Spelling suggestions: "subject:"batteries."" "subject:"catteries.""
451 |
Conducting polymer hydrogels for high-performance electrochemical devicesLiu, Borui 09 October 2014 (has links)
Conducting polymer hydrogels (CPHs) is a class of unique materials that synergize the advantages of conducting polymers (CPs) and polymer hydrogels together. It has been employed in many high-performance electrochemical devices for years, such as energy storage and biosensors. However, large limitations of applying CPHs into the abovementioned areas have been facing the researcher for a long time, mainly due to the difficulties from complicated materials synthesis and untenable nanostructures for potential applications. The drawbacks of previously reported CPHs have put numerous disadvantages onto their applications, partially because they have, for example, high prices, untunable microscale or nanoscale architectures, environmentally hazardous properties, and unscalable and time-consuming synthesis processes. In this thesis, we proposed a novel route for carrying out CPHs by one-step organics synthesis at ambient conditions. The CPHs have hierarchically porous nanostructures crosslinked in a three-dimensional (3D) way, which enable its stable mechanical, unique chemical and physical properties, and outstanding electrochemical properties for potential applicability in long-term energy storage devices and highly sensitive biosensors. With highly controllable nanostructures of the CPHs, our novel concept and material system could possibly be utilized in a broad range of electrochemical applications, including but not limited to lithium-ion batteries (LIBs) electrodes, electrochemical capacitors (ECs), biofuel cells, medical electrodes, printable electronic devices, and biosensors. / text
|
452 |
Outils diagnostiques pour l’étude du LiFePO[indice inférieur 4] dans les batteries au lithiumWakem Fankem, Walter January 2017 (has links)
La technologie de stockage d’énergie basée sur le lithium est largement utilisée dans le monde depuis sa première commercialisation en 1990. Bien que considérées comme l’une des technologies motrices pour le stockage d’énergie mobile et stationnaire, les batteries au lithium ne sont pas exemptes des phénomènes de vieillissement liés à leur utilisation. Le vieillissement des cellules se manifeste par une baisse importante de la capacité ainsi qu’une augmentation de la résistance interne. La compréhension des phénomènes liés à cette usure contribue à améliorer la durée de vie des cellules par des outils de 1) diagnostiques et de 2) modélisation. La modélisation de ces phénomènes repose sur des principes théoriques d’électrochimie, mais également sur des études de vieillissement accéléré des matériaux d’électrodes en laboratoire. En utilisant le lithium fer phosphate (LiFePO[indice inférieur 4]) comme matériau d’électrode positive, des outils diagnostiques ont été développé afin d’étudier le vieillissement de matériaux d’électrodes de piles boutons au lithium (Li/LFP) et aux ions lithium (C/LFP). Dans la première partie de ce mémoire, les cellules ont été optimisées à travers l’évaluation de l’effet de l’épaisseur et de la compression des électrodes sur leurs performances. Les performances optimales ont été obtenues avec des électrodes de faibles épaisseurs (~ 40 μm) ainsi qu’une compression maximale (5 à 6 espaceurs en acier inoxydable soit 2,5 mm et 3 mm d’épaisseur). L’effet de paramètres de vieillissement sur l’usure des piles boutons a par la suite été évalué. La température (25 °C et 45 °C) et la vitesse de charge/décharge (1C et 4C) ont été choisies comme paramètres de vieillissement accéléré. La spectroscopie d’impédance électrochimique (EIS), notre outil principal d’analyse, a permis de suivre l’évolution des paramètres de transfert de charge (résistances de l’électrolyte et de transfert de charge) et de masse (coefficient de diffusion des ions lithium) tout au long de l’étude. Un modèle de circuit équivalent basé sur la diffusion en coordonnées sphérique a été développé afin d’interpréter les diagrammes de Nyquist obtenus en début et en fin de vie des cellules. Des valeurs de coefficient de diffusion des ions lithium (D[indice inférieur Li+]) de l’ordre de 10-[indice supérieur 11] à 10-[indice supérieur 16] cm[indice supérieur 2]/s ont été trouvées à l’aide du modèle de diffusion sphérique exploitant le rayon des particules