• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 10
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 49
  • 49
  • 13
  • 10
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Konvexní množiny v duálních Banachových prostorech / Convex subsets of dual Banach spaces

Silber, Zdeněk January 2018 (has links)
The main topic of this thesis is separation of points and w∗ -derived sets in dual Banach spaces. We show, that in duals of reflexive spaces w∗ -derived set of a convex subset coincides with its w∗ -closure. We also show, that subspace of a dual reflexive space is norming, if and only if it is total. Later we show, that in the dual of every non-reflexive space we can find a convex subset whose w∗ -derived set is not w∗ -closed. Hence, this statement is a characterisation of reflexive spaces. Next we show, that subspaces in duals of quasi-reflexive spaces are norming, if and only if they are total. Later we show, that in the dual of every non-quasi-reflexive space we can find a subspace which is total but not norming; thus, the previous statement is a characterisation of quasi-reflexive spaces. We also show, that for absolutely convex subsets of duals of quasi-reflexive spaces w∗ -derived set coincides with w∗ -closure. In the last section we define w∗ -derived sets of higher orders and show, that in the dual of every non-quasi-reflexive separable Banach space there exist subspaces of order of each countable non-limit ordinal and no other. 1
32

Some aspects of the geometry of Lipschitz free spaces / Quelques aspects de la structure linéaire des espaces Lipschitz libres.

Petitjean, Colin 19 June 2018 (has links)
Quelques aspects de la géométrie des espaces LipschitzEn premier lieu, nous donnons les propriétés fondamentales des espaces Lipschitz libres. Puis, nous démontrons que l'image canonique d'un espace métrique M est faiblement fermée dans l'espace libre associé F(M). Nous prouvons un résultat similaire pour l'ensemble des molécules.Dans le second chapitre, nous étudions les conditions sous lesquelles F(M) est isométriquement un dual. En particulier, nous généralisons un résultat de Kalton sur ce sujet. Par la suite, nous nous focalisons sur les espaces métriques uniformément discrets et sur les espaces métriques provenant des p-Banach.Au chapitre suivant, nous explorons le comportement de type l1 des espaces libres. Entre autres, nous démontrons que F(M) a la propriété de Schur dès que l'espace des fonctions petit-Lipschitz est 1-normant pour F(M). Sous des hypothèses supplémentaires, nous parvenons à plonger F(M) dans une somme l_1 d'espaces de dimension finie.Dans le quatrième chapitre, nous nous intéressons à la structure extrémale de $F(M)$. Notamment, nous montrons que tout point extrémal préservé de la boule unité d'un espace libre est un point de dentabilité. Si F(M) admet un prédual, nous obtenons une description précise de sa structure extrémale.Le cinquième chapitre s'intéresse aux fonctions Lipschitziennes à valeurs vectorielles. Nous généralisons certains résultats obtenus dans les trois premiers chapitres. Nous obtenons également un résultat sur la densité des fonctions Lipschitziennes qui atteignent leur norme. / Some aspects of the geometry of Lipschitz free spaces.First and foremost, we give the fundamental properties of Lipschitz free spaces. Then, we prove that the canonical image of a metric space M is weakly closed in the associated free space F(M). We prove a similar result for the set of molecules.In the second chapter, we study the circumstances in which F(M) is isometric to a dual space. In particular, we generalize a result due to Kalton on this topic. Subsequently, we focus on uniformly discrete metric spaces and on metric spaces originating from p-Banach spaces.In the next chapter, we focus on l1-like properties. Among other things, we prove that F(M) has the Schur property provided the space of little Lipschitz functions is 1-norming for F(M). Under additional assumptions, we manage to embed F(M) into an l1-sum of finite dimensional spaces.In the fourth chapter, we study the extremal structure of F(M). In particular, we show that any preserved extreme point in the unit ball of a free space is a denting point. Moreover, if F(M) admits a predual, we obtain a precise description of its extremal structure.The fifth chapter deals with vector-valued Lipschitz functions.We generalize some results obtained in the first three chapters.We finish with some considerations of norm attainment. For instance, we obtain a density result for vector-valued Lipschitz maps which attain their norm.
33

