Spelling suggestions: "subject:"hand pap"" "subject:"hand cpap""
131 |
Design of Baluns and Low Noise Amplifiers in Integrated Mixed-Signal Organic SubstratesGovind, Vinu 19 July 2005 (has links)
The integration of mixed-signal systems has long been a problem in the semiconductor industry. CMOS System-on-Chip (SOC), the traditional means for integration, fails mixed-signal systems on two fronts; the lack of on-chip passives with high quality (Q) factors inhibits the design of completely integrated wireless circuits, and the noise coupling from digital to analog circuitry through the conductive silicon substrate degrades the performance of the analog circuits. Advancements in semiconductor packaging have resulted in a second option for integration, the System-On-Package (SOP) approach. Unlike SOC where the package exists just for the thermal and mechanical protection of the ICs, SOP provides for an increase in the functionality of the IC package by supporting multiple chips and embedded passives. However, integration at the package level also comes with its set of hurdles, with significant research required in areas like design of circuits using embedded passives and isolation of noise between analog and digital sub-systems.
A novel multiband balun topology has been developed, providing concurrent operation at multiple frequency bands. The design of compact wideband baluns has been proposed as an extension of this theory. As proof-of-concept devices, both singleband and wideband baluns have been fabricated on Liquid Crystalline Polymer (LCP) based organic substrates. A novel passive-Q based optimization methodology has been developed for chip-package co-design of CMOS Low Noise Amplifiers (LNA). To implement these LNAs in a mixed-signal environment, a novel Electromagnetic Band Gap (EBG) based isolation scheme has also been employed.
The key contributions of this work are thus the development of novel RF circuit topologies utilizing embedded passives, and an advancement in the understanding and suppression of signal coupling mechanisms in mixed-signal SOP-based systems. The former will result in compact and highly integrated solutions for RF front-ends, while the latter is expected to have a significant impact in the integration of these communication devices with high performance computing.
|
132 |
Quantum Cascade Lasers for Mid-Infrared Chemical SensingCharlton, Christy 23 November 2005 (has links)
The mid-infrared (MIR) spectral range (2-20 m) is particularly useful for chemical sensing due to the excitation of fundamental rotational and vibrational modes. In the fingerprint region (10-20 m), most organic analytes have unique absorption patterns; absorption measurements in this region provide molecule-specific information with high sensitivity.
Quantum cascade lasers (QCLs) present an ideal light source for (MIR) chemical sensing due to their narrow linewidth, high spectral density, compact size, and ease of fabrication of nearly any MIR wavelength. As the emission wavelength is dependent on layer size within the heterostructure rather than material composition, various wavelengths in the MIR can be achieved through bandstructure engineering.
High sensitivity measurements have been achieved in both gas and liquid phase by developing integrated sensing systems. The laser emission frequency is selected to match a strong absorption feature for the analyte of interest where no other interfering bands are located. A waveguide is then developed to fit the application and wavelength used.
Gas sensing applications incorporate silica hollow waveguides (HWG) and an OmniGuide fiber (or photonic bandgap HWG). Analyte gas is injected into the hollow core allowing the HWG or OmniGuide to serve simultaneously as a waveguide and miniaturized gas cell. Sensitivities of parts per billion are achieved with a response time of 8 s and a sample volume of approximately 1 mL.
Liquid sensing is achieved via evanescent wave measurements with planar waveguides of silver halide (AgX) and gallium arsenide (GaAs). GaAs waveguides developed in this work have a thickness on the order of the wavelength of light achieving single-mode waveguides, providing a significant improvement in evanescent field strength over conventional multimode fibers. Liquid samples of L volume at the waveguide surfaces are detected.
