• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 17
  • 12
  • 2
  • 1
  • Tagged with
  • 60
  • 51
  • 34
  • 29
  • 29
  • 29
  • 22
  • 22
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Beitrag zur Kennzeichnung von Aufschluss- und Trennerfolg am Beispiel der Magnetscheidung

Leißner, Thomas 01 December 2015 (has links)
In der Arbeit werden Aufschluss- und Sortierergebnisse miteinander kombiniert, um die Anreicherung des Wertstoffs unter Berücksichtigung beider Teilprozesse auf einer vergleichbaren Basis bewerten zu können. Hierfür werden der Literatur vorhandene Modelle entnommen und erweitert, wodurch sich neuartige Parameter definieren lassen. Am Beispielsortierschritt Magnetscheidung wird anhand zweier unterschiedlicher Erze die Beurteilung der Teilprozesse auf Grundlage des vorgeschlagenen Vorgehens dargestellt. Mit Hilfe der Untersuchung der magnetischen Eigenschaften der Erze kann der Einfluss des gewählten Merkmals auf den Verlauf der berechneten Grenzkurven gezeigt werden. Weiterhin erfolgt eine Darstellung der Möglichkeiten durch die Nutzung moderner mineralogischer Analysemethoden zur Berechnung von Mineralsuszeptibilitäten, basierend auf Aufschluss- und Suszeptibilitätsmessungen von Merkmalklassen, sowie das direkte Berechnen von Trennfunktionen mit Hilfe von Aufschlussanalysen der Trennprodukte.
52

Polypropylene and Natural Rubber based Thermoplastic Vulcanizates by Electron Induced Reactive Processing: Polypropylene and Natural Rubber based Thermoplastic Vulcanizates by Electron Induced Reactive Processing

Mondal, Manas 26 September 2013 (has links)
Thermoplastic Vulcanizates (TPVs) are itself a commercially high valued group of polymer blend. They render technological properties of conventional vulcanized elastomers with the ease of thermoplastic melt (re)processability. With ever growing market, TPVs have got plenty of applications among various fields. Here, the technological properties of these TPVs were tailored according to the purpose by interplaying physical parameters of polymers and advanced high energy electron technology. Electron irradiation, though a well-known technique for cross-linking in polymer industry, is only restricted to final product treatment. We take it to the next level by coupling a conventional internal mixer and a high energy electron accelerator. Polypropylene (PP) and natural rubber (NR) based TPVs have been prepared using this new reactive processing technology, named Electron Induced Reactive Processing (EIReP). Various electron treatment parameters were explored to maximize technological properties of TPVs. Effects of various polyfunctional monomers (PFM) were also studied. In an endeavor to develop a potential method for customization, deep insights of macroscopic and microscopic structure of these TPVs were presented with the help of various advanced scientific characterization techniques. Commonly faced difficulties like viscosity mismatch, cure rate mismatch, and incompatibility due to different molecular structures were furnished along with plausible solutions. Investigation of phase inversion from co-continuous matrix to thermoplastic matrix was dealt with special care as it helps to understand structure property correlation for all TPVs. To make the whole effort relevant, at the end of this thesis a summary of various technological properties has been given for the newly processed and commercially available TPVs.
53

Influences of different pre-treatments, settings and cell types on the first process stage of a mechanical recycling process for automotive lithium-ion batteries