Sobre Soluções Positivas para uma Classe de Equações Elípticas Semilineares

Pontes, Enieze Cardoso de 25 February 2014 (has links)
Made available in DSpace on 2015-05-15T11:46:20Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 842217 bytes, checksum: 4549b711fa61f709fe2ff3b8c94c4bef (MD5) Previous issue date: 2014-02-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work, we study the existence of positive solutions for a class of semilinear elliptic equations in a smooth bounded domain, with Dirichlet boundary condition and non-linear terms changing sign as well as with small perturbations. In order to obtain the positive solution, in the first case we use a version of the Mountain Pass Theorem in Ordered Banach spaces. In the second case, the main term is under assumptions that guarantee the application of the usual Mountain Pass Theorem and the perturbation term does not require any hypothesis. / Neste trabalho, estudamos existência de solução positiva para uma classe de equações elípticas semilineares em um domínio limitado suave, com condição de fronteira de Dirichlet, tanto com termos nao-lineares mudando de sinal, quanto com termos com pequenas perturbações. A fim de obtermos solução positiva, no primeiro caso, usamos uma versão do Teorema do Passo da Montanha para Espacos de Banach Ordenados. No segundo caso, o termo principal esta sob condições que garantem a aplicação do Teorema do Passo da Montanha usual e o termo de perturbação não requer nenhuma hipótese.
34

Zeros de polinômios e propriedades polinomiais em espaços de Banach / Zeros of polynomials and properties polynomials in Banach spaces

Neusa Nogas Tocha 06 April 2006 (has links)
Neste trabalho temos por objetivo apresentar alguns resultados relacionados aos temas abordados por Aron, Choi e Llavona (1995), Aron e Dimant (2002) e Aron e Rueda (1997). Primeiramente, vamos estudar as propriedades polinomiais (P) e (RP) para os espaços de Banach e a propriedade ACL para as funções definidas entre as bolas unitárias fechadas do espaço. Vamos apresentar novos exemplos de espaços de Banach que possuem a propriedade (P) onde é possível exibir funções que satisfazem a propriedade ACL. Vamos ainda estudar o conjunto de continuidade seqüencial fraca de um polinômio N-homogêneo contínuo com valores vetoriais. Apresentamos as suas propriedades básicas e algumas conexões com o caso dos polinômios escalares. No espaço dual faremos uma breve análise dos polinômios com certo tipo de continuidade com relação à topologia fraca-estrela. Numa outra direção, estudamos os zeros de polinômios N-homogêneos em várias variáveis complexas, mais especificamente, dados n, N números naturais existe um número natural m tal que para cada polinômio N-homogêneo complexo P definido no espaço vetorial C^ existe um subespaço vetorial X_ contido no conjunto dos zeros do polinômio P de dimensão n. Aqui, o principal objetivo é melhorar as limitações para m encontradas por Aron e Rueda (1997) como também generalizar os seus resultados. / Our purpose here is to study some results regarding the articles of Aron, Choi and Llavona (1995), Aron and Dimant (2002) and Aron and Rueda (1997). Firstly, we study properties (P) and (RP) for the Banach spaces and the ACL property for the functions defined between the closed unit balls. We give new examples of Banach spaces which have (P) property and some functions defined in those spaces satisfying the ACL property. We also study the set of weak sequential continuity of a vector-valued continuous Nhomogeneous polynomial. In the dual space we study the N-homogeneous polynomials which are weak-star continuous on bounded sets. Finally, we study the zeros of complex N-homogeneous polynomials. This means, given positive integers n and N, there is a positive integer m such that an complex N-homogeneous polynomial P defined in C^ has an ndimensional subspace contained in its zero set. We discuss the problem of finding a good bound on m as a function of n and N. We improve the results given by Aron and Rueda (1997) as also generalize their results.
35

Parameter choice in Banach space regularization under variational inequalities

Hofmann, Bernd, Mathé, Peter January 2012 (has links)
The authors study parameter choice strategies for Tikhonov regularization of nonlinear ill-posed problems in Banach spaces. The effectiveness of any parameter choice for obtaining convergence rates depend on the interplay of the solution smoothness and the nonlinearity structure, and it can be expressed concisely in terms of variational inequalities. Such inequalities are link conditions between the penalty term, the norm misfit and the corresponding error measure. The parameter choices under consideration include an a priori choice, the discrepancy principle as well as the Lepskii principle. For the convenience of the reader the authors review in an appendix a few instances where the validity of a variational inequality can be established.
36