de LiFePO[indice inférieur 4]. La température est le paramètre ayant présenté l’effet le plus préjudiciable sur les performances des deux types de cellules, Li/LFP et C/LFP. La plus grande baisse de capacité associée évidemment à une conséquente augmentation de résistance de transfert de charge (R[indice inférieur ct]) a en effet été observé à 45 °C. L’augmentation de la R[indice inférieur ct] a été attribuée à la croissance de l’interface d’électrolyte solide (SEI) et de l’interface perméable solide (SPI) respectivement à la surface des électrodes négative et positive. L’évolution de la SEI (dissolution/reformation) a été évaluée indirectement par le suivi de l’efficacité coulombique (Eff Q). L’efficacité coulombique présente généralement des valeurs de l’ordre de 99 % au début de la vie des cellules. Cette valeur décroit graduellement tout au long de l’étude de vieillissement. Une baisse de l’efficacité coulombique de l’ordre de 50 % a été associée à une consommation d’ions lithium suite à la reformation de la SEI. Des diminutions importantes (de 99 % à 50 %) de l’Eff Q ont été observées à 45 °C, laissant supposer une instabilité de la SEI entrainant une dissolution et une reformation en continu de cette dernière dans les deux types de cellules. Dans les cellules Li/LFP à 45 °C contrairement à celles C/LFP, l’Eff Q fluctue de 99 % à 50 % mais finit par retrouver des valeurs de l’ordre de 97% à la fin de l’étude de vieillissement. Cette observation a conduit à émettre l’hypothèse selon laquelle la SEI est plus stable dans les cellules Li/LFP que dans celles C/LFP. Dans les cellules C/LFP, l’intercalation des ions Li[indice supérieur +] génère un stress dans la structure du carbone entrainant un décollement de la SEI. Le décollement de la SEI découvre des régions de l’électrode négative (EN) de carbone non protégées susceptibles de réagir avec l’électrolyte. Des ions Li[indice supérieur +] sont par conséquent utilisés lors de chaque charge afin de former la SEI sur les surfaces de l’EN nouvellement découvertes, d’où la baisse graduelle de l’Eff Q (de 99 % à 80 %) observée dans les cellules C/LFP. À la fin de l’étude de vieillissement, une analyse physico-chimique post mortem a été effectuée sur des électrodes. Les analyses de microscopie électronique à balayage (MEB) ont permis de détecter des changements de taille et de forme des particules de carbone de l’électrode négative suite à la formation de la SEI ainsi que la présence de la SPI à la surface de l’électrode positive de LiFePO[indice inférieur 4] (LFP). La diffraction des rayons X (DRX) d’électrode positive issues de cellules Li/LFP et C/LFP vieillies a permis d’évaluer les phases en présence ainsi que l’état du LFP. La structure du LFP n’a pas été altérée par le vieillissement. Les diffractogrammes d’électrodes positives issues de cellules Li/LFP n’ont montré que la phase riche en lithium (phase triphylite) confirmant l’hypothèse selon laquelle la baisse de capacité n’était pas la conséquence d’un manque d’ions lithium. Dans le cas des EP issues de cellules C/LFP, il a été observé sur les diffractogrammes la présence des phases riche (triphylite) et pauvre (hétérosite) en lithium. Cela confirme la présence insuffisante de lithium cyclable dans ces cellules à la fin de l’étude (cycle 220). La baisse de capacité enregistrée dans les cellules Li/LFP et C/LFP n’est pas due à la dégradation du LFP, mais plutôt à l’augmentation de l’impédance interne liée à la croissance de la SEI et à la consommation du lithium cyclable. Les résultats issus de ce mémoire ont été présentés au congrès de Electrochemical Society (ECS) Prime 2016 (Walter Wakem Fankem, Barzin Rajabloo, Martin Désilets, Gessie Brisard, Electrochemical Impedance Spectroscopy to Diagnose the Effect of Morphology and as A Tool to Model the Aging Process of Li Batteries, 2 – 7 Octobre 2016, HI). Ils ont également fait l’objet d’un article soumis (Barzin Rajabloo, Ali Jokar, Walter Wakem Fankem, Martin Désilets, Gessie Brisard, A New Variable Resistance Single Particle Model for Lithium Iron Phosphate Electrode, Journal of Power Sources, Avril 2017) en collaboration avec Barzin Rajabloo du groupe de recherche CREEPIUS (département de génie chimique et de génie technologique). Ledit article porte sur le développement d’un modèle de vieillissement semi-empirique de pile bouton Li/LFP basé sur un système de résistance variable.
