalling, we investigate whether integrin signalling negatively regulates AMPK activation. However, modulation of FAK or Src, the major downstream components of integrin signalling, fails to cause a corresponding change in AMPK signalling. Further investigations reveal that the upstream AMPK kinases, LKB1 and CaMKKβ, contribute to AMPK activation upon detachment. Additionally, we show LKB1 phosphorylation and cytosolic translocation upon matrix deprivation, which might also contribute to AMPK activation. In LKB1-deficient cells, we find AMPK activation to be predominantly dependent on Caskβ. We observe no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment is not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signalling and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that ER calcium release induced store-operated calcium entry (SOCE) contributes to intracellular calcium increase, leading to ROS production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. We find a significant increase in LKB1 as well as pACC levels in breast tumour tissues in comparison to normal tissues. Further, we observe a significant correlation between LKB1 and pACC levels in breast tumour tissues suggesting that LKB1-AMPK signaling pathway is active in vivo in breast cancers. Thus, the Ca2+/ROS triggered LKB1/CaMKK-AMPK signalling cascade may provide a quick, adaptable switch to promote survival of metastasising cancer cells. 2) Extracellular Matrix Stiffness Regulates Stemless through AMPK. Cancer cells experience changes in extracellular matrix stiffness during cancer progression. However, the signalling pathways utilised in sensing matrix stiffness are poorly understood. In this study, we identify AMPK pathway as a possible mechanosensory pathway in response to matrix stiffness. AMPK activity, as measured by downstream target phosphorylation, is found to be higher in soft matrix conditions. We additionally show that compared to stiff matrices, soft matrices increase stemless properties, as evidenced by the increased expression of stemless markers, which is dependent on AMPK activity. Thus, we elucidate a novel mechanotransduction pathway triggered by matrix stiffness that contributes to stemness of cancer cells by regulating AMPK activity. Taken together, our study identifies a novel calcium-oxidant signaling network in the rapid modulation of AMPK signaling in the context of matrix detachment. This pathway is especially relevant in the context of metastasising cancer cells that may not face energy stress in the blood stream but are matrix-deprived. Inhibition of AMPK might compromise the viability of these circulating cells thereby reducing the metastatic spread of cancer. Our study further suggests that varying stiffnesses experienced by cancer cells can modulate AMPK activity and this, in turn, regulates stem-like properties. Thus our study provides novel insights into various extracellular cues that regulate this kinase and contribute to cell survival and metastasis. This knowledge can be utilised in the stage-specific use of AMPK inhibitors in the treatment of breast cancer patients.
25

Mécanismes moléculaires de l'acquisition d'une sensibilité à l'apoptose induite par l'ABT-737 et d'une résistance à l'anoïkis de cellules coliques métastatiques / Metastatic SW620 colon cancer cells are primed for death when detached and can be sensitized to anoikis by the BH3-mimetic ABT-737

