• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Les applications conforme-harmoniques

Berard, Vincent 07 April 2010 (has links) (PDF)
Sur une surface de Riemann, l'énergie d'une application à valeurs dans une variété riemannienne est une fonctionnelle invariante conforme, ses points critiques sont les applications harmoniques. Nous proposons ici un analogue en dimension supérieure, en construisant une fonctionnelle invariante conforme pour les applications entre deux variétés riemanniennes, dont la source est de dimension $n$ paire. Ses points critiques satisfont une EDP elliptique d'ordre $n$ non linéaire qui est invariante conforme sur la source, on les appelle les applications C--harmoniques. Dans le cas des fonctions, on retrouve l'opérateur GJMS, dont le terme principal est une puissance $n/2$ du laplacien.
2

Quelques problèmes liés à la dynamique des équations de Gross-Pitaevskii et de Landau-Lifshitz

de Laire, André 21 November 2011 (has links) (PDF)
Cette thèse est consacrée à l'étude des équations de Gross-Pitaevskii et de Landau-Lifshitz, qui présentent d'importantes applications en physique. L'équation de Gross-Pitaevskii modélise des phénomènes de l'optique non linéaire, de la superfluidité et de la condensation de Bose-Einstein, tandis que l'équation de Landau-Lifshitz décrit la dynamique de l'aimantation dans des matériaux ferromagnétiques. Lorsqu'on modélise la matière à très basse température, on fait l'hypothèse que l'interaction des particules est ponctuelle. L'équation de Gross-Pitaevskii classique s'en déduit alors en prenant comme interaction une masse de Dirac. Cependant, différents types de potentiels non locaux probablement plus réalistes ont aussi été proposés par des physiciens pour modéliser des interactions plus générales. Dans un premier temps, on s'intéressera à donner des conditions suffisantes couvrant une variété assez large d'interactions non locales et telles que le problème de Cauchy associé soit globalement bien posé avec des conditions non nulles à l'infini. Par la suite, on étudiera les ondes progressives de ce modèle non local et on donnera des conditions telles que l'on puisse déterminer les vitesses pour lesquelles il n'existe pas de solution non constante d'énergie finie. Concernant l'équation de Landau-Lifshitz, on s'intéressera aussi aux ondes progressives d'énergie finie. On montrera la non existence d'ondes progressives non constantes d'énergie petite en dimensions deux, trois et quatre, sous l'hypothèse que l'énergie soit inférieure au moment dans le cas de la dimension deux. En outre, on donnera aussi dans le cas bidimensionnel la description d'une courbe minimisante qui pourrait donner une approche variationnelle pour construire des solutions de l'équation de Landau-Lifshitz. Finalement, on décrira le comportement à l'infini des ondes progressives d'énergie finie.
3

Systèmes intégrables intervenant en géométrie différentielle et en physique mathématique

Khemar, Idrisse 01 March 2006 (has links) (PDF)
Notre thèse est divisée en 2 chapitres indépendants correspondant chacun à un article. Dans le premier chapitre, nous définissons une notion de surfaces isotropes dans les octonions, i.e. sur lesquelles certaines formes symplectiques canoniques s'annulent. En utilisant le produit vectoriel dans O, nous définissons une application rho de la grassmanienne des plans de O dans la sphère de dimension 6. Cela nous permet d'associer à chaque surface Sigma de O une fonction rho_Sigma de la surface sur la sphère. Alors, nous montrons que les surfaces isotropes de O telles que cette fonction est harmonique sont solutions d'un système complètement intégrable. En utilisant les groupes de lacets, nous construisons une représentation de type Weierstrass de ces surfaces. Par restriction au corps des quaternions, nous retrouvons comme cas particulier les surfaces lagrangiennes hamiltoniennes stationnaires de R^4. Par restriction à Im(H), nous retrouvons les surfaces CMC de R^3. Dans le second chapitre, nous étudions les applications supersymétriques harmoniques définies sur R^{2|2} et à valeurs dans un espace symétrique, du point de vue des systèmes intégrables. Il est bien connu que les applications harmoniques de R^2 à valeurs dans un espace symétrique sont solutions d'un système intégrable. Nous montrons que les applications superharmoniques de R^{2|2} dans un espace symétrique sont solutions d'un système intégrable, et que l'on a une représentation de type Weierstrass en termes de potentiels holomorphes (ainsi qu'en termes de potentiels méromorphes). Nous montrons également que les applications supersymétriques primitives de R^{2|2} dans un espace 4-symétrique donnent lieu, par restriction à R^2, à des solutions du système elliptique du second ordre associé à l'espace 4-symétrique considéré (au sens de C.L. Terng).Ceci nous permet d'obtenir, de manière conceptuelle, une sorte d'interprétation supersymétrique de tous les systèmes elliptiques du second ordre associés à un espace 4-symétrique, en particulier du système intégrable construit au chapitre 1 (et plus particulièrement des surfaces lagrangiennes hamiltoniennes stationnaires dans un espace symétrique).
4