Hypercyclic Extensions Of Bounded Linear Operators

Turcu, George R. 20 December 2013 (has links)
No description available.
37

A study of Dunford-Pettis-like properties with applications to polynomials and analytic functions on normed spaces / Elroy Denovanne Zeekoei

Zeekoei, Elroy Denovanne January 2011 (has links)
Recall that a Banach space X has the Dunford-Pettis property if every weakly compact operator defined on X takes weakly compact sets into norm compact sets. Some valuable characterisations of Banach spaces with the Dunford-Pettis property are: X has the DPP if and only if for all Banach spaces Y, every weakly compact operator from X to Y sends weakly convergent sequences onto norm convergent sequences (i.e. it requires that weakly compact operators on X are completely continuous) and this is equivalent to “if (xn) and (x*n) are sequences in X and X* respectively and limn xn = 0 weakly and limn x*n = 0 weakly then limn x*n xn = 0". A striking application of the Dunford-Pettis property (as was observed by Grothendieck) is to prove that if X is a linear subspace of L() for some finite measure  and X is closed in some Lp() for 1 ≤ p < , then X is finite dimensional. The fact that the well known spaces L1() and C() have this property (as was proved by Dunford and Pettis) was a remarkable achievement in the early history of Banach spaces and was motivated by the study of integral equations and the hope to develop an understanding of linear operators on Lp() for p ≥ 1. In fact, it played an important role in proving that for each weakly compact operator T : L1()  L1() or T : C()  C(), the operator T2 is compact, a fact which is important from the point of view that there is a nice spectral theory for compact operators and operators whose squares are compact. There is an extensive literature involving the Dunford-Pettis property. Almost all the articles and books in our list of references contain some information about this property, but there are plenty more that could have been listed. The reader is for instance referred to [4], [5], [7], [8], [10], [17] and [24] for information on the role of the DPP in different areas of Banach space theory. In this dissertation, however, we are motivated by the two papers [7] and [8] to study alternative Dunford-Pettis properties, to introduce a scale of (new) alternative Dunford-Pettis properties, which we call DP*-properties of order p (briefly denoted by DP*P), and to consider characterisations of Banach spaces with these properties as well as applications thereof to polynomials and holomorphic functions on Banach spaces. In the paper [8] the class Cp(X, Y) of p-convergent operators from a Banach space X to a Banach space Y is introduced. Replacing the requirement that weakly compact operators on X should be completely continuous in the case of the DPP for X (as is mentioned above) by “weakly compact operators on X should be p-convergent", an alternative Dunford-Pettis property (called the Dunford-Pettis property of order p) is introduced. More precisely, if 1 ≤ p ≤ , a Banach space X is said to have DPPp if the inclusion W(X, Y)  Cp(X, Y) holds for all Banach spaces Y . Here W(X, Y) denotes the family of all weakly compact operators from X to Y. We now have a scale of “Dunford-Pettis like properties" in the sense that all Banach spaces have the DPP1, if p < q, then each Banach space with the DPPq also has the DPPp and the strongest property, namely the DPP1 coincides with the DPP. In the paper [7] the authors study a property on Banach spaces (called the DP*-property, or briey the DP*P) which is stronger than the DPP, in the sense that if a Banach space has this property then it also has DPP. We say X has the DP*P, when all weakly compact sets in X are limited, i.e. each sequence (x*n)  X * in the dual space of X which converges weak* to 0, also converges uniformly (to 0) on all weakly compact sets in X. It turns out that this property is equivalent to another property on Banach spaces which is introduced in [17] (and which is called the *-Dunford-Pettis property) as follows: We say a Banach space X has the *-Dunford-Pettis property if for all weakly null sequences (xn) in X and all weak* null sequences (x*n) in X*, we have x*n(xn) n 0. After a thorough study of the DP*P, including characterisations and examples of Banach spaces with the DP*P, the authors in [7] consider some applications to polynomials and analytic functions on Banach spaces. Following an extensive literature study and in depth research into the techniques of proof relevant to this research field, we are able to present a thorough discussion of the results in [7] and [8] as well as some selected (relevant) results from other papers (for instance, [2] and [17]). This we do in Chapter 2 of the dissertation. The starting point (in Section 2.1 of Chapter 2) is the introduction of the so called p-convergent operators, being those bounded linear operators T : X  Y which transform weakly p-summable sequences into norm-null sequences, as