|
453 |
Non-aqueous Electrolytes and Interfacial Chemistry in Lithium-ion BatteriesXu, Chao January 2017 (has links)
Lithium-ion battery (LIB) technology is currently the most promising candidate for power sources in applications such as portable electronics and electric vehicles. In today's state-of-the-art LIBs, non-aqueous electrolytes are the most widely used family of electrolytes. In the present thesis work, efforts are devoted to improve the conventional LiPF6-based electrolytes with additives, as well as to develop alternative lithium 2-trifluoromethyl-4,5-dicyanoimidazole (LiTDI)-based electrolytes for silicon anodes. In addition, electrode/electrolyte interfacial chemistries in such battery systems are extensively investigated. Two additives, LiTDI and fluoroethylene carbonate (FEC), are evaluated individually for conventional LiPF6-based electrolytes combined with various electrode materials. Introduction of each of the two additives leads to improved battery performance, although the underlying mechanisms are rather different. The LiTDI additive is able to scavenge moisture in the electrolyte, and as a result, enhance the chemical stability of LiPF6-based electrolytes even at extreme conditions such as storage under high moisture content and at elevated temperatures. In addition, it is demonstrated that LiTDI significantly influences the electrode/electrolyte interfaces in NMC/Li and NMC/graphite cells. On the other hand, FEC promotes electrode/electrolyte interfacial stability via formation of a stable solid electrolyte interphase (SEI) layer, which consists of FEC-derivatives such as LiF and polycarbonates in particular. Moreover, LiTDI-based electrolytes are developed as an alternative to LiPF6 electrolytes for silicon anodes. Due to severe salt and solvent degradation, silicon anodes with the LiTDI-baseline electrolyte showed rather poor electrochemical performance. However, with the SEI-forming additives of FEC and VC, the cycling performance of such battery system is greatly improved, owing to a stabilized electrode/electrolyte interface. This thesis work highlights that cooperation of appropriate electrolyte additives is an effective yet simple approach to enhance battery performance, and in addition, that the interfacial chemistries are of particular importance to deeply understand battery behavior.
|
454 |
Modeling of Battery Degradation in Electrified VehiclesJuhlin, Olof January 2016 (has links)
This thesis provides an insight into battery modeling in electric vehicles which includes degradation mechanisms as in automotive operation in electric vehicles. As electric vehicles with lithium ion batteries increase in popularity there is an increased need to study and model the capacity losses in such batteries. If there is a good understanding of the phenomena involved and an ability to predict these losses there is also a foundation to take measures to minimize these losses. In this thesis a battery model for lithium ion batteries which includes heat dissipation is used as groundwork. This model is expanded with the addition of capacity losses due to usage as well as storage. By combining this with a simple vehicle model one can use these models to achieve an understanding as to how a battery or pack of several batteries would behave in a specific driving scenario. Much of the focus in the thesis is put into comparing the different factors of degradation to highlight what the major contributors are. The conclusion is drawn that heat is the main cause for degradation for batteries in electric vehicles. This applies for driving usage as well as during storage. As heat is generated when a battery is used, the level of current is also a factor, as well as in which state of charge region the battery is used.