Wilke, Christian 06 February 2025 (has links)
This thesis addresses the mechanical recycling of lithium-ion batteries, more precisely the influences on the first process stage of the process developed at TU Bergakademie Freiberg. The recycling of lithium-ion batteries becomes more important with the increasing number of electric vehicles due to the transition in the transport sector. To achieve the new recycling targets introduced by the European Union in 2023, mechanical recycling in combination with hydrometallurgical treatment is the one option that gains more and more importance. The investigated process employs a two-stage comminution, classification and separation process. This thesis focuses only on the first stage and investigates possible variations of input materials and machine settings as well as an additional subprocess and their impact on the products. The varied parameters are the depth of discharge of the battery cells, an additional thermal pre-treatment at different temperatures, a variation of the crusher discharge grid size and the drying temperature after crushing. Furthermore, the robustness of the process was tested with various cell types to ensure its effectiveness with different inputs. Generally speaking, the process consists of a comminution followed by drying and separation of the liberated coatings by sieving as so-called black mass. The coarse fraction is further treated by air classification to produce three products: separator, electrodes and casing fraction. The influence of the different parameters is analysed regarding the crushing in terms of required specific stress energy and particle size distribution of the crushing product. The products of the air classifier and the black mass are analysed regarding their composition to evaluate the product quality and to calculate the recovery rates. Finally, recommendations are given for an optimisation of this part of the mechanical recycling process.:1. Introduction 2. Lithium-ion batteries 3. Mechanical recycling of lithium-ion batteries 3.1. Legal conditions 3.2. Market situation 3.3. Health and safety 3.4. Processing 3.4.1. Discharge 3.4.2. Comminution 3.4.3. Thermal treatment 3.4.4. Separation 3.4.5. Hydrometallurgy 4. Materials, methodology and preliminary tests 4.1. Materials 4.1.1. Investigated cell types 4.1.2. Materials for preliminary tests 4.1.3. Materials used in the publications 4.2. Methodology and preliminary tests 4.2.1. Recycling process and machines 4.2.2. Analysis Methods 4.2.3. Calculations 5. Data 6. Conclusion and outlook References Publications Appendix / Die vorliegende Arbeit befasst sich mit dem mechanischen Recycling von Lithium-Ionen-Batterien, genauer gesagt mit den Einflüssen auf die erste Prozessstufe des an der TU Bergakademie Freiberg entwickelten Verfahrens. Das Recycling von Lithium-Ionen-Batterien wird mit der zunehmenden Anzahl von Elektrofahrzeugen aufgrund des Wandels im Verkehrssektor immer wichtiger. Um die neuen Recyclingziele der Europäischen Union zu erreichen, gewinnt das mechanische Recycling in Kombination mit einer hydrometallurgischen Behandlung immer mehr an Bedeutung. Der untersuchte Prozess basiert auf einem zweistufigen Zerkleinerungs- und Trennungsverfahren. Diese Arbeit konzentriert sich nur auf die Primärstufe und untersucht mögliche Variationen des Inputs und der Einstellungen sowie die Erweiterung um einen zusätzlichen Teilprozess und die sich daraus ergebenen Auswirkungen auf die Produkte. Die veränderten Parameter sind die Entladetiefe, eine zusätzliche thermische Vorbehandlung bei unterschiedlichen Temperaturen, eine Variation der Rostweite im Austrag des Zerkleinerers und die Trocknungstemperatur nach dem Zerkleinern. Zusätzlich wird der Prozess mit verschiedenen Zelltypen auf seine Robustheit bei unterschiedlichen Aufgabematerialien getestet. Der Prozess besteht aus einer Zerkleinerung mit anschließender Trocknung und einer Abtrennung der aufgeschlossenen Beschichtungen durch Absiebung als so genannte Schwarzmasse. Die Grobfraktion wird mit einer Aerostromsortierung weiterverarbeitet, um drei Produkte zu erzeugen: Separator-, Elektroden- und Gehäusefraktion. Der Einfluss der verschiedenen Parameter auf die Zerkleinerung wird im Hinblick auf die erforderliche spezifische Beanspruchungsenergie und die Partikelgrößenverteilung des Zerkleinerungsprodukts analysiert. Die Produkte des Windsichters und die Schwarzmasse werden hinsichtlich ihrer Zusammensetzung analysiert um die Produktqualität zu bewerten und das Wertstoffausbringen zu berechnen. Abschließend werden Empfehlungen für eine Optimierung des mechanischen Recyclingprozesses gegeben.:1. Introduction 2. Lithium-ion batteries 3. Mechanical recycling of lithium-ion batteries 3.1. Legal conditions 3.2. Market situation 3.3. Health and safety 3.4. Processing 3.4.1. Discharge 3.4.2. Comminution 3.4.3. Thermal treatment 3.4.4. Separation 3.4.5. Hydrometallurgy 4. Materials, methodology and preliminary tests 4.1. Materials 4.1.1. Investigated cell types 4.1.2. Materials for preliminary tests 4.1.3. Materials used in the publications 4.2. Methodology and preliminary tests 4.2.1. Recycling process and machines 4.2.2. Analysis Methods 4.2.3. Calculations 5. Data 6. Conclusion and outlook References Publications Appendix
54

Mechanische Aufbereitung der Feinfraktion zerkleinerter Lithium-Ionen-Batterien / Mechanical processing of the fine fraction of crushed lithium-ion batteries

Gellner, Martha 30 May 2018 (has links) (PDF)
Bei einem entwickelten Verfahren zur mechanischen Aufbereitung von Lithium-Ionen-Batterien (LIBs) aus Elektrofahrzeugen fallen zwei, hauptsächlich aus den Elektrodenbestandteilen bestehenden, Feinfraktionen (FF) an. Typischerweise erfolgt eine Rückgewinnung der enthaltenen Wertstoffe Co, Ni und Cu derzeit über eine kombinierte pyro- und hydrometallurgische Aufbereitung. Dabei dient der pyrometallurgische Schritt der Abtrennung von Stoffen, welche bei der hydrometallurgischen Aufbereitung störend wirken. Durch eine mechanische Aufbereitung der FF wurde alternativ zu dem pyrometallurgischen Schritt versucht, die in der FF enthaltenen Wertstoffe anzureichern sowie ebenfalls die Störstoffe für eine hydrometallurgische Aufbereitung abzutrennen. Dazu wurden verschiedene trockene Sortierprozesse herangezogen und auf ihre Eignung hin untersucht. Mit Hilfe der Ergebnisse wurde ein Verfahrensfließbild für die Aufbereitung der FF entworfen und testweise durchlaufen. Zusätzlich zu den Sortierversuchen wurden eine Materialcharakterisierung durchgeführt, die Aufschlussverhältnisse (visuelle Einschätzung, Bestimmung Aufschlussgrad) sowie die Aufschlusszerkleinerung der FF untersucht. Als Aufgabegut diente eine Co-, Ni-, Mn- haltige FF, welche nach der 1. Zerkleinerung und Klassierung im entworfenen Verfahrensfließbild zur Aufbereitung der LIBs aus Elektrofahrzeugen gewonnen wurde. Zur Anreicherung der Wertstoffe Co, Ni innerhalb des Aktivmaterials (AM) und Cu sowie zur Reduzierung der Störstoffgehalte von Al und Kohlenstoff in bestimmten Produkten haben sich die Siebklassierung, die Magnetscheidung, die Gegenstromsortierung sowie als nasser Dichtesortierprozess die Schwimm-Sink-Sortierung als geeignet herausgestellt. Als resultierendes technologisches Aufbereitungsverfahren haben sich aus den Ergebnissen eine Siebklassierung bei x = 200 µm und x = 800 µm mit einer nachgeschalteten Magnetscheidung oder Gegenstromsortierung für die Klasse 0,2…0,8 mm ergeben, woraus 4 Produkte resultieren. Beim testweisen Durchlaufen des resultierenden Verfahrensfließbildes hat sich zudem herausgestellt, dass in Abhängigkeit von der FF bzw. deren Kenngrößen auf die Magnetscheidung bzw. Gegenstromsortierung verzichtet werden kann. Insgesamt wird zur Aufwands- und Kostenminimierung eine Vereinheitlichung der aufzubereitenden FF empfohlen. Die Wirtschaftlichkeit des Verfahrens (inklusive Pyro- und Hydrometallurgie) wird stark durch die dynamische Entwicklung der Batterietechnologie, insbesondere der enthaltenen erlösbringenden Komponente Kobalt, und des Marktes (Verkaufsraten und Lebensdauer der LIBs) beeinflusst. Die notwendige kontinuierliche Anpassung des bestehenden Verfahrensfließbildes aufgrund der schnellen Weiterentwicklung chemischer LIB-Regime ist zudem nicht vermeidbar. Generelle Unterschiede in den FF (chemische Zusammensetzung, PGV) können auf verschiedene LIB-Typen (unterschiedliche AMs), deren Vorgeschichte (Alterungszustand, Lagerung, …) sowie die Zerkleinerungsbedingungen zurückgeführt werden. Mit Hilfe einer Bilanzierung wurden die Gehalte des gesamten AM in den FF zwischen c = 33,2 ± 3,4 Ma.-% und c = 54,9 ± 5,7 Ma.-% ermittelt. Mit Hilfe der untersuchten Methoden wurde in keinem Produkt der maximale Anreicherungsfaktor für die AMs erreicht, so dass lediglich eine Voranreicherung bezüglich dieser (und auch der anderen Komponenten) erzielt wurde. Betrachtungen zu den Verbindungs- und Aufschlussverhältnissen in der FF führten zu dem Ergebnis, dass sowohl die Anodenbeschichtung noch mit der Kupferfolie als auch die Kathodenbeschichtung mit der Aluminiumfolie im Verbund vorliegen können. Bezüglich der AMs wird ein Aufschluss im Partikelgrößenbereich größer der Primär- und Sekundärpartikelgröße (> 1 bis 20 µm) ausgeschlossen. Es konnte ein maximaler Aufschlussgrad von A = 37,9 % für eine der untersuchten Feinfraktionen bestimmt werden. Zur Zerkleinerung der Partikel in der Feinfraktion eignen sich eine Zerkleinerung in der einer Fliehkraftmühle bzw. mittels Ultraschallbeanspruchung.
55