Maamer - Azzabi, Aida 19 September 2013 (has links)
La progression tumorale est la conséquence de multiples altérations génotypiques et phénotypiques; L’une d’entre elles, nécessaire à la formation de métastases, est l’acquisition d’une résistance à l’anoïkis, forme d’apoptose induite par la perte d’attachement à la matrice extra-cellulaire. Afin d’étudier l’anoïkis, nous avons utilisé deux lignées colorectales humaines isogéniques : la lignée SW480 dérivée de la tumeur primaire et sensible à l’anoïkis et la lignée SW620 dérivée d’une métastase ganglionnaire de cette même tumeur et résistante à l’anoïkis. Nous avons établi que dans les cellules SW480, l’anoïkis est une forme d’apoptose intrinsèque c'est-à-dire débutant à la mitochondrie et donc sous le contrôle des protéines de la famille Bcl-2. Parmi celles-ci, nous avons trouvé que seule la protéine proapoptotique à BH3-seul Bim était régulée différemment dans les deux lignées : tandis que son expression augmente de manière très significative dans les cellules SW480 cultivées en suspension, elle n’augmente que très peu dans les cellules SW620. De manière très intéressante, et malgré cette différence, les deux lignées se sont montrées être sensibles au BH3-mimétique ABT-737 mais seulement lorsqu’elles sont cultivées en suspension. Ces résultats indiquent que, qu’elles soient sensibles ou non à l’anoïkis, les cellules détachées sont « prédisposées à la mort » et que des composés semblables à l’ABT-737 tels que le Navitoclax ou l’ABT-199 pourraient avoir des propriétés anti-métastiques dans les tumeurs solides. Dans la seconde partie de ce travail, nous montrons que la protéine transmembranaire CDCP1 ( CUB Domain Containing Protein 1) semble nécessaire mais non suffisante pour protéger ces cellules contre l’anoïkis. CDCP1 est un substrat de Src mais sa phosphorylation sur tyrosine n’est pas impliquée dans cette protection. Finalement, nous avons identifié deux nouvelles protéines qui interagissent avec CDCP1 : l’ITGB4 et l’EphA2 / Tumour progression is the consequence of multiple genotypic and phenotypic alterations. One of these, necessary for the formation of metastasis, is acquisition of a resistance to anoïkis, a form of apoptosis triggered by loss of attachment to the extra-cellular matrix. In order to study anoïkis, we used two isogenic human colon cell lines : SW480 cells derived from the primary tumour and sensitive to anoïkis, and SW620 cells derived from a lymph node metastasis in the same patient which are resistant to anoikis. We found that anoikis signaling in SW480 cells is a form of intrinsic apoptosis thus starting at the mitochondria and under the control of Bcl-2 family proteins. Among the members of this family, the BH3-only proapoptotic protein Bim was the only one that we found to be differentially regulated between the two cell lines: whereas Bim expression augments strongly during the culture in suspension of SW480, it only slightly does so in SW620 cells. Most interestingly, despite this difference, both cell lines turned to be sensisitive to the BH3-mimetic ABT-737 but only when they are in suspension. This shows that, whether or not they a sensitive to anoikis, detached colon cancer cells are “primed for death” and thus that ABT-737 related compounds such as Navitoclax or ABT-199 might have anti-metastatic properties in solid tumours. In the second part of this work, we show that the transmembrane protein CDCP1 (CUB Domain Containing Protein 1) appears be necessary but not sufficient to protect these cells against anoïkis. CDCP1 is a Src substrate but its tyrosine phosphorylation is not involved in this protection. Finally, we have identified two new proteins interacting with CDCP1: ITGB4 and EphA2.
26

Modeling and histopathological recognition of anoikis resistance in colorectal carcinoma

