• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 26
  • 14
  • 8
  • 8
  • 8
  • 7
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 215
  • 215
  • 83
  • 71
  • 71
  • 54
  • 54
  • 33
  • 30
  • 29
  • 28
  • 26
  • 25
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Monte Carlo Simulation of Heston Model in MATLAB GUI

Kheirollah, Amir January 2006 (has links)
In the Black-Scholes model, the volatility considered being deterministic and it causes some inefficiencies and trends in pricing options. It has been proposed by many authors that the volatility should be modelled by a stochastic process. Heston Model is one solution to this problem. To simulate the Heston Model we should be able to overcome the correlation between asset price and the stochastic volatility. This paper considers a solution to this issue. A review of the Heston Model presented in this paper and after modelling some investigations are done on the applet. Also the application of this model on some type of options has programmed by MATLAB Graphical User Interface (GUI).
132

Option Pricing and Virtual Asset Model System

Cheng, Te-hung 07 July 2005 (has links)
In the literature, many methods are proposed to value American options. However, due to computational difficulty, there are only approximate solution or numerical method to evaluate American options. It is not easy for general investors either to understand nor to apply. In this thesis, we build up an option pricing and virtual asset model system, which provides a friendly environment for general public to calculate early exercise boundary of an American option. This system modularize the well-handled pricing models to provide the investors an easy way to value American options without learning difficult financial theories. The system consists two parts: the first one is an option pricing system, the other one is an asset model simulation system. The option pricing system provides various option pricing methods to the users; the virtual asset model system generates virtual asset prices for different underlying models.
133

Expert System for Numerical Methods of Stochastic Differential Equations

Li, Wei-Hung 27 July 2006 (has links)
In this thesis, we expand the option pricing and virtual asset model system by Cheng (2005) and include new simulations and maximum likelihood estimation of the parameter of the stochastic differential equations. For easy manipulation of general users, the interface of original option pricing system is modified. In addition, in order to let the system more completely, some stochastic models and methods of pricing and estimation are added. This system can be divided into three major parts. One is an option pricing system; The second is an asset model simulation system; The last is estimation system of the parameter of the model. Finally, the analysis for the data of network are carried out. The differences of the prices between estimator of this system and real market are compared.
134

Illustration of stochastic processes and the finite difference method in finance

Kluge, Tino 22 January 2003 (has links) (PDF)
The presentation shows sample paths of stochastic processes in form of animations. Those stochastic procsses are usually used to model financial quantities like exchange rates, interest rates and stock prices. In the second part the solution of the Black-Scholes PDE using the finite difference method is illustrated. / Der Vortrag zeigt Animationen von Realisierungen stochstischer Prozesse, die zur Modellierung von Groessen im Finanzbereich haeufig verwendet werden (z.B. Wechselkurse, Zinskurse, Aktienkurse). Im zweiten Teil wird die Loesung der Black-Scholes Partiellen Differentialgleichung mittels Finitem Differenzenverfahren graphisch veranschaulicht.
135

Spectral Element Method for Pricing European Options and Their Greeks

Yue, Tianyao January 2012 (has links)
<p>Numerical methods such as Monte Carlo method (MCM), finite difference method (FDM) and finite element method (FEM) have been successfully implemented to solve financial partial differential equations (PDEs). Sophisticated computational algorithms are strongly desired to further improve accuracy and efficiency.</p><p>The relatively new spectral element method (SEM) combines the exponential convergence of spectral method and the geometric flexibility of FEM. This dissertation carefully investigates SEM on the pricing of European options and their Greeks (Delta, Gamma and Theta). The essential techniques, Gauss quadrature rules, are thoroughly discussed and developed. The spectral element method and its error analysis are briefly introduced first and expanded in details afterwards.</p><p>Multi-element spectral element method (ME-SEM) for the Black-Scholes PDE is derived on European put options with and without dividend and on a condor option with a more complicated payoff. Under the same Crank-Nicolson approach for the time integration, the SEM shows significant accuracy increase and time cost reduction over the FDM. A novel discontinuous payoff spectral element method (DP-SEM) is invented and numerically validated on a European binary put option. The SEM is also applied to the constant elasticity of variance (CEV) model and verified with the MCM and the valuation formula. The Stochastic Alpha Beta Rho (SABR) model is solved with multi-dimensional spectral element method (MD-SEM) on a European put option. Error convergence for option prices and Greeks with respect to the number of grid points and the time step is analyzed and illustrated.</p> / Dissertation
136