Déformations des applications harmoniques tordues

Spinaci, Marco 25 November 2013 (has links) (PDF)
On étudie les déformations des applications harmoniques $f$ tordues par rapport à une représentation. Après avoir construit une application harmonique tordue "universelle", on donne une construction de toute déformations du premier ordre de $f$ en termes de la théorie de Hodge ; on applique ce résultat à l'espace de modules des représentations réductives d'un groupe de Kähler, pour démontrer que les points critiques de la fonctionnelle de l'énergie $E$ coïncident avec les représentations de monodromie des variations complexes de structures de Hodge. Ensuite, on procède aux déformations du second ordre, où des obstructions surviennent ; on enquête sur l'existence de ces déformations et on donne une méthode pour les construire. En appliquant ce résultat à la fonctionnelle de l'énergie comme ci-dessus, on démontre (pour n'importe quel groupe de présentation finie) que la fonctionnelle de l'énergie est strictement pluri sous-harmonique sur l'espace des modules des représentations. En assumant de plus que le groupe soit de Kähler, on étudie les valeurs propres de la matrice hessienne de $E$ aux points critiques.
5

Déformations des applications harmoniques tordues / Deformations of twisted harmonic maps

Spinaci, Marco 25 November 2013 (has links)
On étudie les déformations des applications harmoniques $f$ tordues par rapport à une représentation. Après avoir construit une application harmonique tordue "universelle", on donne une construction de toute déformations du premier ordre de $f$ en termes de la théorie de Hodge ; on applique ce résultat à l'espace de modules des représentations réductives d'un groupe de Kähler, pour démontrer que les points critiques de la fonctionnelle de l'énergie $E$ coïncident avec les représentations de monodromie des variations complexes de structures de Hodge. Ensuite, on procède aux déformations du second ordre, où des obstructions surviennent ; on enquête sur l'existence de ces déformations et on donne une méthode pour le construire. En appliquant ce résultat à la fonctionnelle de l'énergie comme ci-dessus, on démontre (pour n'importe quel groupe de présentation finie) que la fonctionnelle de l'énergie est strictement pluri sous-harmonique sur l'espace des modules des représentations. En assumant de plus que le groupe soit de Kähler, on étudie les valeurs propres de la matrice hessienne de $E$ dans les points critiques. / We study the deformations of twisted harmonic maps $f$ with respect to a representation. After constructing a continuous ``universal'' twisted harmonic map, we give a construction of every first order deformation of $f$ in terms of Hodge theory; we apply this result to the moduli space of reductive representations of a K\"ahler group, to show that the critical points of the energy functional $E$ coincide with the monodromy representations of polarized complex variations of Hodge structure. We then proceed to second order deformations, where obstructions arise; we investigate the existence of such deformations, and give a method for constructing them, as well. Applying this to the energy functional as above, we prove (for every finitely presented group) that the energy functional is strictly pluri sub-harmonic on the moduli space of representations; assuming furthermore that the group is Kähler, we study the eigenvalues of the Hessian of $E$ at critical points.

Page generated in 0.104 seconds