Patankar, M. (Madhura) 03 December 2019 (has links)
Abstract Colorectal carcinoma (CRC) is an important cause of cancer-associated deaths. About 30–50% of CRCs show KRAS or BRAF mutation. In many cancers, anoikis, i.e. apoptosis induced by loss of extracellular matrix (ECM) contact, is disturbed. Anoikis resistance is essential for the formation of metastases, and since anoikis resistance assessment is based on in vitro cell cultures, the prognostic value of anoikis resistance is largely unknown. We aimed to identify the histopathological features indicating anoikis resistance in CRC and analyze their prognostic value. The roles of BRAF and KRAS mutations and survivin in anoikis resistance were analyzed and 3-D cell culture was used to model the histopathology of anoikis resistant (AR) structures. The two cohorts of CRC cases used in the study consisted of 62 (series 1) and 137 patients (series 2). Immunohistochemistry for ECM proteins enabled identification of tumor cells with and without ECM contact, and in both populations, apoptosis was determined with staining for caspase-cleaved keratin 18. Based on absence of ECM contact and decreased apoptosis rate, we identified micropapillary (MIP), cribriform and solid structures to represent the putative AR populations. High areal density of AR structures associated independently with short survival and was an independent prognostic factor. MIPs showed lower survivin expression, proliferation and apoptosis rates than non-MIP cells, and low apoptosis rate was associated with poor prognosis in stage I and II cases. For 3-D in vitro model of AR structures, we transfected Caco-2 cells with mutated KRAS or BRAF genes; both induced anoikis resistance as measured with Annexin V test in suspension culture. In 3-D cultures, native Caco-2 cells formed polarized cysts. In contrast, mutated cell lines formed partially filled cysts or solid structures, and inverted polarity in KRAS mutant cells. In conclusion, it is possible to identify putative AR structures by conventional histopathology and their number is associated with poor prognosis. MIPs represent a distinct subpopulation of CRC cells with features of quiescence. KRAS and BRAF mutations induce anoikis resistance in Caco-2 cells. In 3-D cultures, oncogenes KRAS and BRAF induce solid structures and cell piling, with structural resemblance to putative AR structures observed by histopathology. The mutated Caco-2 cells thus serve as a model to study the manifestation of anoikis resistance as a distinct histological feature with oncological significance. / Tiivistelmä Paksu- ja peräsuolisyöpä on yleinen syöpäkuoleman aiheuttaja. KRAS- tai BRAF-geenien mutaatio todetaan 30–50 prosentissa suolisyövistä. Anoikis tarkoittaa apoptoosia, jonka käynnistää solun irtoaminen soluväliaineesta. Anoikisresistenssi on etäpesäkkeen synnyn edellytys. Anoikisresistenssiä voidaan todeta vain soluviljelyssä, joten sen merkitystä syövässä in vivo ei ole aiemmin arvioitu. Tässä työssä pyrittiin tunnistamaan anoikisresistenssiin viittaavat muutokset histopatologisista suolisyöpänäytteistä ja selvittämään niiden vaikutusta potilaan ennusteeseen. Lisäksi tutkittiin BRAF- ja KRAS-mutaatioiden yhteyttä anoikisresistenssiin ja mallinnettiin anoikisresistenttejä (AR) rakenteita kolmiulotteisessa soluviljelmässä. Potilasaineisto koostui 199 suolisyöpäpotilaasta. Kudosleikkeistä värjättiin soluväliaineen komponentteja sekä määritettiin apoptoottiset ja jakautuvat solut (M30- ja Ki-67-värjäykset). AR-solupopulaatioiden tunnistamisessa käytettiin kriteereinä soluväliainekontaktin puuttumista ja vähentynyttä apoptoositiheyttä. AR-populaatioiksi osoittautuivat mikropapillaariset (MIP), seulamaiset ja solidit rakenteet. Näiden rakenteiden korkea kokonaisesiintyvyys osoittautui itsenäiseksi huonon ennusteen tekijäksi. MIP-rakenteissa surviviinin ilmentyminen ja apoptoosi- ja proliferaatiotiheys olivat vähentyneet muihin kasvainsoluihin verrattuna. Lisäksi apoptoottisten solujen pieni määrä MIP-rakenteissa liittyi huonoon ennusteeseen paikallisessa syövässä. Mallinnusta varten Caco-2 solut transfektoitiin mutatoiduilla KRAS- tai BRAF-geeneillä. Onkogeenien transfektion todettiin indusoivan anoikisresistenssiä. Kolmiulotteisessa soluviljelyssä polarisoituneet Caco-2 solut muodostivat säännöllisiä rauhasmaisia rakenteita. Onkogeeneillä transfektoidut solut muodostivat puolestaan osittain tai kokonaan täyttyneitä rakenteita ja KRAS-transfektio aiheutti solujen polariteetin kääntymistä. Havainnot osoittavat, että anoikisresistenssiä edustavat rakenteet voidaan tunnistaa kudosleikkeestä ja niiden runsas määrä viittaa huonoon ennusteeseen. MIP-rakenteissa todettiin lepotilan (quiescence) piirteitä. KRAS- ja BRAF-mutaatiot aiheuttavat Caco-2 soluissa anoikisresistenssiä. Kolmiulotteisissa soluviljelmissä onkogeenien vaikutus näkyy solujen pinoutumisena, mikä muistuttaa syöpäkudosnäytteissä todettuja AR-rakenteita. Tulosten perusteella modifioituja Caco-2 soluja voidaan hyödyntää anoikisresistenssin mallintamiseen ja tarkempien mekanismien tutkimiseen.
27

Associação entre Timp1, β1-integrinas e CD63 ao longo da gênese do melanoma / Association between Timp1, β1-integrin and CD63 during the genesis of melanoma