Обоснование параметров фильтровально-пульсационной машины для обезвоживания глубоководных органо-минеральных осадков / Begründung der Parameter einer pulsierenden Filtermaschine zur Entwässerung organisch-mineralischer Tiefsee-Sedimente

Shevchenko, Oleksandr 27 September 2017 (has links) (PDF)
В результате проведенных теоретических и экспериментальных исследований процесса обезвоживания тонкодисперсной суспензии глубоководных органо-минеральных осадков Черного моря в фильтровально-пульсационной машине определены основные ее параметры, а также установлены зависимости этих параметров от показателей процесса фильтрования. Разработаны конструкция фильтровально-пульсационной машины и методика расчета ее параметров применительно к морским органо-минеральным осадкам, а также обоснованы рациональные режимные и конструктивные параметры данной машины. / Die Dissertation begründet die Parameter der pulsierenden Filtermaschine zur Entwässerung feindisperser Suspension, organisch-mineralische Tiefsee-Sedimente aus dem Schwarzen Meer, welche aufgrund der theoretischen und experimentallen Untersuchungen des Filtrationsprozesses beim statischen und pulsierenden Druck, sowie der entwickelten Abhängigkeiten dieser Parameter von Suspensionseigenschaften und Filtrationskennwerten definiert werden können. Es wurde eine neue Konstruktion der pulsierenden Filtermaschine und eine Methodik zur Parameterberechnung in Bezug auf marine Sedimentsuspension entwickelt, sowie die rationellen Betriebs- und Konstruktionsparameter der pulsierenden Filtermaschine definiert. Dabei wurde auch die Effizienz unter Einsatz von pulsierenden im Vergleich zum statischen Druck bei der Sedimententwässerung bewertet.
56

Обоснование параметров фильтровально-пульсационной машины для обезвоживания глубоководных органо-минеральных осадков