Pricing in (in)complete markets : structural analysis and applications /

Esser, Angelika. January 2004 (has links)
Univ., Diss.--Frankfurt (Main), 2003. / Literaturverz. S. [105] - 107.
137

Variação temporal da volatilidade e precificação de derivativos

Goto, Rodrigo Minoru Martinho 05 August 2016 (has links)
Submitted by RODRIGO GOTO (rodrigo.m.goto@gmail.com) on 2016-09-06T16:25:05Z No. of bitstreams: 1 RodrigoGoto.pdf: 841035 bytes, checksum: 988084eee02618c3ba1711a2185d7a47 (MD5) / Rejected by Renata de Souza Nascimento (renata.souza@fgv.br), reason: Rodrigo, boa tarde Por gentileza, verificar a ficha catalográfica. Só poderá submeter o trabalho após recebe-la. Att on 2016-09-06T17:19:48Z (GMT) / Submitted by RODRIGO GOTO (rodrigo.m.goto@gmail.com) on 2016-09-08T19:16:57Z No. of bitstreams: 1 RodrigoGotoFinal.pdf: 839665 bytes, checksum: 7afce52822a61ff95f376d69a1390927 (MD5) / Rejected by Renata de Souza Nascimento (renata.souza@fgv.br), reason: Rodrigo, verificar a formatação da ficha catalográfica. Informações encaminhada por e-mail para melhor entendimento. Grata. on 2016-09-08T19:30:05Z (GMT) / Submitted by RODRIGO GOTO (rodrigo.m.goto@gmail.com) on 2016-09-08T19:50:38Z No. of bitstreams: 1 RodrigoGoto1.pdf: 839656 bytes, checksum: cab4091d9eb5d9e4c99155c6584f1a11 (MD5) / Approved for entry into archive by Renata de Souza Nascimento (renata.souza@fgv.br) on 2016-09-08T19:54:50Z (GMT) No. of bitstreams: 1 RodrigoGoto1.pdf: 839656 bytes, checksum: cab4091d9eb5d9e4c99155c6584f1a11 (MD5) / Made available in DSpace on 2016-09-08T20:43:30Z (GMT). No. of bitstreams: 1 RodrigoGoto1.pdf: 839656 bytes, checksum: cab4091d9eb5d9e4c99155c6584f1a11 (MD5) Previous issue date: 2016-08-05 / This work brings out an approach to the study of structured robustness for the BlackScholes model that allows for not only accounting for the uncertainties on the determination of the parameters involved (volatility σ and risk-free rate of interest r) as well as for simplifying hypotheses such as the assumption that σ is time-invariant (in disregard of the heterocedasticity that is proper to the process). The originality of this approach comes from formulating the equation of Black-Scholes as an abstract ordinary differential equation and transfer to the context of linear operators in infinite dimensional normed spaces some techniques of structured perturbations on finite dimensional deterministic systems. These uncertainties on the model are formulated as being a time-varying additive pertubation applied to the coefficients of the Black-Scholes equation, each one separately or all at once, in order to obtain a quantification of robustness. Such quantification is done by means of a measure of robustness by establishing an upper bound for the 'magnitude' (ultimately, the norm) of the difference from the actual precification of the derivative and the theoretical precification given by the model since the norm of the perturbation does not exceed this measure. At the end or this work, this result is applied to establishing such measure of robustness in the case of the temporal variation of volatility for an European call option. / Este trabalho apresenta uma abordagem ao estudo de robustez estruturada do modelo de Black-Scholes que permite não só levar em conta as incertezas nas determinações dos parâmetros envolvidos (volatilidade s e taxa livre de risco r ) como também dar conta de hipóteses simplificadoras do modelo tais como assumir que s é invariante no tempo (em detrimento da heterocedasticidade inerente ao processo). A originalidade desta abordagem está em formular a equação de Black-Scholes como uma equação diferencial ordinária abstrata e transpor para o contexto de operadores lineares em espaços normados de dimensão infinita técnicas de perturbações estruturadas para sistemas determinísticos de dimensão finita. Estas incertezas no modelo são formuladas como sendo uma perturbação aditiva variante no tempo aplicada aos coeficientes da equação de Black-Scholes, cada um separadamente ou todos de uma vez só, para se obter uma quantificação da robustez. Esta quantificação é feita através de uma medida de robustez estabelecendo um limitante superior para a 'magnitude' (norma) da diferença entre a realização histórica da precificação do derivativo e a precificação teórica fornecida pelo modelo desde que a norma da perturbação não ultrapasse esta medida. No final do trabalho, este resultado é aplicado no estabelecimento desta medida de robustez no caso da variação temporal da volatilidade de uma opção de compra europeia.
138