Pinto, Mariana Toricelli [UNIFESP] 24 November 2010 (has links) (PDF)
Made available in DSpace on 2015-07-22T20:49:28Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-11-24. Added 1 bitstream(s) on 2015-08-11T03:26:29Z : No. of bitstreams: 1 Publico-393.pdf: 1637068 bytes, checksum: 4fe3757007f6a049eac930eb08b63c88 (MD5) / O melanoma é o tipo de câncer de pele menos frequente, mas que tem um grande poder de letalidade devido ao seu potencial de formar metástases. Para as células adquirirem a capacidade de formar metástases, estas precisam ter a característica de sobreviver independente de interações com a matriz extracelular e consequentemente apresentar resistência ao anoikis. Por isso, a importância de se estudar as alterações que ocorrem com células tumorais que adquirem essa capacidade. Em nosso laboratório foi desenvolvido um modelo que nos permite estudar diferentes etapas da gênese do melanoma. Melanócitos murinos melan-a que sobreviveram depois de 1, 2, 3 e 4 ciclos de impedimento de ancoragem por 96 horas apresentaram modificações na morfologia e crescimento independente de PMA, e foram denominadas 1C, 2C, 3C e 4C, respectivamente. Diferentes linhagens de melanoma (4C11-, 4C11+, Tm1, Tm5, etc) foram estabelecidas após submeter os esferóides sobreviventes da 4C à diluição limitante. Dados prévios de nosso laboratório mostraram aumento da expressão de Timp1 ao longo da transformação maligna de melanócitos e aumento da resistência ao anoikis. Melanócitos melan-a superexpressando o gene Timp1 adquirem fenótipo de resistência ao anoikis. No entanto, o mecanismo pelo qual Timp1 medeia essa sinalização de sobrevivência não é conhecido. Dados da literatura mostram interação entre CD63, Timp1 e 1-integrinas em células epiteliais de mama humana e que essa interação regula processos fisiológicos como apoptose. Além disso, a glicosilação aberrante em moléculas de adesão celular, como integrinas, pode conferir às células capacidade de sobreviver em condições independentes de ancoragem. O objetivo do presente estudo foi analisar a possível interação entre CD63, Timp1 e 1-integrinas ao longo da transformação maligna de melanócitos, a presença de N-glicosilação aberrante em β1-integrinas e o impacto da N-glicosilação aberrante na resistência ao anoikis. Observou-se interação entre CD63 e Timp1 e CD63 e 1-integrinas nas linhagens 4C, 4C11- e 4C11+, estabelecidas após ciclos de impedimento de ancoragem, já a interação entre Timp1 e 1-integrinas foi observada somente nas linhagens de melanoma 4C11- e 4C11+. A expressão de 1-integrinas na superfície celular está aumentada na linhagem de melanoma agressivo 4C11+, assim como a expressão de Mgat-V e N-glicosilação aberrante. Além disso, o perfil eletroforético da 1-integrina sugere que a mesma apresenta aumento de N-glicosilação aberrante na linhagem de melanoma metastático 4C11+. O tratamento de células de melanoma 4C11+ com o inibidor de N-glicosilação swainsonine resulta em menor capacidade destas células em resistir ao anoikis. Este parece ser o primeiro estudo descrevendo a interação entre Timp1, CD63 e 1-integrinas em células tumorais. Assim, o presente trabalho favorece o entendimento de como Timp1 regula resistência ao anoikis ao longo da transformação maligna de melanócitos. / Although malignant melanoma is the less frequently diagnosed skin cancer, it shows a poor prognosis due its chemoresistance and metastasis development. One of the adquired abilities of transformed cells is anoikis resistance and this property is closely related to metastasis formation. In our laboratory, we developed a model that allows us to study different steps of melanocyte malignant transformation. Melan-a melanocytes surviving after 1, 2, 3 and 4 deadhesion cycles showed modified morphology and independent PMA growth and have been named, 1C, 2C, 3C and 4C cells, respectively. Different melanoma cell lines were established after submitting 4C spheroids to limiting dilution. Previous results of our group showed increased expression of Timp1 along melanoma genesis and its correlation with anoikis resistance. However, the mechanism involved in this signaling is unknown. Published data demonstrated interaction between CD63, Timp1 and 1-integrins in human breast epithelial cells and its role in apoptosis. Furthermore, aberrant glycosylation in cell adhesion molecules such as integrins provides to cells the ability to survive under anchorage-independent conditions. The aim of this work was analyze the possible interaction among CD63, Timp1 and 1-integrins along melanocyte malignant transformation, possible aberrant N-glycosylation patterns of β1-integrins and their impact in anoikis resistance. Aberrant N-glycosylation patterns were observed in tumorigenic cells. We observed interaction between CD63 and Timp1 and between CD63 and 1-integrins in the melan-a-derived cells 4C, 4C11, and 4C11 +, and interaction between Timp1 and 1-integrins only in melanoma cell lines 4C11 - and 4C11 +. The presence of Timp1 in supernatant from 4C11+ conferred to melan-a cells anoikis resistance. The expression of 1-integrins in our study model is increased in aggressive melanoma lineage, 4C11+, as well as the expression of Mgat-V and aberrant N-glycosylation on cell surface. Moreover, the electrophoretic profile of  1-integrin suggests that melanoma metastatic 4C11+. Lineage present increased aberrant N-glycosylation in this molecule. Treatment of melanoma cells 4C11 + with the N-glycosylation inhibitor, swainsonine, resulted in reduced capacity of these cells to resist to anoikis. This seems to be the first study describing the interaction between Timp1, CD63 and 1-integrin in tumor cells and may contribute to a better understanding of how Timp1 regulates resistance to anoikis during the melanocyte malignant transformation. / TEDE / BV UNIFESP: Teses e dissertações
28