|
455 |
Iron Based Materials for Positive Electrodes in Li-ion Batteries : Electrode Dynamics, Electronic Changes, Structural TransformationsBlidberg, Andreas January 2017 (has links)
Li-ion battery technology is currently the most efficient form of electrochemical energy storage. The commercialization of Li-ion batteries in the early 1990’s revolutionized the portable electronics market, but further improvements are necessary for applications in electric vehicles and load levelling of the electric grid. In this thesis, three new iron based electrode materials for positive electrodes in Li-ion batteries were investigated. Utilizing the redox activity of iron is beneficial over other transition metals due to its abundance in the Earth’s crust. The condensed phosphate Li2FeP2O7 together with two different LiFeSO4F crystal structures that were studied herein each have their own advantageous, challenges, and scientific questions, and the combined insights gained from the different materials expand the current understanding of Li-ion battery electrodes. The surface reaction kinetics of all three compounds was evaluated by coating them with a conductive polymer layer consisting of poly(3,4-ethylenedioxythiophene), PEDOT. Both LiFeSO4F polymorphs showed reduced polarization and increased charge storage capacity upon PEDOT coating, showing the importance of controlling the surface kinetics for this class of compounds. In contrast, the electrochemical performance of PEDOT coated Li2FeP2O7 was at best unchanged. The differences highlight that different rate limiting steps prevail for different Li-ion insertion materials. In addition to the electrochemical properties of the new iron based energy storage materials, also their underlying material properties were investigated. For tavorite LiFeSO4F, different reaction pathways were identified by in operando XRD evaluation during charge and discharge. Furthermore, ligand involvement in the redox process was evaluated, and although most of the charge compensation was centered on the iron sites, the sulfate group also played a role in the oxidation of tavorite LiFeSO4F. In triplite LiFeSO4F and Li2FeP2O7, a redistribution of lithium and iron atoms was observed in the crystal structure during electrochemical cycling. For Li2FeP2O7, and increased randomization of metal ions occurred, which is similar to what has been reported for other iron phosphates and silicates. In contrast, triplite LiFeSO4F showed an increased ordering of lithium and iron atoms. An electrochemically induced ordering has previously not been reported upon electrochemical cycling for iron based Li-ion insertion materials, and was beneficial for the charge storage capacity of the material.
|
456 |
Electrochemical Studies of Aging in Lithium-Ion BatteriesKlett, Matilda January 2014 (has links)
Lithium-ion batteries are today finding use in automobiles aiming at reducing fuel consumption and emissions within transportation. The requirements on batteries used in vehicles are high regarding performance and lifetime, and a better understanding of the interior processes that dictate energy and power capabilities is a key to strategic development. This thesis concerns aging in lithium-ion cells using electrochemical tools to characterize electrode and electrolyte properties that affect performance and performance loss in the cells. A central difficulty regarding battery aging is to manage the coupled effects of temperature and cycling conditions on the various degradation processes that determine the lifetime of a cell. In this thesis, post-mortem analyses on harvested electrode samples from small pouch cells and larger cylindrical cells aged under different conditions form the basis of aging evaluation. The characterization is focused on electrochemical impedance spectroscopy (EIS) measurements and physics-based EIS modeling supported by several material characterization techniques to investigate degradation in terms of properties that directly affect performance. The results suggest that increased temperature alter electrode degradation and limitations relate in several cases to electrolyte transport. Variations in electrode properties sampled from different locations in the cylindrical