well as the so called weakly p-convergent sequences in Banach spaces, being those sequences (xn) in a Banach space X for which there exists an x  X such that the sequence (xn - x) is weakly p-summable. Using these concepts, we state and prove an important characterisation (from the paper [8]) of Banach spaces with DPPp. In Section 2.2 (of Chapter 2) we continue to report on the results of the paper [7], where the DP*P on Banach spaces is introduced. We focus on the characterisation of Banach spaces with DP*P, obtaining among others that a Banach space X has DP*P if and only if for all weakly null sequences (xn) in X and all weak* null sequences (x*n) in X*, we have x*n(xn) n 0. An important characterisation of the DP*P considered in this section is the fact that X has DP*P if and only if every T  L(X, c0) is completely continuous. This result proves to be of fundamental importance in the study of the DP*P and its application to results on polynomials and holomorphic functions on Banach spaces. To be able to report on the applications of the DP*P in the context of homogeneous polynomials and analytic functions on Banach spaces, we embark on a study of “Complex Analysis in Banach spaces" (mostly with the focus on homogeneous polynomials and analytic functions on Banach spaces). This we do in Chapter 3; the content of the chapter is mostly based on work in the books [23] and [14], but also on the work in some articles such as [15]. After we have discussed the relevant theory of complex analysis in Banach spaces in Chapter 3, we devote Chapter 4 to considering properties of polynomials and analytic functions on Banach spaces with DP*P. The discussion in Chapter 4 is based on the applications of DP*P in the paper [7]. Finally, in Chapter 5 of the dissertation, we contribute to the study of “Dunford-Pettis like properties" by introducing the Banach space property “DP*P of order p", or briefly the DP*Pp for Banach spaces. Using the concept “weakly p-convergent sequence in Banach spaces" as is defined in [8], we define weakly-p-compact sets in Banach spaces. Then a Banach space X is said to have the DP*-property of order p (for 1 ≤ p ≤ ) if all weakly-p-compact sets in X are limited. In short, we say X has DP*Pp. As in [8] (where the DPPp is introduced), we now have a scale of DP*P-like properties, in the sense that all Banach spaces have DP*P1 and if p < q and X has DP*Pq then it has DP*Pp. The strongest property DP*P coincides with DP*P. We prove characterisations of Banach spaces with DP*Pp, discuss some examples and then consider applications to polynomials and analytic functions on Banach spaces. Our results and techniques in this chapter depend very much on the results obtained in the previous three chapters, but now we have to find our own correct definitions and formulations of results within this new context. We do this with some success in Sections 5.1 and 5.2 of Chapter 5. Chapter 1 of this dissertation provides a wide range of concepts and results in Banach spaces and the theory of vector sequence spaces (some of them very deep results from books listed in the bibliography). These results are mostly well known, but they are scattered in the literature - they are discussed in Chapter 1 (some with proof, others without proof, depending on the importance of the arguments in the proofs for later use and depending on the detail with which the results are discussed elsewhere in the literature) with the intention to provide an exposition which is mostly self contained and which will be comfortably accessible for graduate students. The dissertation reflects the outcome of our investigation in which we set ourselves the following goals: 1. Obtain a thorough understanding of the Dunford-Pettis property and some related (both weaker and stronger) properties that have been studied in the literature. 2. Focusing on the work in the paper [8], understand the role played in the study of difierent classes of operators by a scale of properties on Banach spaces, called the DPPp, which are weaker than the DP-property and which are introduced in [8] by using the weakly p-summable sequences in X and weakly null sequences in X*. 3. Focusing on the work in the paper [7], investigate the DP*P for Banach spaces, which is the exact property to answer a question of Pelczynsky's regarding when every symmetric bilinear separately compact map X x X  c0 is completely continuous. 4. Based on the ideas intertwined in the work of the paper [8] in the study of a scale of DP-properties and the work in the paper [7], introduce the DP*Pp on Banach spaces and investigate their applications to spaces of operators and in the theory of polynomials and analytic mappings on Banach spaces. Thereby, not only extending the results in [7] to a larger family of Banach spaces, but also to find an answer to the question: “When will every symmetric bilinear separately compact map X x X  c0 be p-convergent?" / Thesis (M.Sc. (Mathematics))--North-West University, Potchefstroom Campus, 2012.
38