QCLs have begun to be utilized as a light source in the MIR regime over the last decade. The next step in this field is the development of compact and highly integrated device platforms which take full advantage of this technology. The sensing demonstrations in this work advance the field towards finding key applications in medical, biological, environmental, and atmospheric measurements.
|
133 |
The Effect of Hydrogen on the Optical, Structural Properties and the Crystallization of GeTe2 Thin Films Prepared by RF Magnetron SputteringCao, Ke 22 August 2008 (has links)
Thin films of GeTe₂ were deposited on glass substrates using RF magnetron sputtering with various hydrogen flow rates in the growth chamber. Transmission data of deposited films were taken and used to determine optical constants: refractive index (n), extinction coefficient (κ), and absorption coefficient (α)) and the energies: E₀₄, E₀₃, Tauc band gap E[subscript]Tauc and Urbach energy E[subscript]U. An increase of these energies was observed with increasing hydrogen flow rate. This increase is interpreted on the basis of the density of state model proposed by Mott and Davis. An increase of network disorder due to the inclusion of hydrogen into the GeTe₂ thin films was determined from the B[superscript]1/2 parameter, Urbach energy and full width at half maximum of Raman vibrational modes. The crystallization process induced by thermal annealing on GeTe₂ was studied. X-ray diffraction measurements were performed and the results suggest that crystallization of GeTe₂ occurs via a phase separation into Te and GeTe crystalline phases. This observation is in agreement with a previous report. The crystallization temperature increases with the addition of hydrogen. This increase is explained in terms of dangling bonds. A large change (approximately 60 percent decrease) of the optical transmission occurs after the phase change from amorphous to crystalline. This decrease is interpreted as a result of the observed phase separation.
|
134 |
Optical Modeling of Amorphous and Metal Induced Crystallized Silicon with an Effective Medium ApproximationMuller, Theophillus Frederic George January 2009 (has links)
<p>Hydrogenated amorphous silicon (a-Si:H) is second only to crystalline silicon in volume manufacturing of solar cells due to its attractive characteristics for solar panel manufacturing. These are lower manufacturing costs, and the fact that it can be deposited on any surface, and in any shape even on flexible substrates. The metal induced crystallization of hydrogenated amorphous silicon has been the subject of intense scrutiny in recent years. By combining the technology of hydrogenated amorphous silicon thin films with the superior characteristics of c-Si material, it is hoped that more efficient solar cells can be produced. In this thesis we report on the metal-mediated-thermally induced changes of the structural and optical properties of hydrogenated amorphous silicon deposited by hot-wire CVD, where aluminium and nickel were used to induce crystallization. The metal-coated amorphous silicon was subjected to a thermal annealing regime of between 150 and 520° / C. The structural measurements, obtained by Raman spectroscopy, show partial crystallization occurring at 350 ° / C. At the higher annealing temperatures of 450° / C and 520° / C complete crystallization occurs. Reflection and transmission measurements in the UV-visible range were then used to extract the optical properties. By adopting the effective medium approximation a single optical model could be constructed that couldsuccessfully model material that was in different structural phases, irrespective of metal contamination. Changes in the absorption of the material in various stages of transition were confirmed with a directly measured absorption technique, and the modelled absorption closely followed the same trends This study forms part of the larger overall solar cell research project, of which the primary aim is to eventually develop a silicon solar panel that optimises the characteristics for best performance.</p>
|
135 |
Optical modeling of amorphous and metal induced crystallized silicon with an effective medium approximationTheophillus Frederic George Muller January 2009 (has links)
<p>In this thesis we report on the metal-mediated-thermally induced changes of the structural and optical properties of hydrogenated amorphous silicon deposited by hot-wire CVD, where aluminium and nickel were used to induce crystallization. The metal-coated amorphous silicon was subjected to a thermal annealing regime of between 150 and 520° / C. The structural measurements, obtained by Raman spectroscopy, show partial crystallization occurring at 350 ° / C. At the higher annealing temperatures of 450° / C and 520° / C complete crystallization occurs. Reflection and transmission measurements in the UV-visible range were then used to extract the optical properties. By adopting the effective medium approximation a single optical model could be constructed that could successfully model material that was in different structural phases, irrespective of metal contamination. Changes in the absorption of the material in various stages of transition were confirmed with a directly measured absorption technique, and the modelled absorption closely followed the same trends This study forms part of the larger overall solar cell research project, of which the primary aim is to eventually develop a silicon solar panel that optimises the characteristics for best performance.</p>