cells show that temperature and current distributions from cycling cause uneven material utilization and aging, in several dimensions. The correlation between cell performance and localized utilization/degradation is an important aspect in meeting the challenges of battery aging in vehicle applications. The use of in-situ nuclear magnetic resonance (NMR) imaging to directly capture the development of concentration gradients in a battery electrolyte during operation is successfully demonstrated. The salt diffusion coefficient and transport number for a sample electrolyte are obtained from Li+ concentration profiles using a physics-based mass-transport model. The method allows visualization of performance limitations and can be a useful tool in the study of electrochemical systems. / <p>QC 20140512</p>
|
457 |
Système d'alimentation photovoltaïque avec stockage hybride pour l'habitat énergétiquement autonome / Photovoltaic power system with hybrid storage for energy-independent housingSingo, Akassewa Tchapo 03 February 2010 (has links)
Avec la crise pétrolière annoncée depuis quelques années déjà, le recours aux énergies alternatives connait une forte expansion ; parmi elles, l'énergie photovoltaïque, est une technologie prometteuse en termes de sécurité d'approvisionnement et de préservation de l'environnement. Néanmoins, elle présente deux principaux inconvénients : la production d'énergie n'est pas continue et la tension aux bornes des panneaux dépend fortement de la charge connectée. A travers nos travaux de recherche, nous proposons un système photovoltaïque autonome avec stockage permettant de réduire les contraintes citées plus haut. D'une part, un algorithme MPPT (Maximum Power Point Tracking) auto-adaptatif permet aux panneaux photovoltaïques de fonctionner suivant leur tension optimale, fournissant ainsi le maximum de puissance. D'autre part, l'unité de stockage d'électricité a été optimisée : en plus des batteries au plomb conventionnellement utilisées, des supercapacités ont été ajoutées en vue d'obtenir une unité hybride de stockage. Ainsi, les supercapacités remplissent une fonction « puissance » en faisant face aux pics de puissance, et les batteries la fonction « énergie » . L'ajout des supercapacités permet ainsi de mieux préserver les batteries en leur évitant de profondes décharges. Enfin, une gestion globale efficace permet au système de fournir un rendement optimal. / With the oil crisis announced in recent years, the use of alternative energy is experiencing strong growth, among them; photovoltaic energy is a promising technology in terms of supply security and environmental preservation. However, it has two main disadvantages: the production of energy is not continuous and the voltage across the PV panels heavily depends on the connected load. Through our research, we propose an autonomous photovoltaic system with storage to reduce the constraints mentioned above. On one hand, an auto-adaptive MPPT (Maximum Power Point Tracking) algorithm allows photovoltaic panels to operate according to their optimal tension, thus providing maximum power. On the other hand, the storage device has been optimized: supercapacitors are added to lead-acid batteries to obtain a hybrid storage unit. Thus, supercapacitors perform a "power" function by facing power peaks, and batteries, an "energy" function. The addition of supercapacitors preserves the batteries by avoiding deep discharge. Finally, an effective overall management allows the system to provide optimal performance.
|
458 |
Laser welding for battery cells of hybrid vehiclesRos García, Adrián, Bujalance Silva, Luis January 2019 (has links)
The report is an overview article, as a result of our investigation at the field of laser welding applied to electromobility cells manufactured in an aluminium housing. This project was proposed by the University of Skövde in collaboration with ASSAR Centre. The key results presented are based on the study of the following parameters: laser type and power, shielding gases, welding modes, patterns and layout. The conclusions of the project define the final selection of each parameter in order to achieve minimum defects and optimal electrical performance by minimizing the contact resistance.
