Spelling suggestions: "subject:"atrator"" "subject:"extrator""
41 |
Sistemas dinâmicos discretos: estabilidade, comportamento assintótico e sincronização / Discrete dynamical systems: stability, asymptotic behavior and synchronizationBonomo, Wescley 06 June 2008 (has links)
Este trabalho é em parte baseado no livro The Stability and Control of Discrete Processes de Joseph P. LaSalle. Nós estudamos equações como x(n+1) = T(x(n)), onde T : \' R POT. m\' \' SETA\' \'R POT. m\' é uma aplicação contínua, com o sistema dinâmico associado \'PI\' (n,x) := \' T POT. n\' (x). Nós fornecemos condições suficientes para a estabilidade de equilíbrios usando o método direto de Liapunov. Também consideramos sistemas discretos da forma x(n+1)=T(n, x(n),\'lâmbda\' ) dependendo de uma parâmetro \' lâmbda\' e apresentamos resultados obtendo estimativas de atratores. Finalmente, nós apresentamos algumas simulações de sistemas acoplados como uma aplicação em sistemas de comunicação / This work is in part based on the book The Stability and Control of Discrete Processes of Joseph P. LaSalle. We studing equations as x(n+1) = T(x(n)), where T : \' R POT.m\' \' ARROW\' \' \' R POT.m\' is continuous transformation, with the associated dynamic system \'PI\' (n,x) := \' T POT.n\' (x). We provide suddicient conditions for stability of equilibria, using Liapunov direct method. We also consider nonautonomous discrete systems of the form x(n + 1) = T(n, x(n), \' lâmbda\') depending on the parameter \'lâmbda\' and present results obtaining uniform estimatives of attractors. We finally we present some simulations on synchronization of coupled systems as an application on communication systems
|
42 |
Propriedade gradiente para uma classe de equações de evolução. / Gradient property for a class of evolution equations.LUCENA, Bruna Emanuelly Pereira. 13 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-13T14:00:11Z
No. of bitstreams: 1
BRUNA EMANUELLY PEREIRA LUCENA - DISSERTAÇÃO PPGMAT 2017..pdf: 863254 bytes, checksum: 3efc054cddb6d37b4195e53987dc8906 (MD5) / Made available in DSpace on 2018-08-13T14:00:11Z (GMT). No. of bitstreams: 1
BRUNA EMANUELLY PEREIRA LUCENA - DISSERTAÇÃO PPGMAT 2017..pdf: 863254 bytes, checksum: 3efc054cddb6d37b4195e53987dc8906 (MD5)
Previous issue date: 2017-03 / Capes / Para ler o resumo deste trabalho recomendamos o download do arquivo, uma vez que o mesmo possui fórmulas e caracteres matemáticos que não foram possíveis trascreve-los aqui. / To read the summary of this work we recommend downloading the file, since it has formulas and mathematical characters that were not possible to transcribe them here.
|
43 |
Sistemas dinâmicos discretos: estabilidade, comportamento assintótico e sincronização / Discrete dynamical systems: stability, asymptotic behavior and synchronizationWescley Bonomo 06 June 2008 (has links)
Este trabalho é em parte baseado no livro The Stability and Control of Discrete Processes de Joseph P. LaSalle. Nós estudamos equações como x(n+1) = T(x(n)), onde T : \' R POT. m\' \' SETA\' \'R POT. m\' é uma aplicação contínua, com o sistema dinâmico associado \'PI\' (n,x) := \' T POT. n\' (x). Nós fornecemos condições suficientes para a estabilidade de equilíbrios usando o método direto de Liapunov. Também consideramos sistemas discretos da forma x(n+1)=T(n, x(n),\'lâmbda\' ) dependendo de uma parâmetro \' lâmbda\' e apresentamos resultados obtendo estimativas de atratores. Finalmente, nós apresentamos algumas simulações de sistemas acoplados como uma aplicação em sistemas de comunicação / This work is in part based on the book The Stability and Control of Discrete Processes of Joseph P. LaSalle. We studing equations as x(n+1) = T(x(n)), where T : \' R POT.m\' \' ARROW\' \' \' R POT.m\' is continuous transformation, with the associated dynamic system \'PI\' (n,x) := \' T POT.n\' (x). We provide suddicient conditions for stability of equilibria, using Liapunov direct method. We also consider nonautonomous discrete systems of the form x(n + 1) = T(n, x(n), \' lâmbda\') depending on the parameter \'lâmbda\' and present results obtaining uniform estimatives of attractors. We finally we present some simulations on synchronization of coupled systems as an application on communication systems
|
44 |
[pt] CICLOS HETERODIMENSIONAIS DE CO- ÍNDICE DOIS E BLENDERS SIMBÓLICOS / [en] HETERODIMENSIONAL CYCLES OF CO-INDEX TWO AND SYMBOLIC BLENDERS23 December 2021 (has links)
[pt] Na primeira parte da tese, consideramos difeomorfismos com ciclos
heterodimensionais associados a um par de selas P e Q de co-índice dois.
Provamos que difeomorfismos com ciclos que possuem no mínimo um par
de autovalores centrais do ciclo não real geram ciclos heterodimensionais
robustos. Além disso, quando os autovalores centrais são não-reais, os ciclos
robustos estão associados as continuações das selas iniciais (ou seja, os
ciclos podem ser estabilizados). Na segunda parte deste trabalho estudamos
mapas produto cruzado sobre aplicações deslocamento (do tipo Bernoulli)
com fibras contrativas e dependência Holder nos pontos da base. Provamos
que sistemas que satisfazem a propriedade de cobertura exibem blender
simbólicos. Estes blenders são generalizações do blender usual cuja principal
característica é que suas direções centrais podem ter qualquer dimensão
d maior ou igual que 1. / [en] In the first part of the thesis, we consider diffeomorphisms having heterodimensional
cycles associated with a pair of saddles P and Q of co-index
two. We prove that diffeomorphisms with cycles, which have at least one
pair of non-real central eigenvalues, generate robust heterodimensional cycles.
Moreover, when both central eigenvalues are non-real, the robust cycles
are associated with the continuation of the initial saddles (i.e. the cycle can
be stabilized). In the second part of this work we study skew product maps
over Bernoulli shifts with contracting fibers and Holder dependence on the
base points. We prove that systems satisfying the covering property exhibit
symbolic blenders. These blenders are generalizations of the usual blenders
whose main property is that their central direction may have any dimension
d greater than or equal to 1.
|
Page generated in 0.0305 seconds