|
136 |
Synthesis, characterisation and potential employment of Pt–modified TiO2 photocatalysts towards laser induced H2 production / Falch A.Falch, Anzel January 2011 (has links)
The photocatalytic production of H2 from water as well as from a 1:1 methanol:water
solution employing pre–treated TiO2 and various Pt–TiO2 photocatalysts was studied by
using an Nd:YAG laser as irradiation source. The photocatalysts (0.5–, 1–, 1.5– and 2
wt% Pt–TiO2) were prepared by utilizing a photocatalytic reduction method after which
characterisation by various analytical techniques, i.e. XRD, TEM, ICP, SEM, and EDX,
were conducted. XRD clearly indicated that platinum was not present in the crystal
structure of TiO2, but was rather loaded onto the surface of TiO2. TEM analysis
confirmed the presence of Pt on the surface with a particle/cluster size between 11 nm
and 22 nm. SEM showed that repeatable results in respect of surface appearance were
obtained. ICP and EDX indicated that the loading method was successful with only a
slight deviation between the actual amount loaded and the calculated amount loaded.
The impact of the loaded Pt on the band gaps of the different photocatalysts was
investigated by diffuse reflectance spectroscopy (DRS) and calculated by employing
the Kubelka–Munk method. The band gap values shifted sequentially from 3.236eV to
3.100 eV as the loading increased, moving closer to the absorbance region for visible
light. The amount of hydrogen produced from the individual photocatalysts dispersed in
both pure water and aqueous methanol solutions, was measured manually with a gas
chromatograph. As soon as irradiation was initiated, a distinct colour change from
shades of grey to dark blue–grey was observed for all the photocatalysts. XRD
confirmed that it was due to the anatase phase transforming to produce more rutile
phase. No H2 was detected for the various photocatalysts suspended in water, i.e. in
the absence of methanol. The amount of hydrogen produced from the various Pt
photocatalysts suspended in the aqueous methanol solution was found to be the
highest for the 0.5wt%– and 1.5wt% Pt–TiO2 photocatalysts and the lowest for the 2wt%
Pt–TiO2. This could be due to loading Pt above the optimum amount to such an extent,
preventing sufficient light from reaching the TiO2 surface. Pt particles can also touch
and overlap which will decrease Pt contact with TiO2 thus decreasing effective charge
transfer. / Thesis (M.Sc. (Chemistry))--North-West University, Potchefstroom Campus, 2012.
|
137 |
First Principles Studies of Functional Materials Based on Graphene and OrganometallicsBhandary, Sumanta January 2014 (has links)
Graphene is foreseen to be the basis of future electronics owing to its ultra thin structure, extremely high charge carrier mobility, high thermal conductivity etc., which are expected to overcome the size limitation and heat dissipation problem in silicon based transistors. But these great prospects are hindered by the metallic nature of pristine graphene even at charge neutrality point, which allows to flow current even when a transistor is switched off. A part of the thesis is dedicated to invoke electronic band gaps in graphene to overcome this problem. The concept of quantum confinement has been employed to tune the band gaps in graphene by dimensional confinement along with the functionalization of the edges of these confined nanostructures. Thermodynamic stability of the functionalized zigzag edges with hydrogen, fluorine and reconstructed edges has been presented in the thesis. Keeping an eye towards the same goal of band gap opening, a different route has been considered by admixing insulating hexagonal boron nitride (h-BN) with semimetal graphene. The idea has been implemented in two dimensional h-BN-graphene composites and three dimensional stacked heterostructures. The study reveals the possibility of tuning band gaps by controlling the admixture. Occurrence of defects in graphene has significant effect on its electronic properties. By random insertion of defects, amorphous graphene is studied, revealing a semi-metal to a metal transition. The field of molecular electronics and spintronics aims towards device realization at the molecular scale. In this thesis, different aspects of magnetic bistability in organometallic molecules have been explored in order to design practical spintronics devices. Manipulation of spin states in organometallic molecules, specifically metal porphyrin molecules, is achieved by controlling surface–molecule interaction. It has been shown that by strain engineering in defected graphene, the magnetic state of adsorbed molecules can be changed. The spin crossover between different spin states can also be achieved by chemisorption on magnetic surfaces. A significant part of the thesis demonstrates that the surface-molecule interaction not only changes the spin state of the molecule, but allows to manipulate magnetic anisotropies and spin dipole moments via modified ligand fields. Finally, in collaboration with experimentalists, a practical realization of switching surface–molecule magnetic interactions by external magnetic fields is demonstrated.