Shevchenko, Oleksandr 16 August 2017 (has links)
В результате проведенных теоретических и экспериментальных исследований процесса обезвоживания тонкодисперсной суспензии глубоководных органо-минеральных осадков Черного моря в фильтровально-пульсационной машине определены основные ее параметры, а также установлены зависимости этих параметров от показателей процесса фильтрования. Разработаны конструкция фильтровально-пульсационной машины и методика расчета ее параметров применительно к морским органо-минеральным осадкам, а также обоснованы рациональные режимные и конструктивные параметры данной машины.:ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ, СИМВОЛОВ, ЕДИНИЦ,ТЕРМИНОВ И СОКРАЩЕНИЙ..................................................................................5 ВВЕДЕНИЕ.......................................................................................9 РАЗДЕЛ 1 СОВРЕМЕННОЕ СОСТОЯНИЕ ИССЛЕДОВАНИЙ МЕТОДОВ И УСТРОЙСТВ ДЛЯ ОБЕЗВОЖИВАНИЯ ОРГАНО-МИНЕРАЛЬНЫХ ОСАДКОВ ЧЕРНОГО МОРЯ............................................................................................17 1.1 Характеристика глубоководных органо-минеральных осадков Черного моря как объекта обезвоживания..................................................................17 1.2 Анализ и классификация оборудования для обезвоживания мелкодисперсных суспензий механическим способом........................22 1.3 Анализ фильтровального оборудования для обезвоживания мелкодисперсных суспензий...........................................................26 1.4 Современное состояние исследований процесса фильтрования мелкодисперсных суспензий...........................................................35 1. 5 Пути повышения производительности фильтровальных машин....43 1.6 Выводы, цель и задачи исследований.........................................48 РАЗДЕЛ 2 ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ РЕЖИМА РАБОТЫ ФИЛЬТРОВАЛЬНО-ПУЛЬСАЦИОННОЙ МАШИНЫ ПРИ ПУЛЬСИРУЮЩЕМ ДАВЛЕНИИ...........50 2.1 Компоновочная схема и основные параметры фильтровально-пульсационной машины.........................................................................................50 2.2 Анализ процесса фильтрования тонкодисперсной суспензии при пульсирующем давлении.......................................................................................58 2.3 Критериальное моделирование процесса обезвоживания тонкодисперсной суспензии......................................................................................70 2.4 Определение параметров экспериментальной установки.............74 Выводы по разделу.........................................................................78 РАЗДЕЛ 3 ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ РЕЖИМОВ РАБОТЫ ФИЛЬТРОВАЛЬНО-ПУЛЬСАЦИОННОЙ МАШИНЫ.................................80 3.1 Выбор методов проведения экспериментальных исследований.....80 3.2 Выбор факторов и интервалов варьирования..............................81 3.3 Постановка и проведение экспериментальных исследований.......86 3.3.1 Лабораторные исследования свойств образцов суспензии.........86 3.3.2 Исследование режима работы фильтровально-пульсационной машины для обезвоживания ГВОМО при пульсирующем давлении........................91 3.3.3 Исследование режима работы фильтровально-пульсационной машины для обезвоживания ГВОМО при статическом давлении..........................101 3.4 Обработка результатов эксперимента и построение математической модели режима работы машины при пульсации давления................102 3.5 Математическая модель режима работы машины при статическом давлении.....................................................................................110 3.6 Анализ влияния параметров фильтровально-пульсационной машины на процесс фильтрования ГВОМО при пульсирующем давлении........................113 3.7 Влияние динамической составляющей давления на процесс обезвоживания ГВОМО.........................................................................................127 Выводы по разделу.......................................................................130 РАЗДЕЛ 4 ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ И РЕАЛИЗАЦИЯ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ......................................................133 4.1 Обоснование параметров фильтровально-пульсационной машины для обезвоживания ГВОМО..................................................................133 4.2 Методика определения параметров фильтровально-пульсационной машины для обезвоживания ГВОМО..................................................................142 4.3 Эффективность обезвоживания ГВОМО при пульсирующем давлении и ожидаемый экономический эффект..................................................................150 4.4 Перспективы использования результатов исследований.............154 Выводы по разделу........................................................................162 ВЫВОДЫ.......................................................................................164 СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ......................................167 Приложения Приложение А. Расчет параметров лабораторной фильтровальной установки......................................................................................181 Приложение Б. Построение математической модели процесса фильтрования ГВОМО при пульсирующем давлении...............................................186 Приложение В. Результаты экспериментальных исследований процесса фильтрования ГВОМО при статическом давлении.............................190 Приложение Г. Экспериментальные исследования процесса уплотнения ГВОМО..........................................................................................196 Приложение Д. Методика определения рациональных параметров фильтровальной машины для обезвоживания морских органо-минеральных осадков....201 Приложение Е. Методика определения параметров фильтровально-пульсационной машины для обезвоживания органо-минеральных осадков.................204 Приложение Ж. Методика определения параметров вибрационной фильтровальной машины для обезвоживания ГВОМО со шнековой выгрузкой осадка...207 Приложение И. Акты внедрения.......................................................210 / Die Dissertation begründet die Parameter der pulsierenden Filtermaschine zur Entwässerung feindisperser