On the numerical methods for the Heston model

Teixeira, Fernando Ormonde 29 September 2017 (has links)
Submitted by Fernando Teixeira (fernote7@gmail.com) on 2017-12-08T15:48:21Z No. of bitstreams: 1 Download File (1).pdf: 1437428 bytes, checksum: d6dfbfe41919a0cdd657900b6784f310 (MD5) / Approved for entry into archive by Janete de Oliveira Feitosa (janete.feitosa@fgv.br) on 2017-12-08T16:04:57Z (GMT) No. of bitstreams: 1 Download File (1).pdf: 1437428 bytes, checksum: d6dfbfe41919a0cdd657900b6784f310 (MD5) / Made available in DSpace on 2017-12-22T17:16:31Z (GMT). No. of bitstreams: 1 Download File (1).pdf: 1437428 bytes, checksum: d6dfbfe41919a0cdd657900b6784f310 (MD5) Previous issue date: 2017-09-29 / In this thesis we revisit numerical methods for the simulation of the Heston model’sEuropean call. Specifically, we study the Euler, the Kahl-Jackel an two versions of theexact algorithm schemes. To perform this task, firstly we present a literature reviewwhich brings stochastic calculus, the Black-Scholes (BS) model and its limitations,the stochastic volatility methods and why they resolve the issues of the BS model,and the peculiarities of the numerical methods. We provide recommendations whenwe acknowledge that the reader might need more specifics and might need to divedeeper into a given topic. We introduce the methods aforementioned providing all ourimplementations in R language within a package.
139

Modelos de precificação de opções com saltos: análise econométrica do modelo de Kou no mercado acionário brasileiro / Option pricing models with jumps: econometric analysis of the Kuo\'s model in the Brazilian equity market

Aurélio Ubirajara de Luccas 27 September 2007 (has links)
Esta dissertação revisa a literatura acadêmica existente sobre a teoria de opções utilizando os modelos de precificação com saltos. Os conceitos foram equalizados, a nomenclatura foi padronizada, sendo gerado um material de referência sobre o assunto. O pressuposto de lognormalidade com volatilidade constante não é aceito pelo mercado financeiro. É freqüente, no meio acadêmico, a busca de modelos que reproduzam os fenômenos observados de leptocurtose ou assimetria dos log-retornos financeiros e que possuam a mesma robustez e facilidade para manipulação analítica do consagrado modelo de Black-Scholes. Os modelos com saltos são uma alternativa para esse problema. Avaliou-se o modelo de Kou no mercado acionário brasileiro composto por um componente de difusão que segue um movimento browniano geométrico e um componente de saltos que segue um processo de Poisson com intensidade do salto descrito por uma distribuição duplamente exponencial. A simulação histórica do modelo aponta, em geral, uma superioridade preditiva do modelo, porém as dificuldades de calibração dos parâmetros e de hedge em mercados incompletos são as principais deficiências para o uso dos modelos com saltos. / This master dissertation reviews the academic literature about option pricing and hedging with jumps. The theory was equalized and the notation was standardized, becoming this document a reference document about this subject. The log-normality with constant volatility is not accepted by the market. Academics search consistent models with the same analytical capabilities like Black-Scholes? model which can support the observed leptokurtosis or asymmetry of the financial daily log-returns behavior. The jump models are an alternative to these issues. The Kou?s model was evaluated and this one consists of two parts: the first part being continuous and following a geometric Brownian motion and the second being a jump process with its jump intensity defined by a double exponential distribution. The model backtesting showed a better predictive performance of the Kou´s model against other models. However, there are some handicaps regarding to the parameters calibration and hedging.
140

Porovnání Black-Scholesova modelu s Hestonovým modelem / A comparison of the Black-Scholes model with the Heston model

Obhlídal, Jiří January 2015 (has links)
The thesis focuses on methods of option prices calculations using two different pricing models which are Heston and Black-Scholes models. The first part describes theory of these two models and conlcudes with a comparison of the risk-neutral measures of these two models. In the second part, the relations between input parameters and the option price generated by these models are clarified. This part ends up with an analysis of the market data and it answers the question which model predicts better.

Page generated in 0.0307 seconds