|
138 |
Synthesis, characterisation and potential employment of Pt–modified TiO2 photocatalysts towards laser induced H2 production / Falch A.Falch, Anzel January 2011 (has links)
The photocatalytic production of H2 from water as well as from a 1:1 methanol:water
solution employing pre–treated TiO2 and various Pt–TiO2 photocatalysts was studied by
using an Nd:YAG laser as irradiation source. The photocatalysts (0.5–, 1–, 1.5– and 2
wt% Pt–TiO2) were prepared by utilizing a photocatalytic reduction method after which
characterisation by various analytical techniques, i.e. XRD, TEM, ICP, SEM, and EDX,
were conducted. XRD clearly indicated that platinum was not present in the crystal
structure of TiO2, but was rather loaded onto the surface of TiO2. TEM analysis
confirmed the presence of Pt on the surface with a particle/cluster size between 11 nm
and 22 nm. SEM showed that repeatable results in respect of surface appearance were
obtained. ICP and EDX indicated that the loading method was successful with only a
slight deviation between the actual amount loaded and the calculated amount loaded.
The impact of the loaded Pt on the band gaps of the different photocatalysts was
investigated by diffuse reflectance spectroscopy (DRS) and calculated by employing
the Kubelka–Munk method. The band gap values shifted sequentially from 3.236eV to
3.100 eV as the loading increased, moving closer to the absorbance region for visible
light. The amount of hydrogen produced from the individual photocatalysts dispersed in
both pure water and aqueous methanol solutions, was measured manually with a gas
chromatograph. As soon as irradiation was initiated, a distinct colour change from
shades of grey to dark blue–grey was observed for all the photocatalysts. XRD
confirmed that it was due to the anatase phase transforming to produce more rutile
phase. No H2 was detected for the various photocatalysts suspended in water, i.e. in
the absence of methanol. The amount of hydrogen produced from the various Pt
photocatalysts suspended in the aqueous methanol solution was found to be the
highest for the 0.5wt%– and 1.5wt% Pt–TiO2 photocatalysts and the lowest for the 2wt%
Pt–TiO2. This could be due to loading Pt above the optimum amount to such an extent,
preventing sufficient light from reaching the TiO2 surface. Pt particles can also touch
and overlap which will decrease Pt contact with TiO2 thus decreasing effective charge
transfer. / Thesis (M.Sc. (Chemistry))--North-West University, Potchefstroom Campus, 2012.