|
459 |
[en] FES2 / FE ELECTRODE KINETICS IN MOLTEN SALTS / [pt] CINÉTICA DO ELETRODO DE FES2 / FE EM SAIS FUNDIDOSMARIA JOSE PANICHI VIEIRA 26 October 2005 (has links)
[pt] Neste trabalho é realizada a determinação dos parâmetros
cinéticos
críticos da redução eletroquímica do dissulfeto de ferro
numa mistura de haletos
clorados fundidos. Este catodo é empregado como material
alternativo em
sistemas de elevado grau tecnológico, por exemplo,
componente em coletores
de energia solar, anodo despolarizador para a produção de
hidrogênio e material
catódico em baterias e pilhas de alta densidade de
energia. Cabe ressaltar que o
par eletroquímico Li / FeS2 vem sendo testado em novas
configurações com
diversos eletrólitos, especialmente com sais fundidos em
pilhas térmicas e
polímeros orgânicos em veículos elétricos / híbridos. Os
ensaios desta pesquisa
foram realizados em uma célula de teste num forno vertical
com leitura digital em
tempo real da temperatura e dos dados eletroquímicos. A
estabilidade de
diversos eletrodos de referência de primeira espécie foi
avaliada em testes em
branco de longa duração, sendo analisados os seguintes
materiais: prata,
platina, níquel, molibdênio. A célula eletroquímica teve a
configuração de três
eletrodos: prata como referência; dissulfeto de ferro, na
forma de pó
compactado, de trabalho e grafite sendo o contra-eletrodo.
A metodologia
empregada foi a voltametria linear cíclica com taxa de
varredura lenta
(0,002 Vs-1), garantindo quasi equilíbrio. O cálculo dos
potenciais padrão em
circuito aberto, de equilíbrio termodinâmico, indicou
0,3306 ± 0,014 V (773 K) em
relação ao eletrodo de referência de Ag / AgCl. O
coeficiente de transferência
catódico ficou determinado como valendo 0,48, comprovando
a reversibilidade
do processo e apontando para a possibilidade de utilização
deste sistema
eletroquímico em baterias. Foi estudado o comportamento
eletrocatalítico do
eletrodo de FeS2 pelo levantamento das curvas de Tafel a
partir dos
voltamogramas. O parâmetro indicador desta espontaneidade
reacional foi as
correntes de transferência, que para o sistema foram
determinadas como
14,75 ± 2,73 kA m-2. A avaliação dos produtos reacionais e
intermediários foi
realizada aliando dados eletroquímicos e técnicas de
caracterização. O
mecanismo de reação proposto é iniciado pela redução do
FeS2 a Fe metálico,
como etapa controladora da reação, envolvendo a troca de
um elétron, seguida
de duas reações envolvendo íons enxofre e uma etapa final
puramente química com a formação de Li2S. Uma série de
reações químicas e eletroquímicas são
propostas para explicar a formação de polissulfetos
intermediários, sendo o mais
importante o Li2FeS2 ( fase X ), caracterizado neste
estudo através de
micrografias com a formação de cristais de hábito acicular. / [en] In this work the measurement of the critical kinetics
parameters of iron
disulphide electrochemical reduction in molten chloride
halides mixture was
made. This cathode is applied as alternative material in
high technology systems,
such as, solar energy collector`s components, anode
depolariser for hydrogen
production and cathodic materials for high energy density
primary and secondary
batteries. It should be notice that the Li / FeS2
electrochemical pair is being
tested in new configurations together with several
electrolytes, specially molten
salts in thermal batteries and organic polymers in
hybrid / electrical vehicles. The
experiments in this research were carried in a test cell
placed inside a vertical
furnace having a real time data acquisition system for
temperature and
electrochemical data. The stability of many first kind
reference electrodes was
evaluated in long duration blank tests, being selected the
following materials:
silver, platinum, nickel and molybdenum. The chosen three-
electrode cell
configuration was: silver as reference, iron disulphide
compacted powder as
working electrode and graphite as counter-electrode. The
applied methodology
was the cyclic linear voltammetry at slow sweep rate
(0,002 Vs-1), ensuring quasi
equilibrium conditions. For the thermodynamical
equilibrium the standard
potential determinations for open circuit resulted 0,3306
+- 0,014 V (773 K) with
respect to the Ag / AgCl reference. The cathodic transfer
coefficient measured to
be 0,48 indicates the reversibility of the electrode
process and points at its
possible application as secondary battery. The FeS2
electrocatalytical behaviour
was evaluated though the Tafel curves extracted from the
voltammograms. The
indicating parameter for this reaction spontaneity, the
transfer currents, for this
systems were measured to be 14,75 +- 2,73 kA m-2. The
evaluation of the reaction
intermediaries and products were made allying
electrochemical data and
characterization techniques. The proposed reaction
mechanism is initiated by the
reduction of FeS2 to metallic iron as the controlling
step, followed by two
reactions involving sulphur ions and terminated by the
chemical formation of Li2S.