Protein phosphatase 2A (PP2A) holoenzymes regulate death associated protein kinase (DAPK) in ceramide-induced anoikis

Widau, Ryan Cole 03 May 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Modulation of sphingolipid-induced apoptosis is a potential mechanism to enhance the effectiveness of chemotherapeutic drugs. Ceramide is a pleiotropic, sphingolipid produced by cells in response to inflammatory cytokines, chemotherapeutic drugs and ionizing radiation. Ceramide is a potent activator of protein phosphatases, including protein phosphatase 2A (PP2A) leading to dephosphorylation of substrates important in regulating mitochondrial dysfunction and apoptosis. Previous studies demonstrated that death associated protein kinase (DAPK) plays a role in ceramide-induced apoptosis via an unknown mechanism. The tumor suppressor DAPK is a calcium/calmodulin regulated serine/threonine kinase with an important role in regulating cytoskeletal dynamics. Auto-phosphorylation within the calmodulin-binding domain at serine308 inhibits DAPK catalytic activity. Dephosphorylation of serine308 by a hitherto unknown phosphatase enhances kinase activity and proteasomal mediated degradation of DAPK. In these studies, using a tandem affinity purification procedure coupled to LC-MS/MS, we have identified two holoenzyme forms of PP2A as DAPK interacting proteins. These phosphatase holoenzymes dephosphorylate DAPK at Serine308 in vitro and in vivo resulting in enhanced kinase activity of DAPK. The enzymatic activity of PP2A also negatively regulates DAPK protein levels by enhancing proteasomal-mediated degradation of the kinase, as a means to attenuate prolonged kinase activation. These studies also demonstrate that ceramide causes a caspase-independent cell detachment in HeLa cells, a human cervical carcinoma cell line. Subsequent to detachment, these cells underwent caspase-dependent apoptosis due to lack of adhesion, termed anoikis. Overexpression of wild type DAPK induced cell rounding and detachment similar to cells treated with ceramide; however, this effect was not observed following expression of a phosphorylation mutant, S308E DAPK. Finally, the endogenous interaction of DAPK and PP2A was determined to be required for ceramide-induced cell detachment and anoikis. Together these studies have provided exciting and essential new data regarding the mechanisms of cell adhesion and anoikis. These results define a novel cellular pathway initiated by ceramide-mediated activation of PP2A and DAPK to regulate inside-out signaling and promote anoikis.
29

The effect of a three dimensional growth environment on cell death and stress protein expression