|
139 |
Development of wide-band gap InGaN solar cells for high-efficiency photovoltaicsJani, Omkar Kujadkumar 05 May 2008 (has links)
Main objective of the present work is to develop wide-band gap InGaN solar cells in the 2.4 - 2.9 eV range that can be an integral component of photovoltaic devices to achieve efficiencies greater than 50%. In the present work, various challenges in the novel III-nitride technology are identified and overcome individually to build basic design blocks, and later, optimized comprehensively to develop high-performance InGaN solar cells. Due to the unavailability of a suitable modeling program for InGaN solar cells, PC1D is modified up to a source-code level to incorporate spontaneous and piezoelectric polarization in order to accurately model III-nitride solar cells. On the technological front, InGaN with indium compositions up to 30% (2.5 eV band gap) are developed for photovoltaic applications by controlling defects and phase separation using metal-organic chemical vapor deposition. InGaN with band gap of 2.5 eV is also successfully doped to achieve acceptor carrier concentration of 1e18 cm-3. A robust fabrication scheme for III-nitride solar cells is established to increase reliability and yield; various schemes including interdigitated grid contact and current spreading contacts are developed to yield low-resistance Ohmic contacts for InGaN solar cells. Preliminary solar cells are developed using a standard design to optimize the InGaN material, where the band gap of InGaN is progressively lowered. Subsequent generations of solar cell designs involve an evolutionary approach to enhance the open-circuit voltage and internal quantum efficiency of the solar cell. The suitability of p-type InGaN with band gaps as low as 2.5 eV is established by incorporating in a solar cell and measuring an open-circuit voltage of 2.1 V. Second generation InGaN solar cell design involving a 2.9 eV InGaN p-n junction sandwiched between p- and n-GaN layers yields internal quantum efficiencies as high as 50%; while sixth generation devices utilizing the novel n-GaN strained window-layer enhance the open circuit voltage of a 2.9 eV InGaN solar cell to 2 V. Finally, key aspects to further InGaN solar cell research, including integration of various designs, are recommended to improve the efficiency of InGaN solar cells. These results establish the potential of III-nitrides in ultra-high efficiency photovoltaics.
|
140 |
Novel poly(propylene thiophenoimine)-co poly(ethylenedioxythiophene) composites of naphthalene diimide for applications in organic photovoltaic cellsYonkeu, Anne Lutgarde Djoumessi January 2013 (has links)
Magister Scientiae - MSc / Solar energy generation arises as a result of direct conversion of sunlight into electricity a by solar cell; which is mainly made up of a semiconducting material incorporated into a system. It is emerging as one of the most reliable and cost efficient renewable energy sources. Within the solar field, organic bulk heterojunction photovoltaic cells have proved of being able to have a great impact in the future years; mainly due to the easy processability of the active layer and substrate, their cost effectiveness and above all, a good power conversion efficiency associated to the close 3-dimensional interpenetrating network that is generated from blending donor and acceptor semiconducting materials together in a bulk heterojunction active layer. In this research work, we therefore report on the study of a newly developed organic bulk heterojunction active layer based on a blend of a star-copolymer generation 1 poly(propylenethiophenoimine)-co-poly(ethylenedioxythiophene) (G1PPT-co-PEDOT) as donor material with N,N-diisopropylnaphthalene diimide (NDI) as acceptor material. Both materials were chemically synthesized. The synthesis of G1PPT-co-PEDOT started first by
the functionalization of generation 1 poly(propyleneimine) tetramine, G1PPI into G1PPT by condensation reaction in the presence of 2-thiophene carboxaldehyde under Nitrogen gas followed by the copolymerization of G1PPT with ethylene dioxythiophene (EDOT) monomer in the presence of ammonium persulfate, (NH4)2S2O8 as oxidant. On the other hand, NDI was also synthesized via condensation reaction of 1,4,5,8-naphthalene tetracarboxylic dianhydride in the presence of two (2) equivalences of N,N-diisopropylamine at 110 oC overnight in
DMF. Both materials were characterized using FT-IR, UV-Vis spectroscopy, Fluorescence spectroscopy, Voltammetry, HRSEM microscopy and XRD. Based on the cyclic voltammetry and UV-Vis results, we were able to calculate the HOMO, LUMO and band gap energy (Eg) values of both the donor and acceptor to be -4.03 eV, -6.287 eV and 2.25 eV for iii the donor G1PPT-co-PEDOT respectively and -4.302 eV, -7.572 eV and 3.27 eV for the acceptor respectively. From these results, the energy diagram for both donor and acceptor was drawn and it comes out that the separation between the HOMO of the donor and the LUMO of the acceptor ΔEg = 1.985 eV, the ideal value for a good donor-acceptor combination. Also the offset energy that is, the energy difference between the LUMO of the donor and the LUMO of the acceptor is 0.302 eV.
|
Page generated in 0.0524 seconds