Suspension, organisch-mineralische Tiefsee-Sedimente aus dem Schwarzen Meer, welche aufgrund der theoretischen und experimentallen Untersuchungen des Filtrationsprozesses beim statischen und pulsierenden Druck, sowie der entwickelten Abhängigkeiten dieser Parameter von Suspensionseigenschaften und Filtrationskennwerten definiert werden können. Es wurde eine neue Konstruktion der pulsierenden Filtermaschine und eine Methodik zur Parameterberechnung in Bezug auf marine Sedimentsuspension entwickelt, sowie die rationellen Betriebs- und Konstruktionsparameter der pulsierenden Filtermaschine definiert. Dabei wurde auch die Effizienz unter Einsatz von pulsierenden im Vergleich zum statischen Druck bei der Sedimententwässerung bewertet.:ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ, СИМВОЛОВ, ЕДИНИЦ,ТЕРМИНОВ И СОКРАЩЕНИЙ..................................................................................5 ВВЕДЕНИЕ.......................................................................................9 РАЗДЕЛ 1 СОВРЕМЕННОЕ СОСТОЯНИЕ ИССЛЕДОВАНИЙ МЕТОДОВ И УСТРОЙСТВ ДЛЯ ОБЕЗВОЖИВАНИЯ ОРГАНО-МИНЕРАЛЬНЫХ ОСАДКОВ ЧЕРНОГО МОРЯ............................................................................................17 1.1 Характеристика глубоководных органо-минеральных осадков Черного моря как объекта обезвоживания..................................................................17 1.2 Анализ и классификация оборудования для обезвоживания мелкодисперсных суспензий механическим способом........................22 1.3 Анализ фильтровального оборудования для обезвоживания мелкодисперсных суспензий...........................................................26 1.4 Современное состояние исследований процесса фильтрования мелкодисперсных суспензий...........................................................35 1. 5 Пути повышения производительности фильтровальных машин....43 1.6 Выводы, цель и задачи исследований.........................................48 РАЗДЕЛ 2 ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ РЕЖИМА РАБОТЫ ФИЛЬТРОВАЛЬНО-ПУЛЬСАЦИОННОЙ МАШИНЫ ПРИ ПУЛЬСИРУЮЩЕМ ДАВЛЕНИИ...........50 2.1 Компоновочная схема и основные параметры фильтровально-пульсационной машины.........................................................................................50 2.2 Анализ процесса фильтрования тонкодисперсной суспензии при пульсирующем давлении.......................................................................................58 2.3 Критериальное моделирование процесса обезвоживания тонкодисперсной суспензии......................................................................................70 2.4 Определение параметров экспериментальной установки.............74 Выводы по разделу.........................................................................78 РАЗДЕЛ 3 ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ РЕЖИМОВ РАБОТЫ ФИЛЬТРОВАЛЬНО-ПУЛЬСАЦИОННОЙ МАШИНЫ.................................80 3.1 Выбор методов проведения экспериментальных исследований.....80 3.2 Выбор факторов и интервалов варьирования..............................81 3.3 Постановка и проведение экспериментальных исследований.......86 3.3.1 Лабораторные исследования свойств образцов суспензии.........86 3.3.2 Исследование режима работы фильтровально-пульсационной машины для обезвоживания ГВОМО при пульсирующем давлении........................91 3.3.3 Исследование режима работы фильтровально-пульсационной машины для обезвоживания ГВОМО при статическом давлении..........................101 3.4 Обработка результатов эксперимента и построение математической модели режима работы машины при пульсации давления................102 3.5 Математическая модель режима работы машины при статическом давлении.....................................................................................110 3.6 Анализ влияния параметров фильтровально-пульсационной машины на процесс фильтрования ГВОМО при пульсирующем давлении........................113 3.7 Влияние динамической составляющей давления на процесс обезвоживания ГВОМО.........................................................................................127 Выводы по разделу.......................................................................130 РАЗДЕЛ 4 ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ И РЕАЛИЗАЦИЯ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ......................................................133 4.1 Обоснование параметров фильтровально-пульсационной машины для обезвоживания ГВОМО..................................................................133 4.2 Методика определения параметров фильтровально-пульсационной машины для обезвоживания ГВОМО..................................................................142 4.3 Эффективность обезвоживания ГВОМО при пульсирующем давлении и ожидаемый экономический эффект..................................................................150 4.4 Перспективы использования результатов исследований.............154 Выводы по разделу........................................................................162 ВЫВОДЫ.......................................................................................164 СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ......................................167 Приложения Приложение А. Расчет параметров лабораторной фильтровальной установки......................................................................................181 Приложение Б. Построение математической модели процесса фильтрования ГВОМО при пульсирующем давлении...............................................186 Приложение В. Результаты экспериментальных исследований процесса фильтрования ГВОМО при статическом давлении.............................190 Приложение Г. Экспериментальные исследования процесса уплотнения ГВОМО..........................................................................................196 Приложение Д. Методика определения рациональных параметров фильтровальной машины для обезвоживания морских органо-минеральных осадков....201 Приложение Е. Методика определения параметров фильтровально-пульсационной машины для обезвоживания органо-минеральных осадков.................204 Приложение Ж. Методика определения параметров вибрационной фильтровальной машины для обезвоживания ГВОМО со шнековой выгрузкой осадка...207 Приложение И. Акты внедрения.......................................................210
57