Song, Alfred Seunghoon 02 July 2012 (has links)
Understanding the cellular response thermal stress is important for improving thermoablative treatments of cancer. Cells generally respond to thermal stress by expressing heat shock proteins, or undergoing cell death by apoptosis or necrosis. Most of our detailed knowledge regarding these cellular phenomena has been gathered in vitro in two dimensional (2D) environments. Yet, little is known about how prostate cancer cells respond to thermal stress in a more physiologically relevant three dimensional (3D) environment. Several approaches were used to investigate this question, all of which focused on controlled heating of cells in both two dimensional (2D) and 3D culture. Tools and assays were developed to investigate cellular response to thermal stress in 2D and 3D environments. A computer-controlled heating apparatus was constructed to heat cell cultures to precise temperatures and durations. Three dimensional growth environments were produced using Matrigel, a commercially available extracellular matrix (ecm) mixture. Transcriptional expression of heat shock protein 70 (HSP70) was measured using a green fluorescent protein (GFP) reporter gene under the control of an HSP promoter. Apoptosis, necrosis and HSP70 transcription was measured using flow cytometry analysis. Quantitative polymerase chain reaction (qPCR) and microscopy revealed that transmembrane targets may be involved in the mechanism of the effect which 3D culture has on the cellular response to heat shock. The results herein demonstrate that the 3D growth environment, may be protective to the cell in that the percentage of cells that undergo apoptosis or necrosis when exposed to heat shock are reduced. Furthermore, HSP70 expression is enhanced in 3D culture at a specific thermal dose and integrins and heat shock proteins may be part of the mechanism by which the ecm exerts its protective effect against thermal stress. / text
30

Role of AMP-Activated Protein Kinase in Cancer Cell Survival under Matrix-Deprived Conditions

Saha, Manipa January 2015 (has links) (PDF)
Cancer progression is a multi-step process requiring cells to acquire specific properties that aid the neoplastic growth. One such property is the ability to survive in the absence of matrix-attachment, a critical necessity for cells to traverse in circulation and seed metastases. Therefore, understanding the signalling mechanisms that protect cells from undergoing death in matrix-deprived condition, termed as anoikis, is important. We have used two systems to study this, one involving experimental transformation model, and another involving cancer cell lines. In the in vitro transformation model system involving the serial introduction of oncogenes, the ability to survive in anchorage-independent condition and generate spheres/colonies was dependent on the presence of the Simian Virus Small T antigen, SV40 ST. We identified that the viral antigen mediates its effects, at least in part, by activating the master metabolic regulator and cellular stress kinase AMP-activated protein kinase (AMPK) leading to maintenance of energy homeostasis. Consistent with this, our lab has previously identified both activation of AMPK upon matrix-deprivation in breast cells, as well as its requirement for survival under these conditions. However, a pathway often associated with survival under matrix-deprivation is the PI3K/Akt pathway. Surprisingly, we observed an AMPK-dependent decrease in Akt activity under conditions of matrix-detachment. Since this was contrary to the general notion, we probed deeper into a possible crosstalk between these two kinases. Our work revealed that AMPK activation in suspension inhibits Akt via upregulation of a known Akt phosphatase, pleckstrin homology domain leucinrich repeat protein phosphatise (PHLPP). We further show that the AMPK-PHLPP-Akt signalling axis is important for anoikis-resistance and metastasis. In addition, our results point to a yet unidentified protumorigenic role of PHLPP in breast cancer progression. With an aim to identify cellular proteins differentially regulated upon AMPK activation in breast cancer cells, we undertook a proteomics approach. Using 2-dimensional gel electrophoresis followed by mass spectrometric analysis, we identified some candidate proteins. We have validated the increase in levels of one of these proteins, annexin A2, in cancer cells upon AMPK activation. In summary, the present study unveils novel oncogenic functions of AMPK in cancer cells under the stress of matrix-deprivation. Furthermore, our results elucidate a double-negative feedback loop between two critical cellular kinases AMPK and Akt, and also identify a novel pro-tumorigenic role of PHLPP in breast cancer. In addition, we identify PHLPP and annexin A2 as novel proteins upregulated by AMPK in cancer cells. Thus, our results begin to identify pathways utilised by cancer cells to aid anchorage-independent growth, a critical step for cancer metastasis. Based on our results, inhibition of AMPK or perturbation of signalling axes involving AMPK, and PHLPP or annexin A2 might be considered as novel therapeutic approaches to combat cancer progression

Page generated in 0.0266 seconds