A series of chemical and electrochemical processes are
proposed to explain
formation of intermediary polisulphides, being the most
important Li2FeS2
(phase X) spotted here though micrographies displaying
it`s characteristic
crystals of needle-like morphology.
|
460 |
Grid-Tied Solar Photovoltaic (PV) System with Battery storage : A Brief Techno-Economic AnalysisBasavalingappa, Sharat January 2019 (has links)
Most of the world’s electricity is being generated through conventional sources of energy like coal and nuclear. People are realizing the dire effect of using these fuels, and the amount of CO2 being released into the environment. Therefore, in recent year there has been a shift in emphasis towards cleaner ways of generating electricity. One such recent trend is solar photovoltaics (PV), which has seen rapid growth over the years. This ever-increasing trend of adopting PV system allows consumers to be producers or “Prosumers”. Due to the irregular production capability of solar PV, the need for an energy storage system like a battery bank is on the rise as well. This report evaluates how solar PV can be used in combination with a battery bank to supply the annual electricity demand for a household with little to no support from the grid. The building is assumed to be located in Bangalore, India. The energy demand for the household is estimated based on the requirements of a basic Indian house standard. The size and configuration of each component have been done with regards to the total load demand. Furthermore, the cost of the whole system is estimated in order to evaluate the feasibility of the grid-tied system from an economic perspective. The results show that a PV system consisting of four 270W solar panels, a battery bank of eight150Ah lead-acid batteries and a 48V 4kW inverter is required to meet the annual energy demand of the house. The results show that from a technical standpoint, the above-mentioned technology is feasible. The results from the economic evaluation show that the localized cost of energy(LCOE) for the system is ₹6.01/kWh or € 0.078/kWh or 0.84SEK/kWh and the payback time for the given system is 16.19 years. On the bright side, there are new technological advancements in the PV field every day, which could mean that an energy system of this type can be an achievable and practical alternative. Most of the world’s electricity is being generated through conventional sources of energy like coal and nuclear. People are realizing the dire effect of using these fuels, and the amount of CO2 being released into the environment. Therefore, in recent year there has been a shift in emphasis towards cleaner ways of generating electricity. One such recent trend is solar photovoltaics (PV), which has seen rapid growth over the years. This ever-increasing trend of adopting PV system allows consumers to be producers or “Prosumers”. Due to the irregular production capability of solar PV, the need for an energy storage system like a battery bank is on the rise as well. This report evaluates how solar PV can be used in combination with a battery bank to supply the annual electricity demand for a household with little to no support from the grid. The building is assumed to be located in Bangalore, India. The energy demand for the household is estimated based on the requirements of a basic Indian house standard. The size and configuration of each component have been done with regards to the total load demand. Furthermore, the cost of the whole system is estimated in order to evaluate the feasibility of the grid-tied system from an economic perspective. The results show that a PV system consisting of four 270W solar panels, a battery bank of eight 150Ah lead-acid batteries and a 48V 4kW inverter is required to meet the annual energy demand of the house. The results show that from a technical standpoint, the above-mentioned technology is feasible. The results from the economic evaluation show that the localized cost of energy (LCOE) for the system is ₹6.01/kWh or € 0.078/kWh or 0.84SEK/kWh and the payback time for the given system is 16.19 years. On the bright side, there are new technological advancements in the PV field every day, which could mean that an energy system of this type can be an achievable and practical alternative.
|
Page generated in 0.085 seconds