Mechanische Aufbereitung der Feinfraktion zerkleinerter Lithium-Ionen-Batterien

Gellner, Martha 08 March 2018 (has links)
Bei einem entwickelten Verfahren zur mechanischen Aufbereitung von Lithium-Ionen-Batterien (LIBs) aus Elektrofahrzeugen fallen zwei, hauptsächlich aus den Elektrodenbestandteilen bestehenden, Feinfraktionen (FF) an. Typischerweise erfolgt eine Rückgewinnung der enthaltenen Wertstoffe Co, Ni und Cu derzeit über eine kombinierte pyro- und hydrometallurgische Aufbereitung. Dabei dient der pyrometallurgische Schritt der Abtrennung von Stoffen, welche bei der hydrometallurgischen Aufbereitung störend wirken. Durch eine mechanische Aufbereitung der FF wurde alternativ zu dem pyrometallurgischen Schritt versucht, die in der FF enthaltenen Wertstoffe anzureichern sowie ebenfalls die Störstoffe für eine hydrometallurgische Aufbereitung abzutrennen. Dazu wurden verschiedene trockene Sortierprozesse herangezogen und auf ihre Eignung hin untersucht. Mit Hilfe der Ergebnisse wurde ein Verfahrensfließbild für die Aufbereitung der FF entworfen und testweise durchlaufen. Zusätzlich zu den Sortierversuchen wurden eine Materialcharakterisierung durchgeführt, die Aufschlussverhältnisse (visuelle Einschätzung, Bestimmung Aufschlussgrad) sowie die Aufschlusszerkleinerung der FF untersucht. Als Aufgabegut diente eine Co-, Ni-, Mn- haltige FF, welche nach der 1. Zerkleinerung und Klassierung im entworfenen Verfahrensfließbild zur Aufbereitung der LIBs aus Elektrofahrzeugen gewonnen wurde. Zur Anreicherung der Wertstoffe Co, Ni innerhalb des Aktivmaterials (AM) und Cu sowie zur Reduzierung der Störstoffgehalte von Al und Kohlenstoff in bestimmten Produkten haben sich die Siebklassierung, die Magnetscheidung, die Gegenstromsortierung sowie als nasser Dichtesortierprozess die Schwimm-Sink-Sortierung als geeignet herausgestellt. Als resultierendes technologisches Aufbereitungsverfahren haben sich aus den Ergebnissen eine Siebklassierung bei x = 200 µm und x = 800 µm mit einer nachgeschalteten Magnetscheidung oder Gegenstromsortierung für die Klasse 0,2…0,8 mm ergeben, woraus 4 Produkte resultieren. Beim testweisen Durchlaufen des resultierenden Verfahrensfließbildes hat sich zudem herausgestellt, dass in Abhängigkeit von der FF bzw. deren Kenngrößen auf die Magnetscheidung bzw. Gegenstromsortierung verzichtet werden kann. Insgesamt wird zur Aufwands- und Kostenminimierung eine Vereinheitlichung der aufzubereitenden FF empfohlen. Die Wirtschaftlichkeit des Verfahrens (inklusive Pyro- und Hydrometallurgie) wird stark durch die dynamische Entwicklung der Batterietechnologie, insbesondere der enthaltenen erlösbringenden Komponente Kobalt, und des Marktes (Verkaufsraten und Lebensdauer der LIBs) beeinflusst. Die notwendige kontinuierliche Anpassung des bestehenden Verfahrensfließbildes aufgrund der schnellen Weiterentwicklung chemischer LIB-Regime ist zudem nicht vermeidbar. Generelle Unterschiede in den FF (chemische Zusammensetzung, PGV) können auf verschiedene LIB-Typen (unterschiedliche AMs), deren Vorgeschichte (Alterungszustand, Lagerung, …) sowie die Zerkleinerungsbedingungen zurückgeführt werden. Mit Hilfe einer Bilanzierung wurden die Gehalte des gesamten AM in den FF zwischen c = 33,2 ± 3,4 Ma.-% und c = 54,9 ± 5,7 Ma.-% ermittelt. Mit Hilfe der untersuchten Methoden wurde in keinem Produkt der maximale Anreicherungsfaktor für die AMs erreicht, so dass lediglich eine Voranreicherung bezüglich dieser (und auch der anderen Komponenten) erzielt wurde. Betrachtungen zu den Verbindungs- und Aufschlussverhältnissen in der FF führten zu dem Ergebnis, dass sowohl die Anodenbeschichtung noch mit der Kupferfolie als auch die Kathodenbeschichtung mit der Aluminiumfolie im Verbund vorliegen können. Bezüglich der AMs wird ein Aufschluss im Partikelgrößenbereich größer der Primär- und Sekundärpartikelgröße (> 1 bis 20 µm) ausgeschlossen. Es konnte ein maximaler Aufschlussgrad von A = 37,9 % für eine der untersuchten Feinfraktionen bestimmt werden. Zur Zerkleinerung der Partikel in der Feinfraktion eignen sich eine Zerkleinerung in der einer Fliehkraftmühle bzw. mittels Ultraschallbeanspruchung.
58