A study of Dunford-Pettis-like properties with applications to polynomials and analytic functions on normed spaces / Elroy Denovanne Zeekoei

Zeekoei, Elroy Denovanne January 2011 (has links)
Recall that a Banach space X has the Dunford-Pettis property if every weakly compact operator defined on X takes weakly compact sets into norm compact sets. Some valuable characterisations of Banach spaces with the Dunford-Pettis property are: X has the DPP if and only if for all Banach spaces Y, every weakly compact operator from X to Y sends weakly convergent sequences onto norm convergent sequences (i.e. it requires that weakly compact operators on X are completely continuous) and this is equivalent to “if (xn) and (x*n) are sequences in X and X* respectively and limn xn = 0 weakly and limn x*n = 0 weakly then limn x*n xn = 0". A striking application of the Dunford-Pettis property (as was observed by Grothendieck) is to prove that if X is a linear subspace of L() for some finite measure  and X is closed in some Lp() for 1 ≤ p < , then X is finite dimensional. The fact that the well known spaces L1() and C() have this property (as was proved by Dunford and Pettis) was a remarkable achievement in the early history of Banach spaces and was motivated by the study of integral equations and the hope to develop an understanding of linear operators on Lp() for p ≥ 1. In fact, it played an important role in proving that for each weakly compact operator T : L1()  L1() or T : C()  C(), the operator T2 is compact, a fact which is important from the point of view that there is a nice spectral theory for compact operators and operators whose squares are compact. There is an extensive literature involving the Dunford-Pettis property. Almost all the articles and books in our list of references contain some information about this property, but there are plenty more that could have been listed. The reader is for instance referred to [4], [5], [7], [8], [10], [17] and [24] for information on the role of the DPP in different areas of Banach space theory. In this dissertation, however, we are motivated by the two papers [7] and [8] to study alternative Dunford-Pettis properties, to introduce a scale of (new) alternative Dunford-Pettis properties, which we call DP*-properties of order p (briefly denoted by DP*P), and to consider characterisations of Banach spaces with these properties as well as applications thereof to polynomials and holomorphic functions on Banach spaces. In the paper [8] the class Cp(X, Y) of p-convergent operators from a Banach space X to a Banach space Y is introduced. Replacing the requirement that weakly compact operators on X should be completely continuous in the case of the DPP for X (as is mentioned above) by “weakly compact operators on X should be p-convergent", an alternative Dunford-Pettis property (called the Dunford-Pettis property of order p) is introduced. More precisely, if 1 ≤ p ≤ , a Banach space X is said to have DPPp if the inclusion W(X, Y)  Cp(X, Y) holds for all Banach spaces Y . Here W(X, Y) denotes the family of all weakly compact operators from X to Y. We now have a scale of “Dunford-Pettis like properties" in the sense that all Banach spaces have the DPP1, if p < q, then each Banach space with the DPPq also has the DPPp and the strongest property, namely the DPP1 coincides with the DPP. In the paper [7] the authors study a property on Banach spaces (called the DP*-property, or briey the DP*P) which is stronger than the DPP, in the sense that if a Banach space has this property then it also has DPP. We say X has the DP*P, when all weakly compact sets in X are limited, i.e. each sequence (x*n)  X * in the dual space of X which converges weak* to 0, also converges uniformly (to 0) on all weakly compact sets in X. It turns out that this property is equivalent to another property on Banach spaces which is introduced in [17] (and which is called the *-Dunford-Pettis property) as follows: We say a Banach space X has the *-Dunford-Pettis property if for all weakly null sequences (xn) in X and all weak* null sequences (x*n) in X*, we have x*n(xn) n 0. After a thorough study of the DP*P, including characterisations and examples of Banach spaces with the DP*P, the authors in [7] consider some applications to polynomials and analytic functions on Banach spaces. Following an extensive literature study and in depth research into the techniques of proof relevant to this research field, we are able to present a thorough discussion of the results in [7] and [8] as well as some selected (relevant) results from other papers (for instance, [2] and [17]). This we do in Chapter 2 of the dissertation. The starting point (in Section 2.1 of Chapter 2) is the introduction of the so called p-convergent operators, being those bounded linear operators T : X  Y which transform weakly p-summable sequences into norm-null sequences, as well as the so called weakly p-convergent sequences in Banach