The Per Geijer iron ore deposits: Characterization based on mineralogical, geochemical and process mineralogical methods

Krolop, Patrick 04 April 2022 (has links)
The Per Geijer iron oxide-apatite deposits are important potential future resources for Luossavaara-Kiirunavaara Aktiebolag (LKAB), which has been continuously mining magnetite/hematite ores in northern Sweden for almost 130 years. The Per Geijer deposits reveal a high phosphorus content and vary from magnetite-dominated to hematite-dominated ores, respectively. The high phosphorus concentration of these ores results from highly elevated content of apatite as gangue mineral. Reliable, robust, and qualitative characterization of the mineralization is required as these ores inherit complex mineralogical and textural features. The precise mineralogical information obtained by optical microscopy, SEM-MLA and Raman improves the characterization of ore types and will benefit future processing strategies for this complex mineralization. The different approaches demonstrate advantages and disadvantages in classification, imaging, discrimination of iron oxides, and time consumption of measurement and processing. A comprehensive mineral-chemical dataset of magnetite, hematite and apatite obtained by electron microprobe analysis (EPMA) and LA-ICP-MS from representative drill core samples is presented. Magnetite, four different types of hematite and five types of apatite constitute the massive orebodies: Primary and pristine magnetite with moderate to high concentrations of Ti (∼61–2180 ppm), Ni (∼11–480 ppm), Co (∼5–300 ppm) and V (∼553–1831 ppm) indicate a magmatic origin for magnetite. The presence of fluorapatite and associated monazite inclusions and disseminated pyrite enclosed by magnetite with high Co:Ni ratios (> 10) in massive magnetite ores are consistent with a high temperature (∼ 800°C) genesis for the deposit. The different and abundant types of hematite, especially hematite type I, state subsequent hydrothermal events. Chromium, Ni, Co and V in both magnetite and hematite have low concentrations in terms of current product regulations and thus no effect on final products in the future. In terms of a possible future hematite product, titanium seems to be the most critical trace element due to very high concentrations in hematite types I and IV, of which type I is most abundant in zones dominated by hematite. Further interest on other products is generated due to the high variability of hematite and apatite in some of these ores. Information obtained from comminution test works in the laboratory scale can be utilized to characterize ore types and to predict the behavior of ore during comminution circuit in the industrial scale. Comminution tests with a laboratory rod and ball mill of 13 pre-defined ore types from the Per Geijer iron-oxide apatite deposits were conducted in this study. The highest P80 values were obtained by grinding in the rod mill for 10 minutes only (step A). Grinding steps B (25 min ball mill) and C (35 min ball mill) reveal very narrow P80 values. Ore types dominated by hematite have significantly higher P80 values after the primary grinding step (A), which indicates different hardness of the ore types. P80 values are generally lowest after the secondary grinding step C ranging between 26 µm (ore type M1a) and 80 µm (ore type H2a). Generally, Fe content increases in the finer particle size classes while CaO and P contents decrease. The influence of silica or phosphorus seems to be dependent on the dominant iron oxide. Magnetite-dominated ore types are more likely to be affected in their comminution behavior by the presence of the silicates. Contrary, hematite-dominant ore types are rather influenced by the presence of apatite. The difference in the degree of liberation of magnetite and hematite between ore types depends rather on size fractions than the amount of gangue in the ore. Davis tube data indicates that magnetite can be separated from gangue quite efficiently in the magnetite-dominated ore types. Contrary to magnetite ore, hematite-dominated ore types cannot be processed by DT. It is favored to use strong magnetic separation in order to achieve a desirable hematite concentrate. The magnetic material recovered by DT is most efficiently separated at an intensity current of 0.2 A, whereas above 0.5 A the separation process is neglectable. Based on comminution and magnetic separation tests a consolidation to eight ore types is favored which supports possible future mining of the Per Geijer deposits.:Contents ABSTRACT ……………………………………………………………………… I CONTENTS ……………………………………………………………………… II LIST OF FIGURES AND TABLES ……………………………………………… IV LIST OF ABBREVIATIONS ……………………………………………… V 1 INTRODUCTION ……………………………………………………… 1 1.1 Background and motivation of study ……………………………… 2 1.2 Previous and current work on the Per Geijer deposits ……………… 3 1.3 The need for mineral processing and in-situ ore description ……………… 4 1.4 General and generic aspects on iron oxide apatite deposits ……………… 5 Chapter A 2 REGIONAL GEOLOGY ………………………………………………. 7 2.1 Local geology of the Kiruna area ……………………………………… 7 2.2 Geology of the Per Geijer deposits ……………………………………… 9 3 METHODOLOGY ……………………………………………………… 12 3.1 Core sampling and preparation ……………………………………… 12 3.2 SEM – MLA in-situ ore ……………………………………………… 14 3.3 Electron Probe Microanalyses (EPMA) ……………………………… 15 3.3.1 Iron oxide measurements ……………………………………… 15 3.3.2 Apatite measurements ……………………………………… 15 3.4 In-situ LA-ICP-MS ……………………………………………………… 16 3.5 Whole-rock geochemistry ……………………………………………… 18 3.5.1 Exploration drill core assays ……………………………… 18 3.5.2 Chemical assays of rock chips ……………………………… 18 4 RESULTS ……………………………………………………………… 19 4.1 Pre-definition of ore types ………………………………...……………. 19 4.2 Mineralogy of in situ ore ……………………………………………… 21 4.2.1 Ore Type M1a ……………………………………………… 21 4.2.2 Ore Type M1b ……………………………………………… 22 4.2.3 Ore Type M2a ……………………………………………… 23 4.2.4 Ore Type M2b ……………………………………………… 25 4.2.5 Ore Type HM1b ……………………………………………… 26 4.2.6 Ore Type HM2a ……………………………………………… 27 4.2.7 Ore Type HM2b ……………………………………………… 28 4.2.8 Ore Type H1a ……………………………………………… 29 4.2.9 Ore Type H1b ……………………………………………… 30 4.2.10 Ore Type H2a ……………………………………………… 31 4.2.11 Ore Type H2b ……………………………………………… 32 4.2.12 Comparison of ore types ……………………………………… 33 4.3 Geochemistry of in situ ore types ……………………………… 36 4.3.1 Whole-rock chemical assays of drill cores ……………………… 36 4.3.2 Whole-rock geochemistry of rock chips ……………………… 39 4.4 Mineral chemistry of iron oxides ……………………………………… 42 4.4.1 Iron oxides and associated minerals ……………………………… 42 4.4.2 Mineral chemistry of magnetite from Per Geijer ……………… 43 4.4.3 Mineral chemistry of hematite from Per Geijer ……………… 47 4.5 Mineral chemistry of apatite ……………………………………… 51 4.5.1 Apatite and associated minerals ……………………………… 51 4.5.2 Mineral chemistry of apatite from Per Geijer ……………… 53 Chapter B 5 COMMINUTION TESTS ……………………………………………… 58 5.1 Methodology of comminution tests ……………………………………… 59 5.1.1 Sampling for comminution tests ……………………………… 59 5.1.2 Comminution circuit ……………………………………………… 61 5.1.3 Energy consumption calculation ……………………………… 62 5.1.4 SEM – MLA ……………………………………………………… 64 6 MAGNETIC SEPARATION TESTS ……………………………… 65 6.1 Methodology of magnetic separation by Davis magnetic tube ……… 66 6.2 Davis magnetic tube tests for characterization of the Per Geijer ore types 66 6.3 Separation analysis based on the Henry-Reinhard charts .……………... 67 7 RESULTS OF COMMINUTION OF ORE TYPES ……………………… 69 7.1 General characteristics of magnetite-dominated ore types ……………… 69 7.2 General characteristics of hematite-dominated ore types ……………… 72 7.3 General characteristics of magnetite/hematite-mixed ore types ……… 75 7.4 General characteristics of low-grade ore types ……………………… 77 7.5 Mineral liberation characteristics of magnetite-dominated ore types 79 7.6 Mineral liberation characteristics of hematite-dominated ore types 83 7.7 Mineral liberation characteristics of magnetite/hematite-mixed ore types 87 7.8 Mineral liberation characteristics of low-grade ore types ……………… 90 7.9 Total energy consumption of ore types from the Per Geijer deposits 94 8 RESULTS OF MAGNETIC SEPARATION OF ORE TYPES ……… 95 8.1 Magnetic separation of magnetite-dominated ore types ……………… 95 8.2 Magnetic separation of hematite-dominated ore types ……………… 96 8.3 Magnetic separation of magnetite/hematite-mixed ore types ……………… 97 8.4 Magnetic separation of low-grade ore types ……………………………… 98 8.5 Henry-Reinhard charts ……………………………………………… 99 9 DISCUSSION ……………………………………………………… 101 9.1 Mineralogy of the in-situ ore types from the Per Geijer deposits ……… 101 9.2 Geochemistry of the in-situ ore types from the Per Geijer deposits ……… 103 9.3 Mineral chemistry of iron oxides from the Per Geijer deposits ……… 105 9.4 Mineral chemistry of apatite from the Per Geijer deposits ……………… 114 9.5 Comminution of ore types from Per Geijer ……………………… 119 9.6 Magnetic separation of ore types from Per Geijer ……………………… 120 9.7 Issues with process mineralogy of in-situ and grinded ore types ……… 121 10 CONCLUSIONS ……………………………………………………… 128 11 IMPLICATIONS FOR FUTURE WORK ……………………………… 131 12 REFERENCES ……………………………………………………………… 134
59