spaces, being those sequences (xn) in a Banach space X for which there exists an x  X such that the sequence (xn - x) is weakly p-summable. Using these concepts, we state and prove an important characterisation (from the paper [8]) of Banach spaces with DPPp. In Section 2.2 (of Chapter 2) we continue to report on the results of the paper [7], where the DP*P on Banach spaces is introduced. We focus on the characterisation of Banach spaces with DP*P, obtaining among others that a Banach space X has DP*P if and only if for all weakly null sequences (xn) in X and all weak* null sequences (x*n) in X*, we have x*n(xn) n 0. An important characterisation of the DP*P considered in this section is the fact that X has DP*P if and only if every T  L(X, c0) is completely continuous. This result proves to be of fundamental importance in the study of the DP*P and its application to results on polynomials and holomorphic functions on Banach spaces. To be able to report on the applications of the DP*P in the context of homogeneous polynomials and analytic functions on Banach spaces, we embark on a study of “Complex Analysis in Banach spaces" (mostly with the focus on homogeneous polynomials and analytic functions on Banach spaces). This we do in Chapter 3; the content of the chapter is mostly based on work in the books [23] and [14], but also on the work in some articles such as [15]. After we have discussed the relevant theory of complex analysis in Banach spaces in Chapter 3, we devote Chapter 4 to considering properties of polynomials and analytic functions on Banach spaces with DP*P. The discussion in Chapter 4 is based on the applications of DP*P in the paper [7]. Finally, in Chapter 5 of the dissertation, we contribute to the study of “Dunford-Pettis like properties" by introducing the Banach space property “DP*P of order p", or briefly the DP*Pp for Banach spaces. Using the concept “weakly p-convergent sequence in Banach spaces" as is defined in [8], we define weakly-p-compact sets in Banach spaces. Then a Banach space X is said to have the DP*-property of order p (for 1 ≤ p ≤ ) if all weakly-p-compact sets in X are limited. In short, we say X has DP*Pp. As in [8] (where the DPPp is introduced), we now have a scale of DP*P-like properties, in the sense that all Banach spaces have DP*P1 and if p < q and X has DP*Pq then it has DP*Pp. The strongest property DP*P coincides with DP*P. We prove characterisations of Banach spaces with DP*Pp, discuss some examples and then consider applications to polynomials and analytic functions on Banach spaces. Our results and techniques in this chapter depend very much on the results obtained in the previous three chapters, but now we have to find our own correct definitions and formulations of results within this new context. We do this with some success in Sections 5.1 and 5.2 of Chapter 5. Chapter 1 of this dissertation provides a wide range of concepts and results in Banach spaces and the theory of vector sequence spaces (some of them very deep results from books listed in the bibliography). These results are mostly well known, but they are scattered in the literature - they are discussed in Chapter 1 (some with proof, others without proof, depending on the importance of the arguments in the proofs for later use and depending on the detail with which the results are discussed elsewhere in the literature) with the intention to provide an exposition which is mostly self contained and which will be comfortably accessible for graduate students. The dissertation reflects the outcome of our investigation in which we set ourselves the following goals: 1. Obtain a thorough understanding of the Dunford-Pettis property and some related (both weaker and stronger) properties that have been studied in the literature. 2. Focusing on the work in the paper [8], understand the role played in the study of difierent classes of operators by a scale of properties on Banach spaces, called the DPPp, which are weaker than the DP-property and which are introduced in [8] by using the weakly p-summable sequences in X and weakly null sequences in X*. 3. Focusing on the work in the paper [7], investigate the DP*P for Banach spaces, which is the exact property to answer a question of Pelczynsky's regarding when every symmetric bilinear separately compact map X x X  c0 is completely continuous. 4. Based on the ideas intertwined in the work of the paper [8] in the study of a scale of DP-properties and the work in the paper [7], introduce the DP*Pp on Banach spaces and investigate their applications to spaces of operators and in the theory of polynomials and analytic mappings on Banach spaces. Thereby, not only extending the results in [7] to a larger family of Banach spaces, but also to find an answer to the question: “When will every symmetric bilinear separately compact map X x X  c0 be p-convergent?" / Thesis (M.Sc. (Mathematics))--North-West University, Potchefstroom Campus, 2012.
39