Geometallurgical resource assessment for tailings storage facilities

Blannin, Rosie 15 November 2024 (has links)
Tailings are the fine-grained residues produced by processing operations, and are commonly retain residual contents of valuable and critical metals. Re-mining of tailings storage facilities (TSF) could play a crucial role in alleviating environmental problems associated with mine wastes, while recovering residual value and decreasing the volumes of tailings to be stored. Resource modelling of TSFs is complicated by their heterogeneity, which results from the sedimentary-style deposition of tailings, as well as post-depositional processes like weathering. Tailings particles are sorted based on size and density (i.e., mineralogy), generating strong systematic trends in geochemistry across a TSF. As such, TSFs should not be treated the same way as primary deposits; different sampling, spatial modelling, and processing methods may be needed, as well as adaptions to resource and reserve reporting codes. This thesis provides recommendations for the resource and reserve estimation of TSFs. To achieve this, a series of methods were developed, from best-practise sampling of TSFs for resource estimation, through to geostatistical modelling of a TSF for grade/tonnage estimation with corresponding uncertainties, to geometallurgical modelling using particle-based data.
60

Improving digestibility of cattle waste by thermobarical treatment / lab-scale experiments and assessment of full-scale model application

Budde, Jörn 16 April 2015 (has links)
Im Laborversuch konnte der positive Einfluss einer thermobarischen Vorbehandlung auf die Hydrolysier- und Vergärbarkeit von Rinderfestmist und Rindergülle nachgewiesen werden. Die Laborergebnisse wurden innerhalb eines theoretischen Modells in den Praxismaßstab übertragen, um den Einfluss auf Treibhausgasemissionen, Energiebilanz und Ökonomie zu bewerten. Die Vorbehandlungstemperaturen im Labor lagen zwischen 140 und 220°C in Schritten von 20 K und einer Vorbehandlungszeit von jeweils 5 Minuten. Die höchste Methanmehr¬ausbeute von 58 % konnte bei einer Temperatur von 180°C ermittelt werden. Das Auftreten von Inhibitoren und nicht vergärbaren Bestandteilen führte bei einer Aufbereitungstemperatur von 220°C zu Methanausbeuten, die geringer waren als die des unaufbereiteten Einsatzstoffes. In einer erweiterten Analyse konnte ein funktioneller Zusammenhang zwischen der Methanausbeute nach 30 Tagen und der Methanbildungsrate und -ausbeute während der Beschleunigungsphase gezeigt werden. Mittels einer Regressionsanalyse der so ermittelten Werte wurde nachgewiesen, dass die optimale Aufbereitungstemperatur 164°C ist und die minimale größer als 115°C zu sein hat. Treibhausgasemissionen und Energiebilanz wurden im Rahmen einer Ökobilanz nach ISO 14044 (2006) ermittelt, sowie eine Kosten-Nutzen-Analyse durchgeführt. Dazu wurde eine Anlage zur thermobarischen Vorbehandlung entwickelt und innerhalb eines Modells in eine Biogasanlage integriert. Weiterhin wurde in diesem Modell Maissilage durch Rinderfestmist und / oder Rindergülle als Einsatzstoff ersetzt. Rinderfestmist, ein Einsatzstoff mit hohem organischen Trockenmassegehalt, der ohne Vorbehandlung nicht einsetzbar wäre, erreichte eine energetische Amortisationszeit von 9 Monaten, eine Vermeidung in Höhe der während der Herstellung emittierten Treibhausgase innerhalb von 3 Monaten und eine ökonomische Amortisationszeit von 3 Jahren 3 Monaten, wohingegen Rindergülle keine positiven Effekte zeigte. / Hydrolysis and digestibility of cattle waste as feedstock for anaerobic digestion were improved by thermobarical treatment in lab-scale experiments. The effects of this improvement on greenhouse gas emissions, energy balance and economic benefit was assessed in a full-scale model application. Thermobarical treatment temperatures in lab-scale experiments were 140 to 220°C in 20 K steps for a 5-minute duration. Methane yields could be increased by up to 58 % at a treatment temperature of 180°C. At 220°C, the abundance of inhibitors and other non-digestible substances led to lower methane yields than those obtained from untreated material. In an extended analysis, it could be demonstrated that there is a functional correlation between the methane yields after 30 days and the formation rate and methane yield in the acceleration phase. It could be proved in a regression of these correlation values that the optimum treatment temperature is 164°C and that the minimum treatment temperature should be above 115°C. The theoretical application of a full-scale model was used for assessing energy balance and greenhouse gas emissions following an LCA approach according to ISO 14044 (2006) as well as economy. A model device for thermobarical treatment has been suggested for and theoretically integrated in a biogas plant. The assessment considered the replacement of maize silage as feedstock with liquid and / or solid cattle waste. The integration of thermobarical pretreatment is beneficial for raw material with high organic dry matter content that needs pretreatment to be suitable for anaerobic digestion: Solid cattle waste revealed very short payback times, e.g. 9 months for energy, 3 months for greenhouse gases, and 3 years 3 months for economic amortization, whereas, in contrast, liquid cattle waste did not perform positive replacement effects in this analysis.

Page generated in 0.0865 seconds