Construções genéricas de espaços de Asplund C(K) / Generic constructions of Asplund spaces C(K)

Brech, Christina 29 April 2008 (has links)
Neste trabalho consideramos um método de construções genéricas de espaços compactos e dispersos não-metrizáveis, desenvolvido por Baumgartner, Shelah, Rabus, Juhasz e Soukup. Introduzimos novas técnicas e obtemos novas aplicações relevantes tanto para a topologia dos espaços compactos quanto para a geometria dos espaços de Banach de funções contínuas. As novas técnicas dizem respeito a novas amalgamações de condições do forcing que adiciona os espaços dispersos, bem como a generalizações dos argumentos dos autores acima citados de pontos de um espaço compacto K para medidas de Radon sobre K. Como aplicações, obtemos dois novos espaços compactos e dispersos K_1 e K_2, com as propriedades abaixo. K_1 é um espaço hereditariamente separável de peso aleph_1 tal que C(K_1) possui a propriedade (C) de Corson e não possui a propriedade (E) de Efremov. K_2 é o primeiro exemplo de um espaço compacto disperso, hereditariamente separável, de altura omega_2. Segue que o grau de Lindelöf hereditário de K_2 é aleph_2, mostrando a consistência de que hL(K) é estritamente maior que o sucessor de hd(K) para espaços compactos K. C(K_2) é o primeiro exemplo consistente de um espaço de densidade aleph_2 que não possui um sistema biortogonal não-enumerável. / In this work we consider a method of generic constructions of compact scattered non-metrizable spaces developed by Baumgartner, Shelah, Rabus, Juhasz and Soukup. We introduce new techniques and obtain new applications both relevant to topology of compact spaces and the geometry of Banach spaces of continuous functions. The new techniques concern new amalgamations of conditions of forcing which add the dispersed spaces as well as the generalizations of arguments of the above-mentioned authors from points of a compact space K to Radon measures on K. As applications we obtain two compact scattered spaces K_1 and K_2 with the properties below. K_1 is a hereditarily separable space of weight aleph_1 such that C(K_1) has property (C) of Corson and does not have property (E) of Efremov. K_2 is the first (consistent) example of a compact scattered space which is hereditarily separable and whose height is omega_2. It follows that its hereditary Lindelöf degree is aleph_2, showing the consistency of hL(K) can me strictly greater than the successor of hd(K) for compact spaces K. C(K_2) is the first consistent example of a Banach space of density aleph_2 without uncountable biorthogonal systems.
40

Analyse dans les espaces de Banach / Analysis in Banach spaces

Procházka, Antonín 24 June 2009 (has links)
Cette thèse traite quatre sujets différents de la théorie des espaces de Banach: Le premier est une caractérisation de la propriété de Radon-Nikodym en utilisant la notion du jeu des points et tranches: Le deuxième est une évaluation de l'indice de dentabilité préfaible des espaces C(K) où K est un compact du hauteur dénombrable: Le troisième est un renormage des espaces non séparables qui est simultanément LUC, lisse et approximable par des normes d'une lissité plus élevée. Le quatrième est une approche par le théorème de Baire aux principes variationnels paramétriques. La thèse commence par une introduction qui examine le contexte de ces résultats. / The thesis deals with four topics in the theory of Banach spaces. The first of them is a characterization of the Radon-Nikodym property using the notion of point-slice games. The second is a computation of the w* dentability index of the spaces C(K), where K is a compact of countable height. The third is a renorming result in nonseparable spaces, producing norms which are differentiable, LUR and approximated by norms of higher smoothness. The fourth topic is a Baire cathegory approach to parametric smooth variational principles. The thesis features an introduction which surveys the background of these results.

Page generated in 0.0447 seconds